JPS5947346A - Production of high alloy powder and sintered alloy and sintered alloy - Google Patents

Production of high alloy powder and sintered alloy and sintered alloy

Info

Publication number
JPS5947346A
JPS5947346A JP57157987A JP15798782A JPS5947346A JP S5947346 A JPS5947346 A JP S5947346A JP 57157987 A JP57157987 A JP 57157987A JP 15798782 A JP15798782 A JP 15798782A JP S5947346 A JPS5947346 A JP S5947346A
Authority
JP
Japan
Prior art keywords
powder
alloy
sintered
phase
equilibrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57157987A
Other languages
Japanese (ja)
Other versions
JPS631361B2 (en
Inventor
Akihisa Inoue
明久 井上
Takeshi Masumoto
健 増本
Yoshio Harakawa
原川 義夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP57157987A priority Critical patent/JPS5947346A/en
Publication of JPS5947346A publication Critical patent/JPS5947346A/en
Publication of JPS631361B2 publication Critical patent/JPS631361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered alloy in which carbides are finely dispersed and which has improved strength and resistance to abrasion and heat, by compacting the high alloy steel powder contg. Cr, C, Mo and having fine crystalline texture and sintering the same at an adequate temp. CONSTITUTION:The high alloy powder which consists of at least 1 kind among 20-50wt% Cr, 3.0-3.6% C, 5-20% Mo and 15-40% W and the balance Fe and has the fine crystal grain texture exhibiting a non-equil. single phase are prepd. by an ultraquick cooling and solidifying method or the like. Such high alloy powder is used as a raw material and compacted. The resulting green compact is sintered by heating to the temp. at which a part of the non-equil. single phase changes to an equil. carbide phase. The sintered alloy wherein the precipitated carbides are finely dispersed by the migration of the atoms of the high alloy powder arising in the stage of the change to the equil. carbide phase and which is homogeneous and is highly resistant to abrasion is thus obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は話者藩鋼粉宋、この粉末を用いる粉末冶金製品
の焼結方法及び焼結晶に関するものである。 従来、粉末冶金用金属粉末は主とじで破砕法及び水噴霧
法により製造されてい4)3、(i:′i、砕法FJI
、脆性金属であるマンガン、クロム、アノテモン、ビス
マス、コバルトの如き単−全身−4又(・よ人為的に脆
化された金J’Mでりる海綿鉄、 JG ′Jr(鉄等
、もしくは脆い合金(金r間化合物を含むンであるFe
 4.t。 Fe−At−Ti、 Ni−Al、 Ni−Ti、 F
e−Cr、 Fe−8グ等fjついて行われてい4)。 1グこ水1f!χり法仁1:金屈又は合金の溶湯を水に
より(4械的に噴倉咋化する方法でりり、甚だしく酸化
性が高い金札・台金以外に広く適用される。こ)1.ら
の方法でイuられた粉末の相は平衡相である。すなわち
、例えばFe−Cr−Mo粉末につい11r、L、 α
−1’e相、 P、123C,等の炭化物相、その他の
4口は平壱4状態で生成する相でおる。 l記従来法Vヒより製コム塾れた粉末反ひこJ’Lを原
料とした粉末
The present invention relates to a sintering method for powder metallurgy products using this powder, and a sintered crystal. Conventionally, metal powder for powder metallurgy has been produced by the crushing method and the water spray method using the main method.
, brittle metals such as manganese, chromium, anotemon, bismuth, cobalt, etc. Brittle alloys (Fe containing intermetallic compounds)
4. t. Fe-At-Ti, Ni-Al, Ni-Ti, F
This has been done for e-Cr, Fe-8, etc. fj4). 1 g water 1 f! χ Ri method 1: The molten metal of metal or alloy is heated with water (4-mechanical method of turning the metal into a molten metal, and is widely applied to materials other than gold tags and base metals, which are extremely oxidized.) 1. The phase of the powder prepared by the method of et al. is an equilibrium phase. That is, for example, 11r, L, α for Fe-Cr-Mo powder
-1'e phase, carbide phases such as P, 123C, etc., and the other four phases are phases that are generated in four states. Powder made from Powder Anti-Hiko J'L manufactured by conventional method Vhi as raw material.

【1′バli−’j4品について本発明;
’i&、4.以下のような観点71Sらノ1.:不的4
フ・7討を行ノた。 (イ)従来の(波砕による粉末製造り釜、易性:従来法
において、人l−、的婬脆い金わiでおる海札鉄及び電
私′鉄を11小ことにより粉末胎生)、ト品のコスト上
昇の原因と/I’ね。また、人為的に’c :pigい
台金な作4)と、この合金中リノ危性・);jがし)未
冶金表品のし人。 性を低下さぜる危しとかおり、;3°6結中14.−こ
の脆tし111に゛消滅させるための’i’f 4にの
か5 A’+’i :F+’G件rバ択す4、必22か
をノる。 (ロ)  イ分71宕行爬i製品Qノ成多す均貨逢イ生
: プ寸t::l’j j員わ1で成分り拡散等[、L
るI3,4分J′J−化が起こるか、これは平衡相がど
のように鼓化する〃・の程跣に〃・かつている。ここで
平衡相とは例えばIi”e−er−i〜■0粉宋につい
ていえQ」:、α−Feマトリックス中のIVI23C
6等の炭化物1がどのように均一分散するかが成分均質
化の程度を決定するが、炭化物はマトリックス中に既に
分散されていイ)ので、」二記成分均質性はDl(粗粉
末の1へv法に起因するというljl界があ/−)0 従来、超急冷合金のイiJr究において、合(ピを’/
<?融状態から超急冷しfこ171合、過自第11固溶
体、非平衡結晶R相、あるいVよ非晶質相とい−〕だ非
平衡相が、’I−:i定の合金組成では形成されること
が知られてい/′、〕。 本発明−8は」二連の点(イ〕及び(「りの点を7行識
して、超Ω、冷合金り研究を行っていた:111M程で
、20〜50%117)Cr と、3.0〜3.fi 
’%のCと、5〜20条のMO及び15〜40係のWの
少なくとも1釉と(白゛分率は特記しない限り重量係)
、 残部Feとからなる高合金が非平h+単−相を呈し
、かつ従来の粉末冶金原料及び製品の問題点を解消する
ことを見出して本発明を光成した。 すなわち、本発明は、XU ;+1比で20〜50%の
Crと、3.0〜3.6%のCと、5〜20ol)のM
。 及び15〜40%のWの少なくとも1種と、残部Feと
からなる組成をイjし、かつ非平衡単−相を呈すイ)微
細結晶粒組織を有するb合金外粉末を提供す4・。 辷らに、本発明をよ、魚)lシ比で20〜50係のCr
と、30〜3.6条のCと、5〜20係のMo及び15
〜4()係のWの少なくとも1陣と、残部Feとからな
る組成を有し、かつ非平衡単−相を呈する微細結晶粒組
織をイT干る晶合金呑粉末を焼結の原料粉末として用い
、この原料粉末を圧粉し、前記非平衡単−相の一部が平
衡炭化物相に変化する温度1/C圧粉体を加熱してその
焼結を行い、前記平衡炭化物相への変化の際起こる前記
重合金粉末の原子の移’IQ)により均質な焼結合金を
製造する方法を提供す4)、。 さらに、本発明ケ、[、重柘比で20〜50チのCrと
、3.0〜:3.6%のCと、5〜20 %のMo及び
15〜40係のWの少7tぐとも1鍾と、残部Feと〃
・らなイ)組成な;1」シ、非」・′切半−A目〃・ら
析出した炭化物を微細に分散してなる重合金粒子を含ん
でなり、而[Iγ耗性に侵れブご焼結合金を4H4供す
る1、先ず、本発明に係る高合會、し”j zi: V
して)い−Ct;′1′、明する。この高合金粉末にお
いて、Cr2O〜50グン、C3,0〜3.6 %、M
o5〜20%及び/又はW15〜40%、残部Feの範
囲と17たのし、シ、Cr。 Mo、W及びCがこの範囲外ではJし[′仔゛ツ単−相
が形成されないからである。この非平街−!Iシー11
比1: rif融合金合金しくは後述すQようt方法に
よj)N+’I(/(8)以上の冷却速度で超急冷J−
/、JことLシJす1(」られる。また、本発明におけ
る非平0・ス単−相と(・、11、通常のRJ調製法よ
るFe −Cr −Ivlo (:vV)−C合金と比
和こして説明するならば、この合金で番;L通常マトリ
ックス相であるフェライト又&、I:マルデンリ゛イト
Aa絃中&C1R4z3Ca、 R44C3,r4+c
 7.+Jσ、11]等が分数した多相111紙が形成
−C: lL% この組織中、)K、l、7成相は平゛
iν¥i状態でも形成δA1、/bもQ)である、1ど
こ、うが、不発明の高合金粉末では組絨シ」、単−相で
・りり且つこの相は平r″グ状態では−rL在しえない
相である。この相は本発明者がXfDA回折により同足
したところα−M乳型横型構造化合物ることがほぼ確実
になつた。F”e −Cr−Mo又はWあるいはFe 
−Cr −rs’Io −Wの三元又は四元1(e子、
金において従来この上うな第1°り造の非平衡相Cよ見
出さIしていな7Jsっだ。上述の非平衡単−相の工業
的意義は、組成の異なる位数の相がF e−Ur −M
o (W) −C合金中にa在せず、したがって顕微録
組餓のレベルで均質性を有するFe −Cr −Mo 
(W)−C合金を、微細に分割して9末とすると粉末粒
子間でも粉末粒子内でも成分の分布が均一であるため、
粉末冶金製品の均質性がtしく高められる点にのる。さ
らに、非平衡単−相よりなる島台金粉末は非常に脆く6
易に粉末になることが判明した。したがって、本発明の
高合金粉末は従来のFe−Cr−八io (W) −C
@金では決して得られlI/′1特色をもっており、粉
末冶金に寄与するところが大である。 υ、に、焼結方法について説明す2)、。 本発明の高合金粉末は非常Vこ熱に敏感であり、焼結1
.“1非平衡単−相は分解し、αF’e+M7C3又は
αFe + M2s Caといった炭化物分解反応を生
じる。 この反応を従来のli’e −Cr −Mo −C合金
の焼結時の反応と比較するならば、この合金で(−↓炭
化物反応又は固溶度の変化めるい杭1−変聾で、■(・
−より、原子の移動が起こるが、この合金のA:’t 
b、”、相にイ!Ml相であるため、本発明の場合より
も原子の移動は緩慢でちる。一方、本発明の場合は灰化
物分解反応tま8731(以上で非、背に活発であるた
めに、この反応に伴う原子の移fi■11を焼結促進C
(利用すると原料粉末間の焼結反応が促進されることに
本発明者A’j′は着目した3、より具体的に述ベクと
、焼結は単体金属(合金)と炭化物等の化合物間おるい
は単体金属(合金)間て行われるが、1iiJ 、、r
l−こは(1,・1;れの問題があって原料粉末の種類
に制限があZ)。ブ7ζ後者でも焼結性が良くない」ノ
)合は液相ハ’lI”l′Jか行われる。これに対して
、本発明の場合はiB、″、結反応促進による焼結性の
改良によって、焼結上の制限が緩和さJしるか又は性能
が優jした焼結合コJiがJjy供さ7’Lる。 名l−)に、上記炭化物分解反応にイト−)て、八1□
C3゜M23C6等の安定炭化物を形成し、j、 ’x
 旋剰Cr、〜1o。 Wは基地へ拡散し、基地を強化するりで、焼結製品の強
度、4几・二耗性及び耐熱性が向上する。 原料粉末としては、本発明の高合金粉末単独又はFe基
、 Co基、Ni基単体金鵜又は合金、炭化物等の91
用いずれであっても、上述のイiJ点が得られる。 Kノ“5いて、本発明の焼結合金を従来のものと対比し
て説明する。 従来の焼結合金の組織はある平衡相が別の平衡相に焼結
中に変化して形成さノtたものでりるが、本発明り組織
は非平衡単−相から析出した安定な炭化物の分散相によ
り従来のものと区別できる。 この炭化物の分散相は極めて微細に分散しており耐摩耗
性を著しく向上させ0゜−また炭化物粒径は】ミクロン
以下である。一方、従来の焼結合金の炭化物粒径は水噴
霧、“<%合金鋼粉末を使用した場合に最小10ミクロ
ンまで細粒化できるに過ぎない。 このような点〃・ら、本発明の焼結合金の耐)γ磁性は
従来りものよりも格段に改良される。 以下、本発明の犬施態様を説明する。 所定組成のrI曾4’jを超急冷して得た合金を一25
0メツシュに机械的に又は水噴肢法により粉末化し、本
発明の高合金粉末を得々)。このlj’jl 4J金粉
末を、必要により、黙鉛粉、 Fe、 co、 Ni 
 l?:の単体又は合金粉末とV型ミキサー等により約
30分間混会混合。この場合、がせF1剤どして公知の
ステアリン酸亜鉛0.5〜1.2重基係も同時Qこ混合
ず4.ことが好ましい。次に、混合粉末を4〜12トン
/crAの圧力で圧縮成形し、得られた圧粉体?真荒中
又は還元性雰囲気中で焼結する。焼結渦1民は)1j1
常の温度であってよい。 本発明り好−ましい実施Ω((様によ2)と、j!:i
常の焼結温度より10〜100K低い温1丁で13凱清
を行いつる。これは、非平衡相の擬平衡状層図の固相線
が平衝状態図V)同相五″メより低温になるICのでお
る。 さらに、本発明の高合金粉末は原註粉末の10体積係以
上であることが好丑しい。 以下、本発明のプを施例なiit’t、明−J−2,(
。 冥施例1 金属クロム、金属モリブデン、銑鉄(4,4%C)及び
活性炭を内径30配、深5120mmリタンマン管へ装
入し、底部から活性炭、金属クロム、金属モリブデン及
び銑鉄の順にセーノトし高周波溶解した。溶落後、17
00にの溶湯を#4不透明石英管で吸上げ、凝固させ、
放冷後、前記石英管スハ〔っFe −Cr −Mo−C
母台危な取り出した。そのA11成は25.82% C
r、3.34% C,7,94%△’Jo 、 a ?
fBFeであった。 次に、第1図に示す急冷凝固装置により超急冷を’t’
J−、:’ fc n 第1し1にJ?いて、1はヒー
タ、2は底しこ直径Q、 4 mmの孔があるみ明石英
管、3はアルコン刀スv1込み装[′i、4は冷却ロー
ル、5tよ冷却ロール4を回転部ΦIJす、bモータで
ある。母・B′合金を2 ! 4”r、p+j シ、1
600 r< 0iff度テ透明石英符2の底置・、b
孔より収出して、6000rpmで回転する冷却ロール
4に吹付り、約1 (l K /s釦の速度で超冷却し
Iこgel−)れた合金の組織&、i第2図に示されて
いるように単−相組織で結晶粒1ミクロン以下である。 図りコントラストは鋳造欠陥によるものである。合金は
非常に硬く、且つ非常に脆〃・った。この合金を乳鉢で
粉砕して一250メツシュの高合金粉末を作成し/ζ。 、 実施例2 実力m例1の1(唱合金粉末を原料り一′りとし7“C
焼結合金を調節しlこ。原料Cま仄ジノと9jl l’
1.’+合し/(−8高合金粉末(−25(lメノン、
)     23:!係水噴6鉄粉(−1(ン0ツノ/
−L)    757・メ黒鉛粉(1μ7n以F)  
   0.2係ステアリン酸亜韻(市販−級試・と) 
    08形焼結員−件は仄のとつりであっΔ−0 成形圧        61・7/cnI焼結温涯  
          】、14り8■〜雰囲気    
    ] (1”’I’orr(−+、−空中) 得られた焼結合金の硬さit II R1(90−1(
10であった。 焼結冶金の光学顕微鏡λ」1織馨1113図6・〜示す
。I゛〕1中、Cは本発明の重合金粉末の焼結みれたわ
j子でのり、Dはパーライト組にもこのマトリックスで
、しり、Cと00間の矢印の1ius分にL+’e −
(:r−f+4oの4i <rンJ#jが形成されてい
る。なお、非31′−+シI−II+−,11J/)・
Id上ブq・1′した炭化物は700倍の倍率では明瞭
に検出できない。このような微細な炭化物を1000℃
×1時間の熱処理で生成させ、40000倍で検出した
結果、微+1’lllな炭化物が均一に分散しているこ
とが確認された。 実力(μ例3 (比I鮫例) 本発明による高合金粉末の代りに従来の破砕鉄粉末を月
1い、次のような配合のIJg、料を調製した。 鉄粉末 (−10(+メツシュ)         9
52条黒鉛粉末(1μm以下)       10≠ク
ロム粉末(−250メソシ、、)          
3.(1”るステアリン酸亜鉛           
   (〕、8悌か゛昌1−条件は次のと99であった
。 成形圧        6トン/crl貌結温度   
         ]473に雰 囲 気      
          分J’/N7ン七ニアガス大り式
摩耗試駁I饋で相手材を3.0%C,2,0係5idj
t麩と(、てX−粍試、駒な行った結果を第4図に示す
。図中−×−れ1比軟例、−〇−は実施例3を示す。不
発明の焼結合金は比較例のものに対してあらゆる厚部速
度域で没り、た削21γi’l’;l”Lへ何イするこ
とが明らかである。 実施例4 20.5%Cr、  7.5%hlo 、28+317
A +V 、  :2.7 ・了bC。 残部11゛eの1f11成を有し、非平衡単−相」す/
1−る−250メツシーの高合金粉末を実施イXl ]
とl”l 4.inな方法で調製し、−100メノシエ
の1人粉末20′糺ノ、:、目、)粉末1.0係ととモ
I/’−混合し、’4r) [ツi L fC混イr 
物k 7 ドア/cr& )加J上刃で直仔、 I O
+px、 jj;lさ7 mmの円盤に成形し、真空中
10  ’f’orr 、  l 4G3 K。 30分間の条件で焼糺し/こ。パーン−11−組織のマ
トリックスにM23C6炭化物が1r’i’、 i l
il均−VCノJ・fft l−た、硬度Hvfi70
の’g、’s A:;jj、/:、yるアが::IらI
した。 ′、−A箱例5 23.51 ”Iy Cr、  ] 6.675b W
、  ’;i、Oi+% C,残’:rll Feから
なるX[1成を有ず/)非イト鴫(印−・相からなる1
t′5合金粉末を実施例1と同罫の方法で調製し、続い
て実施例4の方法により焼#tli合j、’lRを′1
1籾1した。 こ(つ結果、パーライト組織りマトリックスにM23C
θ炭化物相が分散した、硬度11v 4旧)・7つJシ
を結自金が得られた。 なお、比較例として、通常のFe−20φCr合金の破
砕粉末(−100メツシー)15%、 鉄粉末(822
係)、その他は上述の原料と1・I]じ配合のもQ)を
月1い、上述のが6結条件で焼結合包を製2、ムした。 実施例3と同4−゛pに摩耗試験を行った結果を第5図
に示す。図中−・0−け実施例5.・・・×・・・Vよ
比較例を意味ずゐ。第5図より、本発明の焼結合金r/
i侵れた耐摩耗性をもりことが分力・る。 実施例6 実施例1と同様の方法によって、25.82φCr。 3、34 % C、7,94% Mo、残部Feの組成
を有し、且つ単−相組織の1.6合金粉末を製造した。 この高合金粉末を原料の一つとして焼結台金を調製した
。 原料は次のとソリ配合した。 i??i会金粉末(−250メツシユ)       
23.3’矛鉄 粉 末(−100メソシ幻     
75.7%L、!−++鉛粉末<3ttm以F)   
    0.2%ステアリン酸亜鉛         
      0.8チ焼結条件は次のとうりであった。 成形圧        6トノ/c4 焼結温度            ]438に雰囲気 
          水譜/カス時   間     
            30分この結果、マルテンサ
イト相、(−r、 Moを固溶したα−Fe相及びM2
3C6炭化物11]が分散しており、また硬度■■HB
 93. (l )、”)’bM−”B金カlJう!+
だ。
[1'Bali-'j4 products of the present invention;
'i &, 4. From the following viewpoints 71S et al. :Futei 4
He carried out seven raids. (b) Conventional (powder manufacturing kettle by wave crushing, ease of use: In the conventional method, powdered iron and electric iron, which are fragile metals, are made into powder by 11 small pieces); What is the cause of the rise in the cost of products? In addition, there is a risk of unmetallurgical metal production in this alloy due to artificial production. 14 out of 3 degrees and 6 results. - Select 4 and 22 to eliminate this vulnerability. (B) 71 min.
The I3,4 minute J'J- conversion occurs, which is at the same time as the equilibrium phase develops. Here, the equilibrium phase is, for example, Ii"e-er-i ~
The degree of component homogenization is determined by how uniformly dispersed the carbide 1 is, but since the carbide is already dispersed in the matrix, the component homogeneity is There is a ljl field which is said to be caused by the hev method/-)0.
<? When ultra-quenched from the molten state, the non-equilibrium phase is called the 171 solid solution, the non-equilibrium crystalline R phase, or the amorphous phase. is known to be formed. The present invention-8 is ``Knowing the 7 points of ``double points (a)'' and ``ri points, I was conducting research on ultra-Ω, cold alloys: about 111M, 20 to 50% 117) Cr and , 3.0-3.fi
'% C, at least one glaze of 5 to 20 MO and 15 to 40 W (white fraction is by weight unless otherwise specified)
, the balance being Fe, exhibits a non-flat h+ single-phase and solves the problems of conventional powder metallurgy raw materials and products, and has accomplished the present invention. That is, the present invention provides 20 to 50% Cr, 3.0 to 3.6% C, and 5 to 20 ol) M
. and 15 to 40% of at least one kind of W, and the balance is Fe, and exhibits a non-equilibrium single phase.4. We would like to introduce the present invention to fish) with a ratio of 20 to 50 Cr.
, C of Articles 30 to 3.6, Mo of Sections 5 to 20, and 15
A raw material powder for sintering a crystalline alloy powder that has a composition consisting of at least one group of W in ~4 () and the balance Fe, and has a fine crystal grain structure exhibiting a non-equilibrium single phase. This raw material powder is pressed into powder, and the compact is heated to 1/C at a temperature at which a part of the non-equilibrium single phase changes to an equilibrium carbide phase, and the compact is sintered. 4), which provides a method for producing a homogeneous sintered alloy by the atomic transfer of the heavy alloy powder during transformation (IQ); Furthermore, the present invention contains 20 to 50% of Cr, 3.0 to 3.6% of C, 5 to 20% of Mo, and a small amount of 15 to 40% of W. Tomo 1 zhong and rest Fe and 〃
・Narai) Composition; 1. First, the high-grade meeting according to the present invention is carried out to provide 4H4 sintered alloy.
) i-Ct;'1', clear. In this high alloy powder, Cr2O~50g, C3,0~3.6%, M
O5 to 20% and/or W15 to 40%, balance Fe and 17%, Si, Cr. This is because when Mo, W and C are outside this range, no single phase is formed. This non-flat street! I Sea 11
Ratio 1: Rif alloy alloy or ultra-quenched J- at a cooling rate of N+'I(/(8) or more) using the Q method described below.
In addition, the non-flat 0.S single phase in the present invention and the Fe-Cr-Ivlo (:vV)-C alloy by the usual RJ preparation method are To explain this in comparison, in this alloy:
7. +Jσ, 11] etc. are formed as a fraction -C: 1L% In this structure, )K, l, 7 phases are formed even in the normal {iν\i state, δA1, /b is also Q), However, in the case of the uninvented high alloy powder, the non-inventive high alloy powder has a single phase, and this phase is a phase that cannot exist in the flat state. When they were added together by XfDA diffraction, it became almost certain that it was an α-M milk-type lateral structure compound.F"e -Cr-Mo or W or Fe
-Cr -rs'Io -W ternary or quaternary 1 (e child,
7Js has never before been found in gold. The industrial significance of the non-equilibrium single phase described above is that phases of different orders of composition are Fe-Ur-M
o Fe-Cr-Mo that is not present in the (W)-C alloy and therefore has homogeneity at the level of microscopic composition.
When the (W)-C alloy is finely divided into 9 powders, the distribution of components is uniform both between and within the powder particles.
The homogeneity of powder metallurgy products is greatly enhanced. Furthermore, Shimadai gold powder consisting of a non-equilibrium single phase is extremely brittle6.
It was found that it easily turned into powder. Therefore, the high alloy powder of the present invention is different from the conventional Fe-Cr-8io(W)-C
It has lI/'1 characteristics, which can never be obtained with @gold, and it greatly contributes to powder metallurgy. υ, the sintering method will be explained 2). The high-alloy powder of the present invention is extremely sensitive to heat, and the sintering
.. 1 The non-equilibrium single phase decomposes, producing a carbide decomposition reaction such as αF'e + M7C3 or αFe + M2s Ca. Compare this reaction with the reaction during sintering of a conventional li'e -Cr -Mo -C alloy. Then, in this alloy (-↓change in carbide reaction or solid solubility, 1 - change in deafness, ■(・
-, atoms move, but A of this alloy: 't
b. Because the phase is the Ml phase, the movement of atoms is slower than in the case of the present invention.On the other hand, in the case of the present invention, the ash decomposition reaction Therefore, the atomic transfer fi11 accompanying this reaction is promoted by sintering C
(The inventor A'j' noticed that when used, the sintering reaction between raw material powders is accelerated. Alignment is performed between single metals (alloys), but 1iiJ ,, r
l-Koha (1, 1; Due to this problem, there are restrictions on the type of raw material powder Z). In the latter case, the sinterability is not good even in the case of the liquid phase HA'lI''l'J.On the other hand, in the case of the present invention, the sinterability is improved by iB,'', which promotes the sintering reaction. Improvements may ease sintering limitations or provide sintered joints with superior performance. In the name l-), based on the above carbide decomposition reaction, 81
Form stable carbides such as C3゜M23C6, j, 'x
Rotated Cr, ~1o. W diffuses into the base and strengthens the base, improving the strength, wear resistance, and heat resistance of the sintered product. The raw material powder may be the high alloy powder of the present invention alone, Fe-based, Co-based, Ni-based pure gold, alloy, carbide, etc.
In either case, the above-mentioned iJ point can be obtained. In K No. 5, the sintered alloy of the present invention will be explained in comparison with the conventional one.The structure of the conventional sintered alloy is formed by changing one equilibrium phase to another equilibrium phase during sintering. However, the structure of the present invention can be distinguished from the conventional one by the stable dispersed phase of carbides precipitated from the non-equilibrium single phase.This dispersed phase of carbides is extremely finely dispersed and has excellent wear resistance. In contrast, the carbide particle size of conventional sintered alloys can be reduced to a minimum of 10 microns by water spraying and using alloy steel powder. It can only be granulated. In view of these points, the γ magnetism resistance of the sintered alloy of the present invention is significantly improved over that of the conventional one. The canine embodiment of the present invention will be described below. An alloy obtained by ultra-quenching rI 4'j of a predetermined composition is 125
The high alloy powder of the present invention is obtained by mechanically or by the water jet method to obtain a high alloy powder of the present invention. This lj'jl 4J gold powder is mixed with lead powder, Fe, co, Ni, if necessary.
l? : Mix with single powder or alloy powder for about 30 minutes using a V-type mixer, etc. In this case, zinc stearate with a 0.5 to 1.2 double base ratio, which is known as F1 agent, is also simultaneously mixed with Q.4. It is preferable. Next, the mixed powder is compression-molded at a pressure of 4 to 12 tons/crA, and the obtained compact is ? Sinter in deep heat or in a reducing atmosphere. Sintering vortex 1 people) 1j1
It may be at normal temperature. Preferred implementation of the present invention Ω((samayo 2) and j!:i
The sintering temperature is 10 to 100K lower than the usual sintering temperature. This is because the solidus line of the quasi-equilibrium phase diagram of the non-equilibrium phase is lower than that of the equilibrium phase diagram V). It is preferable that the present invention be more than 100%.
. Example 1 Metallic chromium, metallic molybdenum, pig iron (4.4% C) and activated carbon were charged into a Litanmann tube with an inner diameter of 30 mm and a depth of 5120 mm, and the activated carbon, metallic chromium, metallic molybdenum and pig iron were charged in that order from the bottom and heated at high frequency. Dissolved. After melting, 17
The molten metal of 00 was sucked up with a #4 opaque quartz tube and solidified.
After cooling, the quartz tube [Fe-Cr-Mo-C
I took out the motherboard dangerously. Its A11 composition is 25.82% C
r, 3.34% C, 7,94%△'Jo, a?
It was fBFe. Next, ultra-rapid cooling is performed using the rapid solidification equipment shown in Figure 1.
J-, :' fc n 1st and 1st J? 1 is a heater, 2 is a bottom diameter Q, an Akari quartz tube with a 4 mm hole, 3 is an archon sword v1 included ['i, 4 is a cooling roll, 5t is a rotating part of the cooling roll 4. ΦIJ is a b motor. Mother B' alloy 2! 4”r, p+j shi, 1
600 r< 0iff degree bottom position of transparent quartz mark 2, b
The alloy is collected from the hole and blown onto the cooling roll 4 rotating at 6000 rpm, and is ultra-cooled at a speed of about 1 K/s to form the structure of the alloy shown in FIG. As shown, it has a single-phase structure with crystal grains of less than 1 micron. The plot contrast is due to casting defects. The alloy was very hard and very brittle. This alloy was ground in a mortar to create a high alloy powder of 1250 mesh/ζ. , Example 2 Actual power Example 1-1 (single alloy powder was used as raw material and 7"C
Adjust the sintered alloy. Raw material C Majino and 9jl l'
1. '+combination/(-8 high alloy powder(-25(lmenon,
) 23:! Water fountain 6 iron powder (-1(n0 horn/
-L) 757・me graphite powder (1μ7n or more F)
0.2 stearic acid (commercially available)
08 type sintering member - The case is the same Δ-0 Molding pressure 61.7/cnI sintering temperature
】、14ri8■~Atmosphere
] (1"'I'orr (-+, - air) Hardness of the obtained sintered alloy it II R1 (90-1 (
It was 10. Sintered metallurgy optical microscope λ'1 Orikane 1113 Figure 6 shows. In I゛〕1, C is a sintered matrix of the heavy alloy powder of the present invention, and D is this matrix for the pearlite group. −
(: r-f+4o's 4i<r-J#j is formed.In addition, non-31'-+shi I-II+-, 11J/)・
The carbides on Id and q.1' cannot be clearly detected at 700x magnification. Such fine carbides are heated to 1000℃
It was generated by heat treatment for x1 hour and detected at 40,000 times magnification. As a result, it was confirmed that fine +1'lll carbides were uniformly dispersed. Actual power (μ Example 3 (Special I shark example) Conventional crushed iron powder was used in place of the high alloy powder according to the present invention once a month to prepare IJg and material with the following composition. Iron powder (-10 (+ mesh) 9
52-line graphite powder (1 μm or less) 10≠Chromium powder (-250 meso,,)
3. (1” zinc stearate
(), 8 degrees or 1-conditions were the following and 99. Molding pressure 6 tons/crl Showing temperature
] 473 atmosphere
min J'/N7n7nia gas type abrasion test I
Figure 4 shows the results of the t-fu and (, X-mill tests). It is clear that the material sinks in all thick part speed ranges compared to that of the comparative example, and that it changes to 21γi'l';l''L. Example 4 20.5% Cr, 7.5% hlo, 28+317
A + V, :2.7 ・Complete bC. It has a 1f11 configuration with the remainder 11゛e and is a non-equilibrium single phase.
1-Ru-250 Methy High Alloy Powder IXl]
and l"l 4.in method, -100 menosier's powder 20' adhesion, :, eyes,) powder 1.0 part and mol I/'- mixed, '4r) [tsu i L fC mixed r
Thing k 7 door / cr & ) Ka J upper blade Naoko, I O
+px, jj; l Shaped into a 7 mm disk and heated in vacuo at 10'f'orr, l 4G3K. Sintered/coated for 30 minutes. M23C6 carbide in the matrix of Pern-11-structure 1r'i', i l
il uniform-VC no J・fft l-ta, hardness Hvfi70
'g,'s A:;jj, /:, yruaga::I et al.
did. ', -A box example 5 23.51 "Iy Cr, ] 6.675b W
, ';i, Oi+% C, remainder': rll
t'5 alloy powder was prepared by the same method as in Example 1, and then sintered by the method of Example 4.
I paid 1 paddy. As a result, M23C is added to the pearlite organized matrix.
A self-bonding gold with a hardness of 11v (4 old) and 7 J was obtained in which the θ carbide phase was dispersed. In addition, as a comparative example, 15% of crushed powder of ordinary Fe-20φCr alloy (-100 Metsushi) and iron powder (822
The other ingredients were the same as the above-mentioned raw materials 1. The results of a 4-p wear test conducted in the same manner as in Example 3 are shown in FIG. In the figure -・0-ke Example 5. ...×...V doesn't mean a comparative example. From FIG. 5, the sintered alloy r/ of the present invention
It is important to remove the wear resistance that has deteriorated. Example 6 25.82φCr was prepared in the same manner as in Example 1. A 1.6 alloy powder having a composition of 3.34% C, 7.94% Mo, and the balance Fe and having a single-phase structure was produced. A sintered base metal was prepared using this high alloy powder as one of the raw materials. The raw materials were mixed with the following: i? ? i Kaikin Powder (-250 mesh)
23.3' Spear iron powder (-100 Mesosi illusion
75.7%L! -++Lead powder<3ttmF)
0.2% zinc stearate
The 0.8 inch sintering conditions were as follows. Molding pressure 6tono/c4 Sintering temperature 438mm atmosphere
water record/cass time
As a result of this for 30 minutes, martensitic phase, (-r, α-Fe phase with Mo solid solution and M2
3C6 carbide 11] is dispersed, and the hardness is HB
93. (l),")'bM-"BKinka lJu! +
is.

【図面の簡単な説明】[Brief explanation of the drawing]

J I W V−J’、 急Mr A’E GiJ装p
’f(1)イ1(゛L念図、第2図は25.82%Cr
、  3、:(4%C,7,94AMo 、残部l;”
e、!、りなり、非−1’衡tp、 −J1]k 有j
−る合金の金属顕彼鏡写真(倍率30. (1(10倍
)、第3図tユ本光明りす〕11、結台金の金!I’i
 37+i微鈴二If真(倍率700倍)、 第4図及び第5図tよ摩Aし試験(1) ii、i果を
7J’<すグラフである。 1−ヒータ、  2−透明イ」英ゞ目、  4−t’+
5ノ;1jロール。 C−高合金鋼ねr−1D−マトリ
ックス。 亭11.“・“1 Btq、 2℃4 第3回 第4回 1!l  擦 速 jす
J I W V-J', Mr A'E GiJ Sop
'f(1)i1('L's image, Figure 2 is 25.82%Cr
, 3: (4%C, 7,94AMo, balance l;"
e,! , Rinari, non-1' equilibrium tp, -J1]k Yesj
- Metal microscopic photograph of the alloy (magnification 30. (1 (10x), Figure 3)
37+i If true (magnification: 700 times), Figures 4 and 5 are graphs of 7J'<'. 1-Heater, 2-Transparent A'eye, 4-T'+
5 no; 1j roll. C-high alloy steel r-1D-matrix. Tei 11. “・“1 Btq, 2℃4 3rd 4th 1! l rubbing speed

Claims (1)

【特許請求の範囲】 10重量比で、20〜50%のCrと、30〜36φの
Cと、5〜20%のMo及び15〜40φのWの少なく
とも1種と、残部Feとからなる組成を有し、かつ非平
衡単−相を呈する微細結晶粒組織をイ1する高合金栴粉
末。 2、重量比で20〜50%のCrと、3.0〜3.6係
のCと、5〜20チのMo及び15〜40%のWの少な
くとも1種と、残部Feとからなる組成を有し、〃・つ
非平衡単−相?呈する微細結晶粒組織を有する高合金輯
粉末を焼結の原料粉末として用い、この方;τ料粉末を
圧粉し、前記非平衡単−相の一部が平衡炭化物相に変化
する温度に圧粉体を加熱してその焼結ケ行い、前記平衡
炭化物相への変化の1:J起ころ前記重合金粉末のQ士
の移動(fこ上り均f′1なす1、□−7結合金を製遺
すω方法。 3、  jfi 量比で20〜50 %のCrと、3.
0〜3.6俤のCと、5〜20チの八1o及び15〜4
()ぜ、ものWの少なくとも1種と、残部[・′eど力
・(、なる組成を有し、非平衡単−相から析出した+、
’、H化!13〕lをvlすIllに分散してなる高合
金粒子を含んでなり、耐摩耗性に優れた焼結合金。。
[Claims] A composition consisting of 20 to 50% Cr, 30 to 36 φ C, 5 to 20% Mo and at least one of 15 to 40 φ W, and the balance Fe at a weight ratio of 10. A high alloy powder having a fine grain structure exhibiting a non-equilibrium single phase. 2. Composition consisting of 20 to 50% Cr by weight, 3.0 to 3.6% C, 5 to 20% Mo, and at least one of 15 to 40% W, and the balance Fe. and one non-equilibrium single phase? A high alloy powder having a fine grain structure exhibiting the following properties is used as a raw material powder for sintering, and the τ material powder is compacted to a temperature at which a part of the non-equilibrium single phase changes to an equilibrium carbide phase. The body is heated and sintered, and the change to the equilibrium carbide phase occurs at 1:J and Q's movement of the heavy alloy powder (f rises, average f'1, 1, □-7). ω method of manufacturing. 3. jfi amount ratio of 20 to 50% Cr; 3.
C of 0 to 3.6 yen, 8 1o of 5 to 20 chi and 15 to 4
()ze, at least one type of thing W, and the remainder [・'e do force・(,, +, precipitated from a non-equilibrium single phase,
'、H! 13] A sintered alloy containing high alloy particles dispersed in vl and lll and having excellent wear resistance. .
JP57157987A 1982-09-13 1982-09-13 Production of high alloy powder and sintered alloy and sintered alloy Granted JPS5947346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57157987A JPS5947346A (en) 1982-09-13 1982-09-13 Production of high alloy powder and sintered alloy and sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57157987A JPS5947346A (en) 1982-09-13 1982-09-13 Production of high alloy powder and sintered alloy and sintered alloy

Publications (2)

Publication Number Publication Date
JPS5947346A true JPS5947346A (en) 1984-03-17
JPS631361B2 JPS631361B2 (en) 1988-01-12

Family

ID=15661760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57157987A Granted JPS5947346A (en) 1982-09-13 1982-09-13 Production of high alloy powder and sintered alloy and sintered alloy

Country Status (1)

Country Link
JP (1) JPS5947346A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021361A (en) * 1983-07-16 1985-02-02 Takeshi Masumoto High alloy steel powder and its production
JPS6036601A (en) * 1983-08-08 1985-02-25 増本 健 High alloy steel powder and manufacture
JPS6267103A (en) * 1985-09-20 1987-03-26 Ishikawajima Harima Heavy Ind Co Ltd Production of metallic powder having fine precipitation phase
JPS6267106A (en) * 1985-09-20 1987-03-26 Ishikawajima Harima Heavy Ind Co Ltd Production of metallic powder having composite structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731484B1 (en) * 2001-07-13 2007-06-21 최효승 Apparatus of golf putting exercise which is corresponding to ground

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021361A (en) * 1983-07-16 1985-02-02 Takeshi Masumoto High alloy steel powder and its production
JPS631364B2 (en) * 1983-07-16 1988-01-12 Takeshi Masumoto
JPS6036601A (en) * 1983-08-08 1985-02-25 増本 健 High alloy steel powder and manufacture
JPS631365B2 (en) * 1983-08-08 1988-01-12 Takeshi Masumoto
JPS6267103A (en) * 1985-09-20 1987-03-26 Ishikawajima Harima Heavy Ind Co Ltd Production of metallic powder having fine precipitation phase
JPS6267106A (en) * 1985-09-20 1987-03-26 Ishikawajima Harima Heavy Ind Co Ltd Production of metallic powder having composite structure

Also Published As

Publication number Publication date
JPS631361B2 (en) 1988-01-12

Similar Documents

Publication Publication Date Title
CN103210115B (en) Magnetic recording film sputtering target and manufacture method thereof
CN103262166B (en) Magnetic recording film sputtering target and manufacture method thereof
KR100690281B1 (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
CN101161854B (en) Co-Fe-Zr based alloy sputtering target material and process for production thereof
KR20080065211A (en) Sputtering targets and methods for fabricating sputtering targets having multiple materials
KR20070012193A (en) Enhanced sputter target manufacturing method
JP2004346423A (en) Fe-Co-B ALLOY TARGET MATERIAL, ITS MANUFACTURING METHOD, SOFT MAGNETIC FILM, MAGNETIC RECORDING MEDIUM AND TMR ELEMENT
Mishra et al. Novel Co35Cr5Fe20Ni20Ti20 high entropy alloy for high magnetization and low coercivity
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
Koch Bulk behavior of nanostructured materials
JP2007161540A (en) Method of manufacturing fecob-based sputtering target material
JPS5947346A (en) Production of high alloy powder and sintered alloy and sintered alloy
JPS62185801A (en) Production of powdery amorphous material
KR940006157A (en) Fe-based soft magnetic alloy and method of making same
JP2016516135A (en) Powder metal composition for wear and temperature resistant applications and method for producing the same
JP2010095794A (en) METHOD FOR PRODUCING Co-Fe-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
JPH0790567A (en) Target material for magneto-optical recording medium and its production
Vasilyeva et al. Microstructure and properties of Nd–Fe–B powders by gas atomization
JPS6036601A (en) High alloy steel powder and manufacture
JPS5947347A (en) Manufacture of high alloy steel powder and sintered alloy, and sintered alloy
JPS62205556A (en) Sputtering target for forming photoelectromagnetic recording medium
JPH09115755A (en) Improved re-fe-b magnet and manufacture thereof
Gabriel et al. New Experimental Data in the C-Fe-W, C-Co-W, C-Ni-W, C-Fe-Ni-W and C-Co-Ni-W Systems Application to Sintering Conditions of Cemented Carbides Optimization of Steel Binder Composition by Partial Factorial Experiments
JPH02101710A (en) Permanent magnet and manufacture thereof
US3519502A (en) Method of manufacturing sintered metallic magnets