JPS631365B2 - - Google Patents

Info

Publication number
JPS631365B2
JPS631365B2 JP58143669A JP14366983A JPS631365B2 JP S631365 B2 JPS631365 B2 JP S631365B2 JP 58143669 A JP58143669 A JP 58143669A JP 14366983 A JP14366983 A JP 14366983A JP S631365 B2 JPS631365 B2 JP S631365B2
Authority
JP
Japan
Prior art keywords
point
powder
composition
single crystal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58143669A
Other languages
Japanese (ja)
Other versions
JPS6036601A (en
Inventor
Takeshi Masumoto
Akihisa Inoe
Yoshio Harakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEIKOKU PISUTONRINGU KK
Original Assignee
TEIKOKU PISUTONRINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEIKOKU PISUTONRINGU KK filed Critical TEIKOKU PISUTONRINGU KK
Priority to JP14366983A priority Critical patent/JPS6036601A/en
Publication of JPS6036601A publication Critical patent/JPS6036601A/en
Publication of JPS631365B2 publication Critical patent/JPS631365B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 技術分野 本発明は高合金鋼粉末及びこの粉末の製造方法
に関するものである。 (ロ) 従来技術 粉末冶金技術により製作される焼結品中の空孔
を少なくしその強度を高めるためには、微粉末の
製造が不可欠である。粉末冶金用金属粉末は主と
して破砕法及び水アトマイズ法により製造されて
いる。破砕法は、脆い金属であるマンガン、クロ
ム、アンチモン、ビスマス、コバルトの如き単一
金属又は人為的に脆化された金属である海綿鉄、
電解鉄等、粒界腐食を起こして脆化されたステン
レス鋼、あるいは本質的に脆い合金(金属間化合
物、電子化合物を含む)であるFe−Al、Fe−Al
−Ti、Ni−Al、Ni−Ti、Fe−Cr、Fe−Si等に
適用されている。また水アトマイズ法は金属又は
合金の溶湯を水により機械的に噴霧化する方法で
あり、固液体を形成する成分範囲で甚々しく酸化
性が低い金属・合金以外に広く適用される。これ
らの方法で得られた粉末の組織は例えばFe−Si
−C粉末について言えばα−Fe相、γ−Fe相、
グラフアイト相などの平衡状態で生成する相、す
なわち平衡相より、構成されている。 上記従来法により製造された粉末について本発
明者は以下のような観点から基本的検討を行つ
た。 (a) 粉末製造の容易性:従来法、人為的に脆くし
た金属である海綿鉄及び電解鉄を粉末冶金の原
料とすると、製品のコスト上昇の原因となる。
また、粒界腐食によつて人為的に脆くしたステ
ンレス鋼では粒界割れは結晶粒界に沿つて起こ
るため、結晶粒の大きさによつて粉末の大きさ
が決められ、母材結晶粒の大きさにより粉末の
大きさが制約される。また、脆性相を消滅させ
るため脆性相を焼結体の母相へ完全拡散合金化
させないと、焼結体の靭性が損われる危険があ
る。 (b) 粉末の成分均質性:合金元素含有量が高い金
属の各種成分相がインゴツト内で偏析している
ので、インゴツトを粉砕しても粉末粒子毎で組
成の異なるものになる。また、3重量%以下の
合金元素量(Cr、Mo、Si)を添加した低合金
鋼の水アトマイズ粉は、103K/secの冷却速度
で均一な過飽和の固溶体組織となる。しかし、
高Mo合金鋼を水アトマイズして得た粉末は
M6C、M2C型炭化物が晶出した炭化物偏析の
多い組織となつているために、成分の均質性が
劣つている。 (ハ) 発明の概要 本発明は、上述の点(a)及び(b)の点を意識して超
急冷合金の研究を行つていた過程で、(a)重量比で
9.0〜40%のMoと、2〜4.8%のCと、残部Feと
からなる組成、但し、Mo及びCの量が第1図の
A点−2%C、10%Mo、B点−2%C、40%
Mo、C点−4%C、40%Mo、D点−4%C、
15%Mo、E点−4.8%C、15%Mo、F点−4.8%
C、9%Mo、G点−3.8%C、9%Mo、H点−
3.8%C、10%Moにより囲まれる領域及びこれら
のA〜H点を結んだ線上に位置する組成、及び(b)
重量比で2〜40%のMoと、2.0〜4.0%Cと、3
〜20%未満のCr及び3〜10.0%のWの少なくとも
1種と、残部Feとからなる組成、ならびに上記
組成(a)に重量比で0.1〜1.5%Si及び0.1〜2.0%Mn
の少なくとも1種を含む組成(c)の高合金鋼粉末
が、非平衡単一結晶相を呈し、従来の粉末の問題
点を解消することを見出して、本発明を完成し
た。 さらに、本発明は、上記組成(a)、(b)、(c)及び(d)
の合金を104K/sec以上の冷却速度による急速凝
固により、非平衡単一結晶相を呈し、組成が均一
な高合金鋼粉末の製造方法を提供する。 (ニ) 発明の具体的な説明 以下、本発明に係る高合金鋼粉末について具体
的に説明する。この高合金鋼粉末の組成(a)におい
て、Mo9〜40%、C2〜4.8%、残部Fe、但し、
Mo及びCの量が第1図のA点−2%C、10%
Mo、B点−2%C、40%Mo、C点−4%C、
40%Mo、D点−4%C、15%Mo、E点−4.8%
C、15%Mo、F点−4.8%C、9%Mo、G点−
3.8%C、9%Mo、H点−3.8%C、10%Mo、に
より囲まれる領域及びこれらのA〜H点を結んだ
線上に位置するとしたのは、この範囲外では非平
衡単一結晶相が形成されず非晶質相あるいはフエ
ライト又はマルテンサイト組織中に、M2C、
M6C、等の炭化物の分散した平衡複合相が形成
されるからである。本発明の高合金鋼粉末では、
各粉末の組織は平衡状態では存在しえない非平衡
単一結晶相である。この相は、本発明者がX線回
折により同定したところ、第1図のABCDIH点
−但し、I点は3.8%C、15%Mo−を結んだ線上
及び線内の領域ではA12αMn型構造化合物(χ
(カイ)相)であり、DEFGHI点を結んだ線上及
び線内の領域ではε(イプシロン)相であること
がほぼ確実となつた。 本発明と同一組成のFe−Mo−Si(Mn)−C系
合金或いはFe−Mo−Cr(W)−C系合金の通常の
溶製法で得られる組織は、マトリツクス相である
フエライト又はマルテンサイト組織に、M2C炭
化物が晶出分散した多相組織となつている。とこ
ろが本発明の粉末は、フエライトやマルテンサイ
トも炭化物も構成相ではなく、非平衡単一結晶相
より構成される。なお、非晶質合金粉末は非平衡
相であるが結晶相でないため、延性が高く微粉化
が困難である。 上述の非平衡単一結晶相では、組成の異なる複
数の相がFe−Mo−C、Fe−Mo−Cr(W)−C、
Fe−Mo−Si(Mn)−C合金中に存在せず、数μ
mの面積内においても均質性を有することを利用
して、粉末冶金製品の均質性を著しく高めた。す
なわち、数μmの粉末にした場合でも粉末粒子間
の組成の均質性が高い。さらに、このような非平
衡単一結晶相は非常に脆いことも利用して、リボ
ン状で得られたFe−Mo−C合金等を容易に粉化
し、通常ボールミルによる搗砕法により、40μm
以下の微細な粉末を容易に調製し得るようにし
た。これに対して、従来の溶製法によりFe−Mo
−C合金等を溶製し、40μm以下の粒子寸法に粉
砕するとすれば多大なエネルギーと長時間を要
し、非経済的である。上記のような本発明の高合
金鋼粉末の特色は、従来のFe−Mo−C合金等で
は決して得られない。 さらに、本発明の組成(b)のFe−Mo−C合金等
においては、多元系元素としてCr、及びWの少
なくとも1種の添加元素は非平衡単一結晶相形成
範囲をMoの下限2%まで拡大することが可能で
ある。但し、本出願人の先願の特願昭57−157987
号との組成の重複を避けるためにCrの上限を20
%未満に制限する。また本発明の組成(c)のSi及び
Mnはε相又はA12α−Mn型化合物(χ相)構造
を有する結晶への固溶範囲内で過飽和に固溶し、
粉末の焼結後の靭性及び強度を向上させる。 本発明による高合金鋼粉末は、通常の溶解・粉
砕法により得られた粉末と比較して著しく微細な
結晶粒組織をもつている。一般に後者の粉末の結
晶粒は10ミクロンを越えるが、前者の粉末の結晶
粒は10ミクロン未満、好ましくは2〜3ミクロン
である。なお、本発明の高合金鋼粉末の結晶粒
は、通常の光学顕微鏡では検出されないが、リボ
ンを薄膜に加工し、この薄膜を透過型電子顕微鏡
で観察することにより、結晶粒は明確に観察され
る。上述のように、結晶粒が微細であるために、
本発明の高合金粉末の圧粉体焼結時の結晶粒成長
が少なく、結果として焼結体の結晶粒は微細とな
る。 リボンを粉砕して調製された本発明の高合金鋼
粉末が単結晶かあるいは多結晶かについては、単
結晶の粉末もあり、多結晶の粉末もあると考えら
れ、また結晶粒界の存在場所については、粉末の
表面が結晶粒界に沿つているか又は結晶粒内を横
切つて伸びる二つの場合があると考えられる。 上記非平衡単一結晶相は、所定組成の溶融金属
を片ロール法、双ロール法等により冷却速度
104K/sec以上に超急冷することにより得られ
る。なお冷却速度は104K/sec以上で工業的に可
能な範囲で選定され特に上限はない。焼結製品製
造の際には本発明の粉末を単独で使用するのが好
ましいが、通常の粉末と混合して使用してもよ
い。 以下本発明の実施例を説明する。 実施例 1 金属モリブデン、白銑(4.23%C)及び活性炭
を内径30mm、深さ120mmのタンマン管へ装入し、
底部から活性炭、金属モリブデン及び白銑の順に
セツトし高周波溶解した。溶落後1600Kの溶湯を
#4不透明石英管で吸い上げ、凝固させ放冷後前
記石英管からFe−Mo−C母合金を取り出した。
その組成は、重量比で10.0%Mo、4.0%C残部Fe
であつた。次に、第2図に示す急冷装置により超
急冷を行つた。第2図において、1はヒータ、2
は底に直径0.5mmの孔のある透明石英管、3はア
ルゴンガス吹き込み装置、4は冷却ロールであ
る。母合金を10gr秤量し、1600Kの温度で底に直
径0.5m/mの孔のある透明石英管2の底部より
アルゴンガスにより吹き出して、30m/secで回
転する冷却ロール4に吹きつけ、約105K/secの
速度で超急冷した。それをスタンプミルにより2
時間粉砕したところ、10μm以下の粉末を得た。
粉末をX線回析したところ、ε相と同一の結晶構
造であり、非平衡単一結晶相であることが確認さ
れた。 実施例 2 金属モリブデン、白銑(4.23%C)、活性炭を
実施例1と同様に溶解し、Fe−Mo−Cの母合金
を得た。その組成は、重量比で15.0%Mo、3.0%
Cと、残部Feであつた。それを実施例1と同様
の超急冷装置を用いかつ同一方法及び条件で急速
凝固し、スタンプミルにより2時間粉砕したとこ
ろ、10μm以下の粉末を得た。粉末をX線回析し
たところ、粉末は非平衡単一結晶相(χ相)であ
ることが確認された。 実施例 3 金属モリブデン、白銑(4.23%C)、活性炭、
金属シリコン、電解マンガンを実施例1と同様に
溶解し、Fe−Mo−C−Si−Mnの母合金を得た。
その組成は、重量比で10.0%Mo、4.5%C、0.5%
Si、0.5%Mn、と残部Feであつた。それを実施例
1と同様の超急冷装置を用いかつ同一方法及び条
件で急速凝固し、スタンプミルにより2時間粉砕
したところ、10μm以下の粉末を得た。X線回析
したところ、非平衡単一結晶相(ε相)であるこ
とが確認された。 実施例 4 実施例1と同様の方法で粉末を調製し、急冷組
織と結晶粒径を調べた結果を次表に示す。
(a) Technical field The present invention relates to a high alloy steel powder and a method for producing the powder. (b) Prior Art In order to reduce pores and increase the strength of sintered products produced by powder metallurgy technology, it is essential to produce fine powder. Metal powders for powder metallurgy are mainly produced by crushing methods and water atomization methods. The crushing method uses single metals such as brittle metals such as manganese, chromium, antimony, bismuth, and cobalt, or artificially brittle metals such as sponge iron,
Fe-Al, Fe-Al, which are stainless steels that have become brittle due to intergranular corrosion, such as electrolytic iron, or inherently brittle alloys (including intermetallic compounds and electronic compounds)
-Applicable to Ti, Ni-Al, Ni-Ti, Fe-Cr, Fe-Si, etc. The water atomization method is a method in which a molten metal or alloy is mechanically atomized using water, and is widely applied to materials other than metals and alloys that have extremely low oxidizability within the range of components that form solid liquids. The structure of the powder obtained by these methods is, for example, Fe-Si.
Regarding -C powder, α-Fe phase, γ-Fe phase,
It is composed of phases that are generated in an equilibrium state such as graphite phase, that is, equilibrium phases. The present inventor conducted a basic study on the powder produced by the above-mentioned conventional method from the following viewpoints. (a) Ease of powder production: Using conventional methods, artificially made brittle metals such as sponge iron and electrolytic iron as raw materials for powder metallurgy increases the cost of the product.
In addition, in stainless steel that has been artificially made brittle by intergranular corrosion, intergranular cracking occurs along the grain boundaries, so the size of the powder is determined by the size of the crystal grains, and The size limits the size of the powder. Furthermore, unless the brittle phase is completely diffused and alloyed into the matrix of the sintered body in order to eliminate the brittle phase, there is a risk that the toughness of the sintered body will be impaired. (b) Component homogeneity of powder: Various component phases of metals with high alloying element content are segregated within the ingot, so even if the ingot is crushed, each powder particle will have a different composition. Further, water atomized powder of low alloy steel to which alloying elements (Cr, Mo, Si) of 3% by weight or less are added becomes a uniform supersaturated solid solution structure at a cooling rate of 10 3 K/sec. but,
The powder obtained by water atomizing high Mo alloy steel is
Since the structure is composed of crystallized M 6 C and M 2 C type carbides and has a lot of carbide segregation, the homogeneity of the components is poor. (c) Summary of the invention The present invention was developed in the process of researching ultra-rapidly solidified alloys with the above-mentioned points (a) and (b) in mind.
A composition consisting of 9.0 to 40% Mo, 2 to 4.8% C, and the balance Fe, provided that the amounts of Mo and C are at point A - 2% C, 10% Mo, and point B - 2 in Figure 1. %C, 40%
Mo, point C -4%C, 40%Mo, point D -4%C,
15%Mo, E point -4.8%C, 15%Mo, F point -4.8%
C, 9% Mo, G point - 3.8% C, 9% Mo, H point -
The region surrounded by 3.8% C and 10% Mo and the composition located on the line connecting these points A to H, and (b)
2 to 40% Mo by weight, 2.0 to 4.0% C, and 3
A composition consisting of at least one of ~20% Cr and 3-10.0% W, and the balance Fe, and 0.1-1.5% Si and 0.1-2.0% Mn in weight ratio to the above composition (a)
The present invention was completed by discovering that a high alloy steel powder having a composition (c) containing at least one of the following exhibits a non-equilibrium single crystal phase and solves the problems of conventional powders. Furthermore, the present invention provides the above compositions (a), (b), (c) and (d).
Provided is a method for producing high-alloy steel powder exhibiting a non-equilibrium single crystal phase and having a uniform composition by rapidly solidifying the alloy at a cooling rate of 10 4 K/sec or more. (d) Specific Description of the Invention The high alloy steel powder according to the present invention will be specifically explained below. In the composition (a) of this high alloy steel powder, Mo9~40%, C2~4.8%, balance Fe, however,
The amount of Mo and C is point A in Figure 1 - 2%C, 10%
Mo, point B - 2% C, 40% Mo, point C - 4% C,
40%Mo, D point -4%C, 15%Mo, E point -4.8%
C, 15% Mo, F point - 4.8% C, 9% Mo, G point -
The region surrounded by 3.8%C, 9%Mo, H point - 3.8%C, 10%Mo, and the line connecting these points A to H is located on the line connecting these points A to H, because outside this range there is a non-equilibrium single crystal. M 2 C, in an amorphous phase or ferrite or martensitic structure without forming a phase.
This is because an equilibrium composite phase in which carbides such as M 6 C are dispersed is formed. In the high alloy steel powder of the present invention,
The structure of each powder is a non-equilibrium single crystal phase that cannot exist in an equilibrium state. This phase was identified by the present inventor by X-ray diffraction, and it was found that the ABCDIH point in Figure 1 - However, the I point is on the line connecting 3.8% C and 15% Mo - and in the area within the line, it is an A12αMn type structural compound. (χ
(chi) phase), and it is almost certain that the region on and within the line connecting the DEFGHI points is ε (epsilon) phase. The structure obtained by the usual melting method of Fe-Mo-Si(Mn)-C alloy or Fe-Mo-Cr(W)-C alloy with the same composition as the present invention is a matrix phase of ferrite or martensite. The structure has a multiphase structure in which M 2 C carbide is crystallized and dispersed. However, the powder of the present invention does not have ferrite, martensite, or carbide as constituent phases, but is composed of a non-equilibrium single crystal phase. Note that since amorphous alloy powder has a non-equilibrium phase but not a crystalline phase, it has high ductility and is difficult to pulverize. In the non-equilibrium single crystal phase described above, multiple phases with different compositions include Fe-Mo-C, Fe-Mo-Cr(W)-C,
Not present in Fe-Mo-Si(Mn)-C alloy, several μ
The homogeneity of the powder metallurgy product was significantly improved by utilizing the fact that it has homogeneity even within an area of m. That is, even when the powder is made into a powder of several micrometers, the composition among the powder particles is highly homogeneous. Furthermore, taking advantage of the fact that such non-equilibrium single crystal phases are extremely brittle, Fe-Mo-C alloys etc. obtained in the form of ribbons can be easily pulverized and milled to 40 μm using a grinding method using a ball mill.
The following fine powders can be easily prepared. On the other hand, Fe-Mo
If a -C alloy or the like is melted and pulverized into particles with a particle size of 40 μm or less, it requires a large amount of energy and a long time, which is uneconomical. The characteristics of the high alloy steel powder of the present invention as described above cannot be obtained with conventional Fe-Mo-C alloys. Furthermore, in the Fe-Mo-C alloy of composition (b) of the present invention, at least one additional element of Cr and W as a multi-element element limits the range of non-equilibrium single crystal phase formation to 2% of the lower limit of Mo. It is possible to expand up to However, the applicant's earlier patent application No. 57-157987
The upper limit of Cr was set to 20 to avoid composition overlap with No.
Limited to less than %. In addition, Si of the composition (c) of the present invention and
Mn is supersaturated in solid solution within the solid solution range in crystals having ε phase or A12α-Mn type compound (χ phase) structure,
Improves toughness and strength after sintering of powder. The high-alloy steel powder according to the present invention has a significantly finer grain structure than powder obtained by conventional melting and grinding methods. Generally, the latter powders have grains greater than 10 microns, while the former powders have grains less than 10 microns, preferably 2 to 3 microns. Although the crystal grains of the high-alloy steel powder of the present invention cannot be detected with a normal optical microscope, the crystal grains can be clearly observed by processing the ribbon into a thin film and observing this thin film with a transmission electron microscope. Ru. As mentioned above, because the crystal grains are fine,
The grain growth of the high alloy powder of the present invention during compact sintering is small, and as a result, the crystal grains of the sintered compact become fine. Regarding whether the high alloy steel powder of the present invention prepared by crushing the ribbon is single crystal or polycrystalline, it is thought that there are single crystal powders and polycrystalline powders, and it also depends on the location of grain boundaries. There are two possible cases in which the powder surface either follows the grain boundaries or extends across the grains. The above non-equilibrium single crystal phase can be obtained by cooling molten metal of a predetermined composition by a single roll method, a twin roll method, etc.
Obtained by ultra-rapid cooling to 10 4 K/sec or higher. Note that the cooling rate is selected within an industrially possible range of 10 4 K/sec or more, and there is no particular upper limit. When producing sintered products, it is preferable to use the powder of the present invention alone, but it may also be used in combination with ordinary powder. Examples of the present invention will be described below. Example 1 Molybdenum metal, white pig iron (4.23% C), and activated carbon were charged into a Tammann tube with an inner diameter of 30 mm and a depth of 120 mm.
Activated carbon, molybdenum metal, and white pig iron were set in this order from the bottom and melted using high frequency. After melting, the molten metal at 1600K was sucked up with a #4 opaque quartz tube, allowed to solidify and cooled, and then the Fe--Mo--C master alloy was taken out from the quartz tube.
Its composition is 10.0% Mo, 4.0% C and balance Fe by weight.
It was hot. Next, ultra-quenching was performed using the quenching apparatus shown in FIG. In Fig. 2, 1 is a heater, 2
is a transparent quartz tube with a hole of 0.5 mm in diameter at the bottom, 3 is an argon gas blowing device, and 4 is a cooling roll. Weighed 10g of the master alloy, and at a temperature of 1600K, argon gas was blown out from the bottom of a transparent quartz tube 2 with holes with a diameter of 0.5m/m at the bottom, and blown onto a cooling roll 4 rotating at 30m/sec. Ultra-rapid cooling was performed at a rate of 5 K/sec. It is stamped with a stamp mill.
After time-pulverization, a powder of 10 μm or less was obtained.
When the powder was subjected to X-ray diffraction, it was confirmed that it had the same crystal structure as the ε phase and was a non-equilibrium single crystal phase. Example 2 Metallic molybdenum, white pig iron (4.23% C), and activated carbon were melted in the same manner as in Example 1 to obtain a Fe-Mo-C master alloy. Its composition is 15.0% Mo, 3.0% by weight
C and the remainder was Fe. It was rapidly solidified using the same ultra-quenching device as in Example 1, using the same method and conditions, and was pulverized in a stamp mill for 2 hours to obtain a powder of 10 μm or less. When the powder was subjected to X-ray diffraction, it was confirmed that the powder was in a non-equilibrium single crystal phase (χ phase). Example 3 Metallic molybdenum, white pig iron (4.23% C), activated carbon,
Metallic silicon and electrolytic manganese were melted in the same manner as in Example 1 to obtain a Fe-Mo-C-Si-Mn mother alloy.
Its composition is 10.0% Mo, 4.5% C, 0.5% by weight.
It was composed of Si, 0.5% Mn, and the balance Fe. It was rapidly solidified using the same ultra-quenching device as in Example 1, using the same method and conditions, and was pulverized in a stamp mill for 2 hours to obtain a powder of 10 μm or less. X-ray diffraction confirmed that it was a non-equilibrium single crystal phase (ε phase). Example 4 A powder was prepared in the same manner as in Example 1, and the quenched structure and crystal grain size were examined. The results are shown in the following table.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、CとMoの含有量を示す図面、第2
図は急冷凝固装置の概念図である。 1……ヒータ、2……透明石英管、3……アル
ゴンガス加圧噴射口、4……冷却ロール。
Figure 1 shows the content of C and Mo, Figure 2 shows the content of C and Mo.
The figure is a conceptual diagram of a rapid solidification device. 1... Heater, 2... Transparent quartz tube, 3... Argon gas pressurized injection port, 4... Cooling roll.

Claims (1)

【特許請求の範囲】 1 重量比で、9〜40%のMoと2〜4.8%のC
と、残部Feとからなり、但し、Mo及びCの量が
第1図のA点−2%C、10%Mo、B点−2%
C、40%Mo、C点−4.0%C、40%Mo、D点−
4%C、15%Mo、E点−4.8%C、15%Mo、F
点−4.8%C、9%Mo、G点−3.8%C、9%
Mo、H点−3.8%C、10%Mo、により囲まれる
領域及びこれらのA−H点を結んだ線上に位置す
るとともに、非平衡単一結晶相を呈する、組成が
均一な高合金鋼粉末。 2 重量比で、2〜40%Moと、2.0〜4.0%のC
と、3〜20%未満のCr及び3〜10%のWの少な
くとも1種と、残部Feとからなる組成を有し、
かつ非平衡単一結晶相を呈する、組成が均一な高
合金鋼粉末。 3 重量比で0.1〜1.5%のSi、及び0.1〜2.0%Mn
の少なくとも1種と、9〜40%のMoと、2〜4.8
%のCと、残部Feとからなる組成を有し、但し、
Mo及びCの量が第1図のA点−2%C、10%
Mo、B点−2%C、40%Mo、C点−4%C、
40%Mo、D点−4%C、15%Mo、E点−4.8%
C、15%Mo、F点−4.8%C、9%Mo、G点−
3.8%C、9%Mo、H点−3.8%C、10%Mo、に
より囲まれる領域及びこれらのA〜H点を結んだ
線上に位置するとともに、非平衡単一結晶相を呈
する、組成が均一な高合金鋼粉末。 4 重量比で、9〜40%のMoと、2〜4.8%のC
と、残部Feとからなる組成、但し、Mo及びCの
量が第1図のA点−2%C、10%Mo、B点−2
%C、40%Mo、C点−4%C、40%Mo、D点
−4%C、15%Mo、E点−4.8%C、15%Mo、
F点−4.8%C、9%Mo、G点−3.8%C、9%
Mo、H点−3.8%C、10%Mo、により囲まれる
領域及びこれらのA〜H点を結んだ線上に位置す
る組成を有する該合金を溶解し、冷却速度、
104K/sec以上で急速凝固させ、しかる後所定粒
度に粉砕することを特徴とする非平衡単一結晶相
を呈する組成が均一な高合金鋼粉末の製造方法。
[Claims] 1. 9 to 40% Mo and 2 to 4.8% C by weight
and the balance is Fe, provided that the amount of Mo and C is -2%C at point A in Figure 1, 10%Mo, and -2% at point B.
C, 40% Mo, point C - 4.0% C, 40% Mo, point D -
4%C, 15%Mo, E point -4.8%C, 15%Mo, F
Point -4.8%C, 9%Mo, G point -3.8%C, 9%
A high-alloy steel powder with a uniform composition that is located on a line connecting these A-H points and a region surrounded by Mo, H point - 3.8% C, 10% Mo, and exhibits a non-equilibrium single crystal phase. . 2 2 to 40% Mo and 2.0 to 4.0% C by weight
and has a composition consisting of at least one of 3 to less than 20% Cr and 3 to 10% W, and the balance Fe,
A high-alloy steel powder with a uniform composition and exhibiting a non-equilibrium single crystal phase. 3 0.1-1.5% Si and 0.1-2.0% Mn by weight
at least one species of, 9 to 40% Mo, and 2 to 4.8
% C and the balance Fe, provided that
The amount of Mo and C is point A in Figure 1 - 2%C, 10%
Mo, point B - 2% C, 40% Mo, point C - 4% C,
40%Mo, D point -4%C, 15%Mo, E point -4.8%
C, 15% Mo, F point - 4.8% C, 9% Mo, G point -
3.8%C, 9%Mo, H point - 3.8%C, 10%Mo, located on the line connecting these points A to H, and exhibiting a non-equilibrium single crystal phase, the composition is Uniform high alloy steel powder. 4.9 to 40% Mo and 2 to 4.8% C by weight
and the balance is Fe, provided that the amounts of Mo and C are 2% C at point A in Figure 1, 10% Mo at point B, and 2% Mo at point B in Figure 1.
%C, 40%Mo, C point -4%C, 40%Mo, D point -4%C, 15%Mo, E point -4.8%C, 15%Mo,
F point -4.8%C, 9%Mo, G point -3.8%C, 9%
Mo, point H - 3.8% C, 10% Mo, the alloy having a composition located on a line connecting these points A to H and a region surrounded by these points A to H is melted, and the cooling rate,
A method for producing high-alloy steel powder having a uniform composition and exhibiting a non-equilibrium single crystal phase, which is characterized by rapidly solidifying at 10 4 K/sec or higher and then pulverizing to a predetermined particle size.
JP14366983A 1983-08-08 1983-08-08 High alloy steel powder and manufacture Granted JPS6036601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14366983A JPS6036601A (en) 1983-08-08 1983-08-08 High alloy steel powder and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14366983A JPS6036601A (en) 1983-08-08 1983-08-08 High alloy steel powder and manufacture

Publications (2)

Publication Number Publication Date
JPS6036601A JPS6036601A (en) 1985-02-25
JPS631365B2 true JPS631365B2 (en) 1988-01-12

Family

ID=15344180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14366983A Granted JPS6036601A (en) 1983-08-08 1983-08-08 High alloy steel powder and manufacture

Country Status (1)

Country Link
JP (1) JPS6036601A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267103A (en) * 1985-09-20 1987-03-26 Ishikawajima Harima Heavy Ind Co Ltd Production of metallic powder having fine precipitation phase
JP2784504B2 (en) * 1989-06-15 1998-08-06 小橋工業株式会社 Beam for subsoiler
US5292382A (en) * 1991-09-05 1994-03-08 Sulzer Plasma Technik Molybdenum-iron thermal sprayable alloy powders
KR100421045B1 (en) 2001-07-10 2004-03-04 삼성전자주식회사 Slim optical pickup apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947346A (en) * 1982-09-13 1984-03-17 Teikoku Piston Ring Co Ltd Production of high alloy powder and sintered alloy and sintered alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947346A (en) * 1982-09-13 1984-03-17 Teikoku Piston Ring Co Ltd Production of high alloy powder and sintered alloy and sintered alloy

Also Published As

Publication number Publication date
JPS6036601A (en) 1985-02-25

Similar Documents

Publication Publication Date Title
US4297135A (en) High strength iron, nickel and cobalt base crystalline alloys with ultrafine dispersion of borides and carbides
US4582536A (en) Production of increased ductility in articles consolidated from rapidly solidified alloy
US4347076A (en) Aluminum-transition metal alloys made using rapidly solidified powers and method
DE60022053T2 (en) METHOD FOR STEEL MAKING
US4715893A (en) Aluminum-iron-vanadium alloys having high strength at elevated temperatures
US4439236A (en) Complex boride particle containing alloys
US4359352A (en) Nickel base superalloys which contain boron and have been processed by a rapid solidification process
US4594104A (en) Consolidated articles produced from heat treated amorphous bulk parts
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
JPH07145442A (en) Soft magnetic alloy compact and its production
US4410490A (en) Nickel and cobalt alloys which contain tungsten aand carbon and have been processed by rapid solidification process and method
US4400208A (en) Process for the production of iron, phosphorus, carbon and chromium based amorphous metal alloys, and the alloys obtained
US4362553A (en) Tool steels which contain boron and have been processed using a rapid solidification process and method
JPH02125801A (en) Flat-state fe base soft magnetic alloy fine powder and manufacture thereof
JPS631365B2 (en)
JPS5943802A (en) Aluminum-transition metal alloy from quick coagulating powder and manufacture
Froes et al. Rapidly solidified titanium
US4533389A (en) Boron containing rapid solidification alloy and method of making the same
EP0149210B1 (en) Process for manufacturing highly resistant ductile work pieces from iron based alloys rich in carbon
US4430115A (en) Boron stainless steel powder and rapid solidification method
DE2137650A1 (en) Carbide metal composite and processes for its manufacture
JPS631364B2 (en)
JPS631363B2 (en)
JPS631361B2 (en)
JPH0693393A (en) Aluminum-base alloy with high strength and corrosion resistance