JPS6266928A - Laminated board for thermoforming and molding method thereof - Google Patents

Laminated board for thermoforming and molding method thereof

Info

Publication number
JPS6266928A
JPS6266928A JP20520485A JP20520485A JPS6266928A JP S6266928 A JPS6266928 A JP S6266928A JP 20520485 A JP20520485 A JP 20520485A JP 20520485 A JP20520485 A JP 20520485A JP S6266928 A JPS6266928 A JP S6266928A
Authority
JP
Japan
Prior art keywords
superplastic
layer
thermoforming
alloy
lead alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20520485A
Other languages
Japanese (ja)
Inventor
小美戸 正明
洋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP20520485A priority Critical patent/JPS6266928A/en
Publication of JPS6266928A publication Critical patent/JPS6266928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はブロー又は真空成形(熟成形と称される)によ
り電磁波遮蔽性を有する筺体乞製造するなどに適した積
層板およびその成形法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a laminate plate suitable for manufacturing a case having electromagnetic wave shielding properties by blowing or vacuum forming (referred to as aged molding), and a method for forming the same. It is something.

〔従来の技術〕[Conventional technology]

ブロー又は熱成形により電磁波遮蔽性を有する筐体を製
造するためには、金属f3が用いられ、この場合の金属
箔には超塑性が要求される。超塑性合金としてはZ n
  At合金、At−Cu合金などが知られているがこ
れら超塑性合金を用い筐体を製造するに当っては、積層
に用いられる樹脂の成形温度(70〜140℃)と、こ
れら超塑性合金の成形温度は大きくずれている為、樹脂
と8L層しても熱成形用積層板としては実用的でない。
In order to manufacture a housing having electromagnetic shielding properties by blowing or thermoforming, metal f3 is used, and the metal foil in this case is required to have superplasticity. As a superplastic alloy, Z n
At alloys, At-Cu alloys, etc. are known, but when manufacturing casings using these superplastic alloys, the molding temperature (70 to 140°C) of the resin used for lamination and the Since the molding temperatures of 1 and 2 differ greatly, even if the 8L layer is made with resin, it is not practical as a thermoforming laminate.

鉛合金の超塑性材料としては、62%Sn −58%P
b (%は重量%を示す。以下同じ)の共晶合金が優!
tた特性を有することが知られている。
As a lead alloy superplastic material, 62%Sn-58%P
The eutectic alloy of b (% indicates weight %; the same applies hereinafter) is superior!
It is known that it has different characteristics.

然し乍らこのPb −Sn共晶合金は優れた超塑性を示
すものの、Snが高価であるため使いにくい。
However, although this Pb-Sn eutectic alloy exhibits excellent superplasticity, it is difficult to use because Sn is expensive.

またSn ’r<極限まで減らしたPb−19%Sn合
金の超塑性相も発表されているが、この合金の微細結晶
粒は不安定であり超塑性材料としては経時変化がひどく
て使用にたえない。
In addition, a superplastic phase of a Pb-19%Sn alloy in which Sn'r is reduced to the limit has been announced, but the fine crystal grains of this alloy are unstable, and as a superplastic material, it deteriorates severely over time, making it difficult to use. No.

そのたの本発明者らは先にSn10〜30%、cdo、
5〜30%残部Pb及び不可避不純物の組成からなるこ
とを特徴とするPb −Sn −Cd系超塑性合金全出
願した。
The present inventors previously reported that Sn10-30%, cdo,
A Pb-Sn-Cd superplastic alloy characterized by having a composition of 5 to 30% balance Pb and unavoidable impurities has been filed.

この超塑性鉛合金はSn10〜30チ、CdO,5〜3
0%を含み残部がPbと不可避不純物とからなるPb 
−Cd −Sn系超塑性鉛合金(以下Pb −Cd −
3n系合金と称す。)である。
This superplastic lead alloy contains Sn10-30, CdO, 5-3
Pb containing 0% and the remainder consisting of Pb and inevitable impurities
-Cd -Sn-based superplastic lead alloy (hereinafter Pb -Cd -
It is called 3n alloy. ).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

樹脂の成形温度で超塑性を示す合金という意味では比較
的低温度で超塑性を示す鉛合金が有利である。
In terms of alloys that exhibit superplasticity at resin molding temperatures, lead alloys that exhibit superplasticity at relatively low temperatures are advantageous.

本発明は超塑性鉛合金特に前記Pb−Cd−8n系合金
の利用を図るものである。
The present invention aims to utilize superplastic lead alloys, particularly the above-mentioned Pb-Cd-8n alloys.

本発明はとのPb −Cd −Sn系合金の板・条・箔
と樹脂板・条とを積層して電磁波シールド特性の優れた
そして成形性のすぐれた熱成形用積層板およびその成形
方法を提供することを目的とするものである。
The present invention provides a thermoforming laminate having excellent electromagnetic shielding properties and excellent formability by laminating Pb-Cd-Sn alloy plates, strips, and foils and resin plates and strips, and a method for forming the same. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、Pb−Cd−8n系合金が超塑性性を示す
100℃近辺の温度で熱成形が可能な樹脂を多数種違び
これらと前記Pb −Cd −Sn系合金と積層させて
成形試験tくり返した。その結果Pb −Cd −Sn
系合金と積層して熱成形するのに適する樹脂は芳香族ポ
リエーテル系樹脂特にポリフェニレンオキサイド(通称
ノリル)であることを見知した。
The present inventor used a large number of resins that can be thermoformed at temperatures around 100°C, where the Pb-Cd-8n alloy exhibits superplasticity, and laminated these resins with the Pb-Cd-Sn alloy. The test was repeated. As a result, Pb -Cd -Sn
It has been found that aromatic polyether resins, particularly polyphenylene oxide (commonly known as Noryl), are suitable resins for lamination and thermoforming with alloys.

lJlこ積層に際しては接着材として一般に用いられる
ホットメルト型接着剤金用い熱圧着法等の一般的に用い
られる接着法を用いてPb −Cd −Sn系合金と樹
脂とを接着すればよいこと、積層板の熱成形は110°
〜165℃望ましくは120°〜130℃の温度のもと
で行なえばよいことを確めた。
In the case of lamination, the Pb-Cd-Sn alloy and the resin may be bonded together using a commonly used adhesive method such as a thermocompression bonding method using a hot-melt adhesive commonly used as an adhesive. Thermoforming of laminates is 110°
It has been confirmed that the reaction can be carried out at a temperature of 165°C to 165°C, preferably 120° to 130°C.

本発明は以上の知見に基いてなされたものであり、本発
明の第1は、超塑性鉛合金層と芳香族ポリエーテル系樹
脂層とを接着してなる複数層構造とした熱成形用積層板
であυ、その実施態様として前記超塑性鉛合金がSn1
0〜30重量%、Cd005〜30重量%、残部がPb
及び不可避不純物とからなり、前記芳香族ポリエーテル
系樹脂層がポリフェニレンオキサイドから成るもので、
またその熱成形用積層板は超塑性鉛合金と芳香族ポリエ
ーテル系樹脂層間にホットメルト型接着削層を配した三
層構造または芳香族ポリエーテル系樹脂の2層間に超塑
性鉛合金を挾み、該超塑性鉛合金と拉i脂屓間に夫々ホ
ットメルト型接珊剤層を配してなる5層構造であること
と特徴とするものである。
The present invention has been made based on the above findings, and the first aspect of the present invention is to provide a thermoforming laminate having a multi-layer structure formed by adhering a superplastic lead alloy layer and an aromatic polyether resin layer. In an embodiment of the plate, the superplastic lead alloy is Sn1
0-30% by weight, Cd005-30% by weight, balance Pb
and unavoidable impurities, and the aromatic polyether resin layer is made of polyphenylene oxide,
The thermoforming laminate has a three-layer structure with a hot-melt adhesive layer between the superplastic lead alloy and the aromatic polyether resin layer, or a superplastic lead alloy sandwiched between two layers of the aromatic polyether resin. The present invention is characterized in that it has a five-layer structure in which a hot-melt adhesive layer is disposed between the superplastic lead alloy and the adhesive layer, respectively.

更に第2の発明は前記第1発明の複数構造とした熱成形
用積層板を110〜135℃の温度のもとでブロー成形
することを特徴とする筐体の成形法である。
Furthermore, a second invention is a method for molding a housing, characterized in that the thermoforming laminate having a plurality of structures according to the first invention is blow molded at a temperature of 110 to 135°C.

〔作用〕[Effect]

本発明を構成するPb −Cd−Sn系合金と樹脂の作
用効果について述べる。
The effects of the Pb-Cd-Sn alloy and resin that constitute the present invention will be described.

前述の如く、本発明者らが開発したPb−Cd−8n系
合金は超塑性性及び経済性の両者を満足させる合金であ
る。
As mentioned above, the Pb-Cd-8n alloy developed by the present inventors is an alloy that satisfies both superplasticity and economic efficiency.

この本発明に用いるPb −Cd −Sn系において成
分組成範囲を限定した理由?次に述べる。
Why was the composition range limited in the Pb-Cd-Sn system used in the present invention? I will explain next.

(Sn )  本成分は、結晶粒全微細化する作用があ
るが、添加量が10%未満では微細化作用が著しく劣シ
、超塑性が失われることになる。又Snn添加量62迄
迄範囲ではSn30%を越えると超塑性の改善が飽和す
る傾向があるもののSn添加量が増加するに従い超塑性
は改善される。
(Sn) This component has the effect of refining all grains, but if the amount added is less than 10%, the refining effect will be extremely poor and superplasticity will be lost. Further, in the range up to 62% Sn addition, the improvement in superplasticity tends to be saturated when Sn exceeds 30%, but as the Sn addition amount increases, superplasticity is improved.

以上よりSnn含有性10〜30“係が適当である。From the above, an Snn content of 10 to 30'' is appropriate.

(Cd)  本成分は、上記Pb −Sn系合金に添加
することにより、一層結晶粒を微細化させる作用を有す
他、圧延中の結晶粒の粗大化を抑制する作用があるため
、これによってより優れた超塑性を付与することが可能
である。然しCd添加量0.5%未満では結晶粒の粗大
化を抑制する作用が不十分となることがらCd添加量は
0.5係以上が必要である。
(Cd) By adding this component to the above-mentioned Pb-Sn alloy, it has the effect of further refining the crystal grains, and also has the effect of suppressing the coarsening of the crystal grains during rolling. It is possible to impart superior superplasticity. However, if the amount of Cd added is less than 0.5%, the effect of suppressing coarsening of crystal grains will be insufficient, so the amount of Cd added must be 0.5% or more.

更に結晶の微細化作用を十分な程度にするためには、C
d添加量は3%以上が望さしい。又Cd添加量が20%
を越えると超塑性の向上効率が飽和に近づき30%を越
えると逆に悪化するので、経済性を考えると30%を越
える添加は意味がない。
Furthermore, in order to achieve a sufficient crystal refinement effect, C
The amount of d added is preferably 3% or more. Also, the amount of Cd added is 20%
If it exceeds 30%, the superplasticity improvement efficiency approaches saturation, and if it exceeds 30%, it actually worsens, so from an economic standpoint, it is meaningless to add more than 30%.

以上よりCd添加量は0.5〜50%が適当であシ、好
1しくは3〜20%である。
From the above, the amount of Cd added is suitably 0.5 to 50%, preferably 3 to 20%.

そしてこのPb −Cd −Sn系合金は110℃以下
でも超塑性を有するものであり、成形が可能であるが、
成形温度が高い程所喪圧力〃−減少して成形しやすい傾
向がある。しかし本発明に関するPb−Cd −Sn系
冶金はすべて約140℃の三元共晶液相点を持つ三元共
晶相を持つものであるので、成形温度が140℃を越せ
ば融解して成形はむろんできない。
This Pb-Cd-Sn alloy has superplasticity even at temperatures below 110°C and can be formed.
The higher the molding temperature, the lower the molding pressure, which tends to make molding easier. However, all Pb-Cd-Sn metallurgy related to the present invention have a ternary eutectic phase with a ternary eutectic liquid phase point of about 140°C, so if the forming temperature exceeds 140°C, it will melt and form. Of course I can't.

従って工業的には135℃を越えないように管理すべき
であり、これが成形温度の上限となる。
Therefore, industrially, the temperature should be controlled so as not to exceed 135°C, which is the upper limit of the molding temperature.

そして8を層板を成形する際はPb −Cd −Sn系
合金又は樹脂単体の成形条件より狭い成形条件で成形す
ることが必要である。すなわちPb −Cd −Sn系
合金と樹脂の成形性(加工応力及び成形速度の組み合せ
条件による)が異なると、積層板の成形速度が遅くなっ
たり所定の形状まで成形できない等成形性を劣化させる
原因となる。そして樹脂とPb−Cd −Sn系合金と
を組合せて種々成形試験を実施した経験から推察すると
、Pb −Cd −Sn系合金は98℃から110℃未
満の温度範囲でも超塑性を有するがその場合の成形性は
、適当な成形温度に保った樹脂板より劣り、結果的に積
層材の成形性も不足する。
When molding a layered plate of No. 8, it is necessary to mold it under narrower molding conditions than the molding conditions for a Pb-Cd-Sn alloy or resin alone. In other words, if the moldability of the Pb-Cd-Sn alloy and the resin is different (depending on the combination of processing stress and molding speed), this will cause the moldability to deteriorate, such as slowing the molding speed of the laminate or not being able to form it into a predetermined shape. becomes. Judging from the experience of conducting various molding tests using resins and Pb-Cd-Sn alloys in combination, Pb-Cd-Sn alloys have superplasticity even in the temperature range from 98°C to less than 110°C. The moldability of the resin plate is inferior to that of a resin plate kept at a suitable molding temperature, and as a result, the moldability of the laminated material is also insufficient.

そして樹脂とPb金合金成形性を合致場せるためには、
Pb −Cd −Sn系合金は110°〜135℃望ま
しくは120°〜130°Cの温度で成形することが必
要である。
In order to match the moldability of the resin and Pb gold alloy,
The Pb-Cd-Sn alloy needs to be molded at a temperature of 110° to 135°C, preferably 120° to 130°C.

そして110°〜165℃望ましくは120°〜130
℃の温度のもとで良好な成形性を示す樹脂としての芳香
族ポリエーテル系樹脂ことにポリフェニレンオキサイド
(通称ノリル樹脂)が本発明に関するPb −Cd −
Sn系超塑性合金と粘層する相手の樹脂材として最適で
ある。なお本願の積層板は’iTI図のようなりラッド
だけではなく、第2図に示すようにPb −Cd −S
n系合金を樹脂でサンドインチしたものあるいはこれ′
f!!:積層したものも可能である。捷た接着剤は融点
が100℃以下のフィルム状のホットメルトタイプの樹
脂を用いることか°dましいが他の接着剤でもよい。接
着法としては熱圧着等通常行なわれる方法によればよい
and 110° to 165°C, preferably 120° to 130°C
Aromatic polyether resins, particularly polyphenylene oxide (commonly known as noryl resin) as resins exhibiting good moldability at temperatures of
It is most suitable as a partner resin material to form a sticky layer with Sn-based superplastic alloy. Note that the laminate of the present application is not only made of rad as shown in the 'iTI diagram, but also made of Pb-Cd-S as shown in Figure 2.
N-based alloy sandwiched with resin or this'
f! ! : Laminated ones are also possible. It is preferable to use a film-like hot-melt type resin with a melting point of 100° C. or less as the adhesive, but other adhesives may be used. As the adhesion method, a commonly used method such as thermocompression bonding may be used.

次に実施例について述べる。Next, an example will be described.

〔実施例〕〔Example〕

厚さ2鴎のポリフェニレンオキサイド樹脂(筒中プラス
チック工業坂売商品名サンロイドノリルpN8115L
’rブロー成形により巾90類、長さ120目、深さ2
5喘の筐体(展開倍率2.2)に成形するには125℃
、エアー圧3kli+ 1−の条件下で6分を要した(
最後の30秒は形状をきちんと出すため圧i 7 k内
にあげた。以下同じ)。この樹脂板に厚さ0.2 mの
Pb −16wt % Sn −20wt%Cdの組成
金もつPb −Cd −Sn  系合金板全接着剤とし
て東京セルロイド社製アトマーフィルムVg300の5
0μのフィルムを用いて第1図に示す如く熱圧着(接N
)して3層の積層板として同条件で成形したところ成形
時間はやはり3分であった。
2mm thick polyphenylene oxide resin (Tsutsunaka Plastic Industry Sakauri product name Sunroid Noryl pN8115L
By blow molding, the width is 90, the length is 120, and the depth is 2.
125°C for molding into a 5-pan housing (deployment magnification 2.2)
, it took 6 minutes under the condition of air pressure 3 kli + 1- (
For the last 30 seconds, the pressure was raised to within 7k to get the shape right. same as below). This resin plate was coated with 0.2 m thick Pb-Cd-Sn alloy plate having a composition of Pb-16wt%Sn-20wt%Cd.Atomer film Vg300-5 manufactured by Tokyo Celluloid Co., Ltd. was used as an adhesive for the entire Pb-Cd-Sn alloy plate.
Using a 0μ film, thermocompression bonding (contact N) was performed as shown in Figure 1.
) and molded as a three-layer laminate under the same conditions, the molding time was also 3 minutes.

一カ成形温度が90℃である厚さ2簡の塩ビ系樹脂板(
商品名カイダック)ヲ温度90℃エアー圧6ゆ−で上記
筐体を成形するにはやはり6分に要した。しかしこの樹
脂板に厚さ0.2鯨のPb −Cd −Sn系合金板を
接層した積層板は温度90℃、エアー圧61で10分成
形したが成形性か悪く上記筐体は得られなかった。さら
に成形温度を100℃、110℃、120℃、130℃
に変えて成形したが結果は同様に悪かった。
A 2-layer thick PVC resin plate with a molding temperature of 90°C (
It also took 6 minutes to mold the above-mentioned casing at a temperature of 90° C. (trade name: Kaidak) and an air pressure of 60° C. However, a laminated plate made by layering a Pb-Cd-Sn alloy plate with a thickness of 0.2 mm on this resin plate was molded for 10 minutes at a temperature of 90°C and an air pressure of 61 cm, but the moldability was poor and the above-mentioned casing could not be obtained. There wasn't. Furthermore, the molding temperature was increased to 100℃, 110℃, 120℃, and 130℃.
I tried molding instead of , but the results were just as bad.

〔発明の効果〕〔Effect of the invention〕

本発明の熱成形用株層板は、前記実施例Vこ見るように
非常に熱成形性がすぐれており、更にこれ全本発明の成
形法の成形温度条件のもとで成形すれば電磁波遮蔽用筐
体を簡単な加工で製造することが可能である。
The thermoforming stock laminate of the present invention has excellent thermoformability as seen in Example V above, and furthermore, if molded under the molding temperature conditions of the molding method of the present invention, it can shield electromagnetic waves. It is possible to manufacture the housing by simple processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は夫々本発明の熱成形用積層板の断
面模式図である。 1 ハPb −Cd −Sn系合金、2はポリフェニレ
ンオキサイド樹脂、6は接着材である。 代理人 弁理士 佐 藤 正 年 II  rI!i 第 22 手続補正書(自発) 昭和30年10月22日
FIGS. 1 and 2 are schematic cross-sectional views of the thermoforming laminate of the present invention, respectively. 1 is a Pb-Cd-Sn alloy, 2 is a polyphenylene oxide resin, and 6 is an adhesive. Agent Patent Attorney Masaru Sato Year II rI! i No. 22 Procedural Amendment (voluntary) October 22, 1955

Claims (6)

【特許請求の範囲】[Claims] (1)超塑性鉛合金層と芳香族ポリエーテル系樹脂層と
を接着してなる複数層構造としたことを特徴とする熱成
形用積層板。
(1) A laminate for thermoforming characterized by having a multilayer structure formed by adhering a superplastic lead alloy layer and an aromatic polyether resin layer.
(2)前記超塑性鉛合金がSn10〜30重量%、Cd
0.5〜30重量%、残部がPb及び不可避不純物とか
らなることを特徴とする特許請求の範囲第1項記載の熱
成形用積層板。
(2) The superplastic lead alloy contains 10 to 30% by weight of Sn and Cd.
The thermoforming laminate according to claim 1, characterized in that the Pb content is 0.5 to 30% by weight, and the balance is Pb and unavoidable impurities.
(3)前記芳香族ポリエーテル系樹脂層がポリフェニレ
ンオキサイドからなることを特徴とする特許請求の範囲
第1項記載の熱成形用積層板。
(3) The thermoforming laminate according to claim 1, wherein the aromatic polyether resin layer is made of polyphenylene oxide.
(4)前記超塑性鉛合金層と芳香族ポリエーテル系樹脂
層との間にホットメルト型接着剤層を配し、三層構造と
したことを特徴とする特許請求の範囲第1項乃至第3項
記載の熱成形用積層板。
(4) A hot-melt adhesive layer is disposed between the superplastic lead alloy layer and the aromatic polyether resin layer to form a three-layer structure. Thermoforming laminate according to item 3.
(5)前記芳香族ポリエーテル系樹脂の二層間に超塑性
鉛合金を挾み、該超塑性鉛合金と該樹脂層間に夫々ホッ
トメルト型接着剤層を配し5層構造としたことを特徴と
する特許請求の範囲第1項乃至第3項記載の熱成形用積
層板。
(5) A superplastic lead alloy is sandwiched between the two layers of the aromatic polyether resin, and a hot melt adhesive layer is arranged between the superplastic lead alloy and the resin layer to form a five-layer structure. A thermoforming laminate according to claims 1 to 3.
(6)超塑性鉛合金層と芳香族ポリエーテル樹脂層とを
接着し複数層構造とした熱成形用積層板を110〜13
5℃の温度のもとでブロー成形することを特徴とする筐
体の成形法。
(6) A thermoforming laminate with a multi-layer structure made by bonding a superplastic lead alloy layer and an aromatic polyether resin layer 110 to 13
A housing molding method characterized by blow molding at a temperature of 5°C.
JP20520485A 1985-09-19 1985-09-19 Laminated board for thermoforming and molding method thereof Pending JPS6266928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20520485A JPS6266928A (en) 1985-09-19 1985-09-19 Laminated board for thermoforming and molding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20520485A JPS6266928A (en) 1985-09-19 1985-09-19 Laminated board for thermoforming and molding method thereof

Publications (1)

Publication Number Publication Date
JPS6266928A true JPS6266928A (en) 1987-03-26

Family

ID=16503122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20520485A Pending JPS6266928A (en) 1985-09-19 1985-09-19 Laminated board for thermoforming and molding method thereof

Country Status (1)

Country Link
JP (1) JPS6266928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547664A2 (en) * 1991-12-19 1993-06-23 Hoogovens Groep B.V. Method of hot-forming a component by shaping a laminated metal and plastics material sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547664A2 (en) * 1991-12-19 1993-06-23 Hoogovens Groep B.V. Method of hot-forming a component by shaping a laminated metal and plastics material sheet

Similar Documents

Publication Publication Date Title
EP0071706A3 (en) Composite metallic foil useful in the manufacture of printed circuits
WO2002049405B1 (en) Multi-layer circuits and methods of manufacture thereof
US9992874B2 (en) Metal foil with carrier
JPH01136739A (en) Glass fiber-reinforced fluoropolymer circuit laminate
TWI640423B (en) Electromagnetic wave shielding material
TW202224552A (en) Electromagnetic shielding material
KR20050053500A (en) Preparation of flexible metal foil/polyimide laminate
JPS6266928A (en) Laminated board for thermoforming and molding method thereof
KR19990044663A (en) Copper Alloy Foils for Flexible Circuits
JPH0281495A (en) Flexible double-sided metal-foil laminated sheet
JPS6164448A (en) Flexible circuit laminate
US7097915B2 (en) Separator plate for manufacturing printed circuit board components
JP4357809B2 (en) Electrode lead member and battery using the electrode lead member
JP6085404B2 (en) Aluminum foil laminate
JPS62176823A (en) Method of molding laminated sheet for thermoforming
JPH05304346A (en) Aluminum base circuit board
JP2805882B2 (en) Laminate
JPS61281402A (en) Manufacture of highly conductive film
JP4111596B2 (en) Flexible metal laminate
JPS60214955A (en) Aluminum laminate for draw forming
CN219236379U (en) Flexible copper-clad plate of polyimide without glue lamination
JPS62149437A (en) Heat-resistant multilayer film
JPS61193845A (en) Metal lined board for high-frequency circuit
JPH09116264A (en) Method for sticking conductor circuit forming metallic material to printed wiring board
JPS5935936A (en) Composite board for molding