JPS62149437A - Heat-resistant multilayer film - Google Patents

Heat-resistant multilayer film

Info

Publication number
JPS62149437A
JPS62149437A JP29074285A JP29074285A JPS62149437A JP S62149437 A JPS62149437 A JP S62149437A JP 29074285 A JP29074285 A JP 29074285A JP 29074285 A JP29074285 A JP 29074285A JP S62149437 A JPS62149437 A JP S62149437A
Authority
JP
Japan
Prior art keywords
film
heat
intermediate layer
resistant
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29074285A
Other languages
Japanese (ja)
Inventor
正治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP29074285A priority Critical patent/JPS62149437A/en
Publication of JPS62149437A publication Critical patent/JPS62149437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性プラスチックフィルムに関するものであ
シ、特に、銅、アルミニウム、鉄等の金属箔とラミネー
トを行う用途で金属箔部分を・Zターニングし回路を形
成する場合のベースフィルムに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat-resistant plastic film, and in particular, it is used for laminating metal foils such as copper, aluminum, iron, etc. This invention relates to a base film for turning to form a circuit.

〔従来技術〕[Prior art]

プラスチックフィルムと金属箔をラミネートする用途即
ちフレキシブルプリントサーキット(以下FPCと略)
、面状発熱体、IC用フィルムキャリヤ、電磁波シール
ド用フィルム等各用途は近年の電子機器周辺技術の急速
な進展と、日ゆる軽薄短小の時流に乗って、急激な伸長
を示している。
Application for laminating plastic film and metal foil, i.e. flexible printed circuit (hereinafter abbreviated as FPC)
Applications such as sheet heating elements, IC film carriers, electromagnetic shielding films, etc. are rapidly expanding due to the recent rapid development of peripheral technology for electronic devices and the trend of making products lighter, thinner, shorter and smaller.

これらの用途に用いられるフィルムは、現在f’ +J
イミドフィルム、ピリエステルフィルム及びガラスエゼ
キシフィルムが用いられるが、それぞれに一長一短を有
する。即ちポリイミドフィルムは価格が非常に高い点又
吸湿性の点で若干の問題がある。ピリエステルフィルム
は耐熱性に劣り、特にハンダ耐熱性の点で全く不足して
いるため、熱的要求度の低い用途にしか用いられない。
Films used for these applications are currently f' + J
Imide film, pyriester film, and glass epoxy film are used, each of which has advantages and disadvantages. That is, polyimide films have some problems in that they are extremely expensive and have hygroscopic properties. Pyriester films have poor heat resistance, especially in terms of soldering heat resistance, and are therefore used only in applications with low thermal requirements.

ガラスエ7ピキシフィルムの最大の欠点はガラスクロス
自体の問題即ち、屈曲性が無い点、ズンチング加工時に
ガラスクロスが系外に飛び出す問題がある。価格的には
問題があるものの、ピリイミドフィルムが、該用途のシ
ェアーの60俤を占めているのが現実である。一方、上
記3種以外の耐熱フィルムも近年開発され、回路用を主
とする金属箔ラミネート用途に検討され始めた。ポリサ
ルホンフィルム、ダリエーテルサルホン、ポリエーテル
イミド、ポリアリレート、月?リエーテルエーテルケト
ン等熱可塑性耐熱フィルムがそれである。しかしこれら
の耐熱フィルムは、線膨張係数が4〜5 X 10−5
℃−1と7I?リエステルフィルム1. ’3 X 1
0−ピリイミドフィルム1.6 X 10”−5よ9倍
以上大きいため、1〜2X10”−5の線膨張係数を有
する金属箔とラミネートすると、フィルム側を内側にし
てカールする問題が生じる。ラミネート加工ではフィル
ムと金属箔が完全に接着するまでに、接着剤を硬化させ
る目的で加熱圧着工程や加熱キュア一工程を経るのが通
常であり、フィルムと金属箔との線膨張係数との差が大
きいと室温に戻した場合に表・瓜で寸法差を生じカール
することとなる。
The biggest drawback of Glass E7 Pixi Film is the problem with the glass cloth itself, namely the lack of flexibility, and the problem of the glass cloth flying out of the system during the Zunching process. Although there is a problem in terms of price, the reality is that pyriimide film accounts for 60 yen of the market share for this use. On the other hand, heat-resistant films other than the above three types have also been developed in recent years and have begun to be considered for use in metal foil laminates, mainly for circuits. Polysulfone film, daryether sulfone, polyetherimide, polyarylate, moon? This includes thermoplastic heat-resistant films such as rietheretherketone. However, these heat-resistant films have a linear expansion coefficient of 4 to 5 x 10-5.
℃−1 and 7I? Reester film 1. '3 X 1
Since the 0-pyriimide film is more than 9 times larger than 1.6 x 10''-5, when laminated with a metal foil having a coefficient of linear expansion of 1 to 2 x 10''-5, the problem arises that the film curls with the film side inward. In lamination processing, before the film and metal foil are completely bonded, it is normal to go through a heat-pressing process or a heat-curing process to harden the adhesive, and the difference in linear expansion coefficient between the film and metal foil is If it is large, there will be a difference in size between the top and the melon when it is returned to room temperature, resulting in curling.

線膨張係数を金属と同等にする技術は、上記耐熱性樹脂
以外にも日ゆるエンジニアリングプラスチックスの分野
ではすでに検討されておシ、実用に供されている例も多
いが、いずれもフィルム状ではなく、立体的な成形品に
於てのみである。無機充填剤を高比率で充填し、線膨張
係数を減じる手法であるため、成形品自体は剛直で、フ
レギンビリティ−性が低く、フィルム化すると非常に脆
性なものにしかなシ得ない。
In addition to the above-mentioned heat-resistant resins, technology to make the coefficient of linear expansion equivalent to that of metals has already been studied in the field of engineering plastics, and many examples have been put into practical use, but none of them are available in film form. This applies only to three-dimensional molded products. Since this method involves filling a high proportion of inorganic filler to reduce the coefficient of linear expansion, the molded product itself is rigid and has low fragility, and when formed into a film, it can only be extremely brittle.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、FPCやICテープキャ
リヤー等のベースフィルムとして、金属箔とラミネート
したときにカールすることなく、かつ、フィルムとして
の7レキシビリテイーに富み、屈曲しても脆性破断しな
い様な、耐熱性フィルムを提供するにある。
The purpose of the present invention is to provide a base film for FPC, IC tape carriers, etc. that does not curl when laminated with metal foil, has high flexibility as a film, and does not break brittle even when bent. Our goal is to provide a heat-resistant film that does not require heat.

〔発明の構成〕[Structure of the invention]

本発明は、ヒリエーテルイミド(以下PEIと略記する
)を主体とする耐熱性フィルムであって、中間層と該中
間層をはさむ上下表層の3層構成となっており、中間層
はPEIと無機充填剤との比率が重量比で80 : 2
0ないし40:60であり、上下表層2層はガラス転移
温度135℃以上の熱可塑性樹脂であることを特徴とす
る耐熱性多層フィルムである。
The present invention is a heat-resistant film mainly composed of hylyetherimide (hereinafter abbreviated as PEI), and has a three-layer structure of an intermediate layer and upper and lower surface layers sandwiching the intermediate layer. The ratio with filler is 80:2 by weight
It is a heat-resistant multilayer film characterized in that the ratio is 0 to 40:60, and the upper and lower surface layers are made of thermoplastic resin with a glass transition temperature of 135° C. or higher.

本発明の主たる構成要素は、上部表層、中間層、下部表
層の3層であるが、上部表層と中間層の層間、及び中間
層と下部表層の層間に接着樹脂j6を介してもさしつか
えなく、接層樹脂層の内容について、本発明の規定する
ものではない。中間層と上下表層の構成比率は本発明で
規定するものではないが、2080ないし90:10が
好ましい。
The main components of the present invention are three layers: an upper surface layer, an intermediate layer, and a lower surface layer, but adhesive resin j6 may be used between the upper surface layer and the intermediate layer, and between the intermediate layer and the lower surface layer. The content of the contact resin layer is not defined by the present invention. Although the composition ratio of the intermediate layer to the upper and lower surface layers is not defined by the present invention, it is preferably 2080 to 90:10.

本発明に言う中間層に用いるPEIは、その構造単位に
芳香核結合とエーテル結合、イミド結合を含む熱可塑性
重合体として定義され、例えば次の構造式から成るもの
が挙げられる。
The PEI used in the intermediate layer according to the present invention is defined as a thermoplastic polymer containing an aromatic nuclear bond, an ether bond, and an imide bond in its structural unit, and includes, for example, one having the following structural formula.

中間層ブレンド体の他の構成要素である無機充填剤は、
砂石、クレー、タルク、雲母、カオリン等含ケイ素無機
粒子、炭酸カルシウム、珪酸カルシウム等含カルシウム
無機粒子、アルミナ、際化チタン、酸化マグネシウム、
酸化アンチモン、酸化亜鉛等金属酸化物等不活性無接粒
子を言う。これら無機充填剤は各種カップリング剤によ
る表面処理が行なわれてもさしつかえない。又平均粒子
径は10μ以下が好ましいが、本発明で規定するもので
はない。本発明に於る中間層ブレンド体のPEIと無機
充填剤との重量比率は80:20ないし40:60の範
囲で規定される。無機充填剤の重量比率が20%を割る
と、目的とする線膨張低減効果が充分でなく、金に箔と
ラミネートした場合カールを発生し、光用に耐えられな
い1.同じく60%を越えると、フィルムのフレキシビ
リティ−が極端に低下し屈曲すると脆性破断してしまう
The other component of the interlayer blend is the inorganic filler.
Silicon-containing inorganic particles such as sand stone, clay, talc, mica, and kaolin, calcium-containing inorganic particles such as calcium carbonate and calcium silicate, alumina, translatinated titanium, magnesium oxide,
Refers to inert non-contact particles such as metal oxides such as antimony oxide and zinc oxide. These inorganic fillers may be subjected to surface treatment with various coupling agents. Further, the average particle diameter is preferably 10 μm or less, but this is not defined by the present invention. The weight ratio of PEI to inorganic filler in the intermediate layer blend according to the present invention is defined in the range of 80:20 to 40:60. If the weight ratio of the inorganic filler is less than 20%, the desired effect of reducing linear expansion will not be sufficient, and when gold is laminated with foil, curling will occur and the product will not be able to withstand optical applications.1. Similarly, if it exceeds 60%, the flexibility of the film will be extremely reduced and it will break brittle when bent.

本発明の上下表層はガラス転移温度135℃以上の熱可
塑性樹脂を用いる。具体的にはプリエーテルイミド(P
EI)、ボリアリレート(例ユユチカ社 v4リマー)
、−リエーテルサルホン(IC1社 VICTREX 
−PES ) 、N ’) fルホ:y (U、C。
In the present invention, a thermoplastic resin having a glass transition temperature of 135° C. or higher is used for the upper and lower surface layers. Specifically, prietherimide (P
EI), bolyarylate (e.g. Yuyuchika v4 Rimmer)
, - riethersulfone (IC1 company VICTREX
-PES), N') fruho:y (U,C.

C,社UDEL) 、&IJエーテルエーテルケトン(
ICI社 VICTREX −PEEK )が挙げられ
る。ガラス転移温度が135℃未満であると、中間層の
PEI、無機充填剤ブレンド体の耐熱性を損ない、充分
な耐熱性が得られない。上下表層のそれぞれの層は同一
樹脂でも良く、異る樹脂でも良い。又、複数の樹脂のブ
レンド体でも良い。又、フィルムの取扱い性情シ性を向
上する目的でアイチプロッキング剤、例えばタルク、シ
リカ、炭酸カルシウム等無機粉末を該熱可塑性樹脂(/
C微量ブレンドしても良い。この場合アンチブロッキン
グ剤が2.0%を越えると、フィルム全体の可撓性が減
じるので好ましくない。又該上下表層の可塑性樹脂には
必要に応じて、酸化防止剤、紫外線吸収剤、帯電防止剤
、カーボンブラック、酸化チタン等着色剤を添加しても
良い。
C, UDEL), &IJ ether ether ketone (
ICI's VICTREX-PEEK). If the glass transition temperature is less than 135°C, the heat resistance of the PEI and inorganic filler blend of the intermediate layer is impaired, and sufficient heat resistance cannot be obtained. The upper and lower surface layers may be made of the same resin or may be made of different resins. Alternatively, it may be a blend of a plurality of resins. In addition, in order to improve the handling properties of the film, blocking agents such as inorganic powders such as talc, silica, and calcium carbonate are added to the thermoplastic resin (/
C may be blended in a small amount. In this case, if the amount of the antiblocking agent exceeds 2.0%, the flexibility of the entire film will decrease, which is not preferable. Further, coloring agents such as antioxidants, ultraviolet absorbers, antistatic agents, carbon black, and titanium oxide may be added to the plastic resins of the upper and lower surface layers, if necessary.

本発明の耐熱性多層フィルムの製法は、共押出ラミネー
ト工法、押出ラミネート工法、ドライラミネート工法、
プレス熱圧着工法文、上下表層を中間層に溶剤キャスト
する工法のいずれの工法でもよく、又それらの組合せの
工法でも良い。ただし、中間層はそれ単独ではフレキシ
ビリティ−が低く屈曲時に脆性破断しやすいので、中間
層形成と同時に上下表層のラミネートも行う工法すなわ
ち共押出ラミネート工法もしくは中間層を押出しながら
の押出ラミネート工法が好ましい。
The method for producing the heat-resistant multilayer film of the present invention includes a coextrusion lamination method, an extrusion lamination method, a dry lamination method,
Any of the press heat compression bonding method, the method of solvent casting the upper and lower surface layers into the intermediate layer, or a combination of these methods may be used. However, since the intermediate layer alone has low flexibility and is prone to brittle fracture when bent, it is preferable to use a method of laminating the upper and lower surface layers at the same time as forming the intermediate layer, i.e., a co-extrusion lamination method or an extrusion lamination method while extruding the intermediate layer. .

〔発明の効果〕〔Effect of the invention〕

本発明の耐熱性フィルムは、その線膨張係数が概略1.
3 X 10−5ないし3. OX 10−’と、ピリ
イミドフィルムやセリエステルフィルム同等の線膨張係
数を得ることが出来、銅、アルミニウム等金属箔とラミ
ネートした後もカールは少なく、実用上の問題を生じな
かった。又耐熱性いわゆるハンダ耐熱性と呼ばれる26
0℃ハンダ浴に対する熱的寸法安定性の点でも中間層の
PICI本来の耐熱性と無機充填剤の相乗的効果で維持
することが出来た。
The heat-resistant film of the present invention has a linear expansion coefficient of approximately 1.
3 x 10-5 to 3. OX 10-', it was possible to obtain a linear expansion coefficient equivalent to that of a pyriimide film or a ceriester film, and even after laminating with metal foil such as copper or aluminum, there was little curling and no practical problems occurred. Also, heat resistance, so-called solder heat resistance26
Thermal dimensional stability against a 0° C. solder bath could also be maintained due to the synergistic effect of the heat resistance inherent to PICI in the intermediate layer and the inorganic filler.

さらに即ち屈曲時の脆性についても、充分なフレキシビ
リティ−のあるフィルムが得られた。
Furthermore, with regard to brittleness when bent, a film with sufficient flexibility was obtained.

本発明の主眼及び新規性は、第一に、単独では非常に脆
いフィルムでしかあり得ない、中間層を熱可塑性樹脂層
でサンドインチすることにより、屈曲性を大巾に改善す
ることが出来たこと、第2に、フィルム全体の線膨張係
数及び耐熱性は中間層の特性に準じることを見いだした
ことの2点にある。
The main purpose and novelty of the present invention is, firstly, by sandwiching the intermediate layer with a thermoplastic resin layer, which can only be a very brittle film by itself, the flexibility can be greatly improved. and secondly, it was found that the coefficient of linear expansion and heat resistance of the entire film are similar to the properties of the intermediate layer.

以下に実施例に従って説明する。Examples will be explained below.

実施例−1;中間層として、P):I (GE社製IJ
LTEM−1000) 60 Ii量部と平均粒子径2
μのタルク40重量部をミキシングし、混練機で混練し
Rレットを得た。3台の押出機にそれぞれ上表層として
PIIJ、下表層として同じ<PEI、中間層として前
記のPEl−タルクブレンド体を供給し、三層ダイスに
より押出し、積層一体化し、厚み100μのフィルムと
した。各層の淳みは上、中、下層はそれぞれ30μ、3
5μ、30μであった。
Example-1; As the intermediate layer, P):I (IJ manufactured by GE)
LTEM-1000) 60 parts Ii and average particle diameter 2
40 parts by weight of μ talc were mixed and kneaded using a kneader to obtain R-let. Three extruders were each supplied with PIIJ as an upper surface layer, the same <PEI as a lower surface layer, and the above-mentioned PEl-talc blend as an intermediate layer, and extruded through a three-layer die and laminated together to form a film with a thickness of 100 μm. The thickness of each layer is 30μ and 3μ for the top, middle, and bottom layers, respectively.
They were 5μ and 30μ.

実施例−2;中間層として、PEI  (GE社 UL
TEM−1000) 70重量部と平均粒子径5μのシ
リカ粉末30重量部を混線機で混練し、Rレットとした
Example-2: As the middle layer, PEI (GE company UL
TEM-1000) 70 parts by weight and 30 parts by weight of silica powder having an average particle size of 5 μm were kneaded using a mixer to form R-let.

3台の押出機にそれぞれ上表層としてイIJエーテルx
−テh))−トy (1(4社 VICTREX −P
EEK )、下表層として同じくピリエーテルエーテル
ケトン、中間層として先にRレット化したPEl−シリ
カブレンド体を供給し、三層ダイスによシ押出し、積層
一体化し、厚み125μのフィルムとした。各層の厚み
は上、中、下層それぞれ45μ、35μ、45μであっ
た。
IJ ether x as the upper surface layer for each of the three extruders
-Teh))-Toy (1 (4 companies VICTREX -P
EEK), the same pyrietheretherketone as the lower surface layer, and the previously R-retted PEl-silica blend as the middle layer were extruded through a three-layer die, and laminated and integrated to form a film with a thickness of 125 μm. The thickness of each layer was 45μ, 35μ, and 45μ for the upper, middle, and lower layers, respectively.

実施例−3;中間層として、PEl70重量部と平均粒
子径6μの炭酸カルシウム30重量部をミキシングし、
混線機で混練した後被レフトとした。
Example-3: As an intermediate layer, 70 parts by weight of PEL and 30 parts by weight of calcium carbonate having an average particle size of 6 μm were mixed,
After being mixed in a mixer, it was left on the left.

別にPEI単独をコートハンガーダイによシ押出し、6
0μ厚みのポリエーテルイミドフィルムを得た。
Separately, PEI alone was extruded through a coat hanger die, 6
A polyetherimide film with a thickness of 0 μm was obtained.

先にRレット化したPEl−炭酸カルシウムブレンド体
をコートハンガーダイで50μ厚みで押出すと同時に該
溶融押出物に、先に得られた60μボリエーテルイミド
フィルムを上、下からサンドイッチ圧着し、積層一体化
した。フィルムの厚みは平均170μであった。
The previously R-retted PEl-calcium carbonate blend was extruded with a coat hanger die to a thickness of 50μ, and at the same time, the previously obtained 60μ polyetherimide film was sandwich-pressed from above and below to the melt extrudate, and laminated. Integrated. The average thickness of the film was 170μ.

比較例−1; PE170Mf&部と平均粒子径2μの
メルク30重量部をミキシングし、混練機で混練し被レ
フトとした。得られた被レフトをTダイ押出機で押出し
、100μのフィルムとして巻取った。
Comparative Example-1: 170Mf& parts of PE and 30 parts by weight of Merck having an average particle diameter of 2μ were mixed and kneaded in a kneader to form a left. The obtained left material was extruded using a T-die extruder and wound up as a 100 μm film.

比較例−2; PEIをコートハンガーダイ押出機で押
出し、125μのフィルムとして巻取った。
Comparative Example-2; PEI was extruded using a coat hanger die extruder and wound up as a 125μ film.

比較例−3;ゼリエーテルサルホン(IC1社VICT
REX −PES 200F) 60重景部と平均粒子
径5μのシリカ粉末をミキシングした後、混線機で混練
し被レフトとした。得られた被レフトをコートハンガー
ダイ押出機で押出し、125μのフィルムとした。
Comparative example-3; Jelly ether sulfone (IC1 company VICT
REX-PES 200F) 60 heavy background part and silica powder having an average particle size of 5 μm were mixed, and then kneaded with a mixer to form a left. The obtained left was extruded using a coat hanger die extruder to form a 125μ film.

実施例−1,2,3比較例−1,2,3について下記す
る各性能について試験を行った。結果を表−IK*げる
Examples 1, 2, and 3 Comparative Examples 1, 2, and 3 were tested for each performance described below. Report the results in Table-IK*.

(1)屈曲性;フィルムを180o折シ曲げ、フィルム
が脆性破断するかどうかを調べた。ガラスの様に割れる
もの、及び曲げ部分が一部ないし全部破断するものを×
、割れ、破断の生じないものを1つとした。
(1) Flexibility: The film was bent at 180° to examine whether the film would break brittle. Items that break, such as glass, or items that partially or completely break when bent
, No cracks or breaks were selected as one.

(2)Cuラミカール性:電解Cu箔35μとフィルム
を接着剤を介して、160℃×30分、10)c9/c
11の圧力下でプレス圧着し、出来上ったCuラミネー
トフィルムのカールの曲率半径を測定し、半径を唾で表
わしだ。
(2) Cu lamicar property: Electrolytic Cu foil 35μ and film are attached via adhesive at 160°C for 30 minutes, 10) c9/c
The radius of curvature of the curl of the resulting Cu laminate film was measured, and the radius was expressed in terms of saliva.

(3)線膨張係数;島津製作所製 線膨張測定器で30
℃〜150℃の間の線膨張係数を測定した。
(3) Coefficient of linear expansion: 30 using a linear expansion measuring device manufactured by Shimadzu Corporation
The linear expansion coefficient between 150°C and 150°C was measured.

(4)ハンダ耐熱;260℃ハンダ浴中1c10秒間浸
漬し、フィルムの変形、収縮率を調べた。変形について
は変形が大のもの×、変形が中のもの公、変形がほとん
どないもの○とした。収縮率は優で示した。
(4) Solder heat resistance: The film was immersed in a solder bath at 260° C. for 10 seconds to examine its deformation and shrinkage rate. Regarding deformation, those with large deformation were marked as ×, those with moderate deformation were marked as ○, and those with almost no deformation were marked as ○. The shrinkage rate is shown as excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の耐熱多層フィルムの構成を表わす、断
面図である。
FIG. 1 is a sectional view showing the structure of the heat-resistant multilayer film of the present invention.

Claims (1)

【特許請求の範囲】 1、ポリエーテルイミドを主体とする耐熱性フィルムで
あって、中間層と該中間層をはさむ上下表層の3層構成
となっており、中間層は、ポリエーテルイミドと無機充
填剤のブレンド体であって、かつポリエーテルイミドと
無機充填剤との比率が重量比で80:20ないし40:
60であり、上下表層は、ガラス転移温度135℃以上
の熱可塑性樹脂であるところの耐熱性多層フィルム。 2、無機充填剤が含ケイ素又は含カルシウム無機粒子で
あるところの特許請求の範囲第1項記載の耐熱性多層フ
ィルム。 3、上下表層の熱可塑性樹脂がポリエーテルイミド又は
ポリエーテルエーテルケトンであるところの特許請求の
範囲第1項又は第2項記載の耐熱性多層フィルム。
[Claims] 1. A heat-resistant film mainly made of polyetherimide, which has a three-layer structure of an intermediate layer and upper and lower surface layers sandwiching the intermediate layer. The intermediate layer is composed of polyetherimide and an inorganic material. A filler blend in which the weight ratio of polyetherimide to inorganic filler is 80:20 to 40:
60, and the upper and lower surface layers are a thermoplastic resin having a glass transition temperature of 135° C. or higher. 2. The heat-resistant multilayer film according to claim 1, wherein the inorganic filler is silicon-containing or calcium-containing inorganic particles. 3. The heat-resistant multilayer film according to claim 1 or 2, wherein the thermoplastic resin of the upper and lower surface layers is polyetherimide or polyetheretherketone.
JP29074285A 1985-12-25 1985-12-25 Heat-resistant multilayer film Pending JPS62149437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29074285A JPS62149437A (en) 1985-12-25 1985-12-25 Heat-resistant multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29074285A JPS62149437A (en) 1985-12-25 1985-12-25 Heat-resistant multilayer film

Publications (1)

Publication Number Publication Date
JPS62149437A true JPS62149437A (en) 1987-07-03

Family

ID=17759936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29074285A Pending JPS62149437A (en) 1985-12-25 1985-12-25 Heat-resistant multilayer film

Country Status (1)

Country Link
JP (1) JPS62149437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041314A1 (en) * 1998-02-10 1999-08-19 Cosmo Research Institute Resin composition, molded article thereof, and process for producing resin composition
JP2006123502A (en) * 2004-09-29 2006-05-18 Kimoto & Co Ltd Laminate
JP2020021626A (en) * 2018-08-01 2020-02-06 三菱ケミカル株式会社 Insulation film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041314A1 (en) * 1998-02-10 1999-08-19 Cosmo Research Institute Resin composition, molded article thereof, and process for producing resin composition
JP2006123502A (en) * 2004-09-29 2006-05-18 Kimoto & Co Ltd Laminate
JP2020021626A (en) * 2018-08-01 2020-02-06 三菱ケミカル株式会社 Insulation film

Similar Documents

Publication Publication Date Title
KR100808763B1 (en) Multi-Layer Sheet
US9725565B2 (en) Flexible metal laminate and preparation method of the same
JPH11106650A (en) Flexible polyimide film of high dielectric constant and its production
JP2000038464A (en) Film for heat-resistant laminate and raw plate using the same and used for printed wiring board and production of the board
MY144937A (en) Double-sided copper clad laminate for forming capacitor layer and method for manufacturing the same
JP4827446B2 (en) Electronic circuit board and manufacturing method thereof
JPH09174786A (en) Oriented material of liquid crystal polymer film having adhesive surface or metallic surface
JPH02168694A (en) Flexible laminate and manufacture thereof
JPS62149437A (en) Heat-resistant multilayer film
JPS6232031A (en) Surface roughened film and sheet made of 4-methyl-1-pentene polymer
JP4231227B2 (en) Method for producing heat-resistant flexible laminate
JP2790330B2 (en) Release film for manufacturing printed wiring board and method for manufacturing the same
US4833022A (en) Polymer/copper laminate and method for fabrication thereof
US4869956A (en) Polymer/copper laminate and method for fabrication thereof
JP2780380B2 (en) Composite metal laminate sheet and method of using the same
JP3803241B2 (en) Method of joining heat-resistant resin molded body and metal body and joined body
JPH03104185A (en) Manufacture of double surface conductor polyimide laminate
JP3514669B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same
JPS61281402A (en) Manufacture of highly conductive film
JPS6347125A (en) Manufacture of multilayer printed interconnection board
JP2003001753A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP2003053921A (en) Polyimide laminated film, metal laminate using the same, and metal laminate manufacturing method
JPH03239389A (en) Printed circuit board
JPS62176842A (en) Laminated board and manufacture thereof
JPS6347135A (en) Multilayer printed wiring board