JPS62176823A - Method of molding laminated sheet for thermoforming - Google Patents

Method of molding laminated sheet for thermoforming

Info

Publication number
JPS62176823A
JPS62176823A JP1877686A JP1877686A JPS62176823A JP S62176823 A JPS62176823 A JP S62176823A JP 1877686 A JP1877686 A JP 1877686A JP 1877686 A JP1877686 A JP 1877686A JP S62176823 A JPS62176823 A JP S62176823A
Authority
JP
Japan
Prior art keywords
molding
pressure
resin
thermoforming
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1877686A
Other languages
Japanese (ja)
Other versions
JPH0144494B2 (en
Inventor
Masaaki Komito
小美戸 正明
Hiroshi Yamaguchi
洋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP1877686A priority Critical patent/JPS62176823A/en
Publication of JPS62176823A publication Critical patent/JPS62176823A/en
Publication of JPH0144494B2 publication Critical patent/JPH0144494B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To perform satisfactory molding by varying molding pressure in multi- stages or non-stage in case of a pressure forming; that is, the molding pressure in an initial stage is made lower than that in a later stage and the pressure is increased in the subsequent molding stage. CONSTITUTION:When Pb-Sn, Pb-Sn-Cd, Zn-Al and so on are used as an ultra- placticity alloy and the following resins are used as a laminated sheet for an aging molding, molding is performed under the condition of each specific temp. In case of an acrylic modified polyvinyl chloride resin, the temp. of the laminated sheet is set at higher than 11 deg.C and the die temp. at 10 deg.C-70 deg.C: in case of a modified olefin resin, at higher than 40 deg.C and at 30 deg.C-120 deg.C: in case of an aromatic polyether resin at higher than 150 deg.C and at 30 deg.C-130 deg.C respectively. In terms of specific molding pressure, a molding in an initial stage is done under a pressure of 0.1-5kg/cm<3> for 1-20sec and in the subsequent stage under a pressure of 3kg/cm<3>, or under 0.1-3kg/cm<3> in an initial stage and under 5-10kg/cm<3> in the subsequent stage. Resin sheets 2 for aging molding are laminated on both surfaces of an ultra-placticity alloy 1 with an adhesive 3 or without any interposal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧空成形により電磁波遮蔽性を有する筐体を製
造する等に適した熱成形用′&積層板成形方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermoforming method and a laminate forming method suitable for manufacturing a housing having electromagnetic wave shielding properties by air pressure forming.

〔従来技術〕[Prior art]

従来、電磁波遮蔽性を有する筐体を製造するには筐体に
金属溶射を施すか、あるいは導電性塗料を塗布する等の
方法が行われている。しかし、前者の方法は溶射された
金属または合金が筐体本体から剥離しやす(、また後者
の方法は塗料中に含有せしめた金属粒子が酸化するなど
の経時変化が生じ電磁波遮蔽能が劣化するものであった
。さらに両者の方法はそれ自体高価となる欠点をも有す
るものであった。そこで、金属箔と樹脂とを&層した積
層板を成形する方法が提案されたが、これら積層板に使
われる金属箔はFe箔、 Al箔であるため、成形性が
十分でなく、浅い成形しかできないものである。従つて
、この積層板に用いる金属箔としては超塑性をもつもの
が好ましく、これを樹脂と一体のまま成形することが期
待される。しかし、超塑性合金としてはZn −A1合
金、Pb −Sn合金等が知られているが、これら超塑
性合金を使用した積層板は未だ市販されておらず、成形
条件等についても全(明らかになっていないのが現状で
ある。
Conventionally, in order to manufacture a housing having electromagnetic wave shielding properties, methods such as applying metal spraying to the housing or coating the housing with a conductive paint have been used. However, with the former method, the sprayed metal or alloy tends to peel off from the housing body (and with the latter method, the metal particles contained in the paint oxidize and change over time, resulting in a deterioration of the electromagnetic wave shielding ability). Furthermore, both methods had the disadvantage of being expensive in themselves.Therefore, a method of forming a laminate made by layering metal foil and resin was proposed, but these laminates The metal foils used for this laminate are Fe foil and Al foil, which do not have sufficient formability and can only be formed shallowly.Therefore, it is preferable that the metal foil used for this laminate has superplasticity. It is expected that this material will be formed integrally with the resin.However, although Zn-A1 alloy, Pb-Sn alloy, etc. are known as superplastic alloys, laminates using these superplastic alloys have not yet been produced. It is not commercially available, and the molding conditions are not completely clear at present.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

金属超塑性材の圧空成形に際しては、超塑性材がある変
形速度以下でしか大きな伸びを示さないことから成形時
間が長くかかり、たとえばZn−221A1合金系の1
m厚の板の成形時間は1〜3分程度となる。−万態成形
用樹脂板の成形では雌型内を減圧して空気抜きをしつつ
3?/d前後の定圧をかげる方法がとられており、60
秒程度以内(多くは10秒以内)の成形時−間となって
いる。さらに樹脂の圧空成形では成形開始直後に変形の
大部分が終了し、残りの成形時間はエツジをシャープに
したり、細かい凹凸をつけるために必要とされる。例え
ば、厚み2瓢のアクリル変性塩ビ(筒中グラスチック工
業(麹製商品名カイダック)で幅loom、長さ200
m、深さ35mmの筐体を成形するのに温度160’C
1圧力5 Kp/cr/lで10秒を要した。しかし、
上記条件で圧力を2秒かけて成形したものは、エツジが
かなり丸(なっているものの形状としては、筐体になっ
ており、変形量の90慢以上は既に終了していた。この
ように超塑性材と熱成形用樹脂板とでは成形速度などの
成形条件が大きく異なる。そして、樹脂成形の従来法で
上記積層板を圧空成形すると、変形速度特に成形初期の
変形速度は超塑性合金板が大きな伸びを示す変形速度に
比べ速すぎるため、絞り比が浅い、エツジが丸いなどと
(限られた形状の型では成形できるものの、一般には超
塑性金属の変形が樹脂においつかず、成形後金属板に亀
裂が生じたり、樹脂板と金属板の間に剥離が生じるもの
であった。成形圧力を下げることによりこのような金属
板の亀裂や剥離を防ぐことはできるが、この場合には型
再現性が不足するようになる。
When pressure forming metal superplastic materials, the forming time is long because the superplastic material only shows large elongation below a certain deformation rate.
The molding time for a plate of m thickness is about 1 to 3 minutes. -When molding a resin plate for universal molding, the pressure inside the female mold is reduced to remove air.3? A method is used to lower the constant pressure around /d, and
The molding time is approximately within seconds (often within 10 seconds). Furthermore, in pressure molding of resin, most of the deformation ends immediately after the start of molding, and the remaining molding time is required to sharpen edges and create fine irregularities. For example, use acrylic modified PVC (Tsutsunaka Glasstic Industry Co., Ltd. (Koji product name: Kaidak)) with a width of 200 mm and a length of 200 mm.
The temperature is 160'C to mold a case with a depth of 35mm.
It took 10 seconds at a pressure of 5 Kp/cr/l. but,
The molded product under the above conditions with pressure applied for 2 seconds had fairly rounded edges, but the shape was that of a casing, and the amount of deformation over 90 degrees had already been completed. The molding conditions such as molding speed are very different between superplastic material and thermoforming resin plate.When the above-mentioned laminate is air-formed using the conventional method of resin molding, the deformation speed, especially the deformation speed at the initial stage of molding, is significantly different from that of the superplastic alloy plate. This is too fast compared to the deformation speed that causes large elongation, so the drawing ratio is shallow, the edges are rounded, etc. (although molding can be done with molds of limited shapes, in general, the deformation of the superplastic metal is not transferred to the resin, and the molding process is slow. Cracks would occur in the metal plate after the molding process, and peeling would occur between the resin plate and the metal plate. Although such cracking and peeling of the metal plate can be prevented by lowering the molding pressure, in this case, the mold Reproducibility becomes insufficient.

〔問題を解決するだめの手段〕[Failure to solve the problem]

本発明者らは、Pb −Sn系、Pb−8n−Cd系お
よびZn −AI系等の超塑性合金と種々の熱成形用樹
脂を&層した熱成形用積層板について成形試験を繰返し
た結果、上記!に#板の圧空成形に際し、成形圧力を多
段に、もしくは無段階に変化させ、初期成形圧力をその
後の成形圧力に比べて低圧とし、その後圧力を高め、も
しくは順次高めながらその以後の成形を行うことにより
、積層板が良好に成形されるという従来全く考え及ばな
い新規な知見を得た。本発明はこれら知見に基づいて完
成したものである。
The present inventors conducted repeated molding tests on thermoforming laminates made by layering superplastic alloys such as Pb-Sn, Pb-8n-Cd, and Zn-AI with various thermoforming resins. ,the above! When air-forming #plates, the molding pressure is changed in multiple stages or steplessly, with the initial molding pressure being lower than the subsequent molding pressure, and then increasing the pressure, or increasing the pressure sequentially while performing subsequent molding. As a result, we obtained a novel finding that was completely unthinkable in the past: that the laminate can be formed well. The present invention was completed based on these findings.

すなわち1本発明は超塑性合金と熱成形樹脂の変形速度
が異なることに着目し、まず超塑性合金が変形し得る圧
力で成形し、その後圧力を高め、もしくは高めながら成
形し、型再現性を得ることを要点とするものである。従
って1本発明では初期成形圧力は超塑性合金が変形可能
で且つ熱成形用樹脂が予備成形されるような比較的低圧
であることを意味する。
Namely, the present invention focuses on the fact that the deformation speeds of a superplastic alloy and a thermoforming resin are different. First, the superplastic alloy is molded at a pressure that allows it to deform, and then the pressure is increased or molded while being increased to improve mold reproducibility. The main point is to obtain. Accordingly, in the present invention, the initial forming pressure is meant to be a relatively low pressure at which the superplastic alloy is deformable and the thermoforming resin is preformed.

これら、初期成形圧力およびそれ以後の圧力は圧力を多
段、好ましくは2段に変化させ、あるいは無段階に変化
させることによって達成されるものである。
These initial molding pressures and subsequent pressures are achieved by changing the pressure in multiple steps, preferably in two steps, or by changing the pressure steplessly.

本発明における超塑性合金とは2相または3相以上の合
金系で微細な結晶粒を有することにより、熟成塑性樹脂
(熱成形用樹脂)の一般的成形温度である300℃以下
の雰囲気温度で100%以上の伸びを示すものをい5゜
具体的にはPb −Sn系合金であってSn含量が19
〜97.5wt%のもの、Pb−an−Cd系合金であ
ってSnn含水10〜62wt%で、Cd含量が0.5
〜30wtチのもの、あるいはZn −AJ系合金であ
って、AI含量が21〜23wt%のちのおよびこれら
にCu、Mg等を1%以下添加して改良したもの等が挙
げられる。そして1本発明はこれら超塑性合金と熱成形
用樹脂とを積層させた積層板を圧空成形により筐体等に
成形するものであるから、当然超辺性合金は樹脂の成形
温度で超塑性を示すものであり、また基本的には剛性を
もつ必要がないから穴があかない範囲でできるだけ薄(
、樹脂の成形についていかなければならない。そのため
には超塑性合金板の厚みは0.3〜0.01+m程度と
することが好ましい。
In the present invention, the superplastic alloy is a two-phase or three-phase or more alloy system with fine crystal grains, so that it can be used at an ambient temperature of 300°C or less, which is the general molding temperature for aged plastic resins (thermoforming resins). 5゜Specifically, it is a Pb-Sn alloy with an Sn content of 19%.
-97.5 wt%, Pb-an-Cd alloy with Snn water content of 10-62 wt% and Cd content of 0.5
-30wt, or Zn-AJ alloys with an AI content of 21 to 23wt%, and those improved by adding Cu, Mg, etc. in an amount of 1% or less. 1. Since the present invention is to form a laminate made by laminating these superplastic alloys and thermoforming resin into a housing or the like by pressure forming, it is natural that superplastic alloys exhibit superplasticity at the molding temperature of the resin. Since it basically does not need to be rigid, it should be made as thin as possible (without making holes).
, I have to keep up with resin molding. For this purpose, the thickness of the superplastic alloy plate is preferably about 0.3 to 0.01+m.

また1本発明における熱成形用樹脂としては圧空成形に
適するシートで2体とする場合はその主要な機能を満た
すものである必要があり、次の如き樹脂が好適である。
In addition, the resin for thermoforming in the present invention must be a sheet suitable for air pressure molding that satisfies the main functions when two sheets are to be formed, and the following resins are suitable.

すなわちアクリル変性塩ビ樹脂、またはこれに添加剤を
加えたものからなる群で、例えば商品名カイダック(筒
中プラスチック工業0噂)、変性オレフィン樹脂、また
はこれに添加剤を加えたものからなる群で、例えば商品
名オレピツク(筒中プラスチック工業■)、芳香族ポリ
エーテル樹脂、またはこれに添加剤を加えたものからな
る群で、例えば商品名ノリル(筒中プラスチック工業■
)の他、ABC樹脂、PVC,/リカーボネート等が挙
げられる。これら熱成形用樹脂のシートは厚さ0、1 
=10 m程度のものが好ましい。
In other words, it is a group consisting of acrylic modified PVC resin or additives added thereto, such as the product name Kaidac (Tsutsunaka Plastic Industry 0 rumor), modified olefin resin, or a group consisting of additives added thereto. For example, the product name Olepic (Tsutsunaka Plastic Industry ■), aromatic polyether resin, or a group consisting of additives added thereto, such as the product name Noryl (Tsutsunaka Plastic Industry ■).
), ABC resin, PVC, /recarbonate, etc. These sheets of thermoforming resin have a thickness of 0, 1
= about 10 m is preferable.

これら超塑性合金板および熱成形用樹脂シートは添付の
第1図に示されるように、超塑性合金板1の両面に熱成
形用樹脂シー)2を低融点の熱可麗性樹脂フィルムなど
からなる接着剤もしくは粘着剤3を介して、あるいは介
在物無しで積層される。また積層板は第2図のように、
超塑性合金板lの片面にのみ熱成形用樹脂2を接着剤も
しくは粘着剤3を介して、もしくは介在物無しで@層さ
れたものであってもよい。
As shown in the attached Fig. 1, these superplastic alloy plates and thermoforming resin sheets are made of a thermoplastic resin film with a low melting point, etc. on both sides of a superplastic alloy plate 1. They are laminated with an adhesive or pressure-sensitive adhesive 3 or without any inclusions. Also, as shown in Figure 2, the laminate is
The thermoforming resin 2 may be layered only on one side of the superplastic alloy plate 1 via an adhesive or pressure-sensitive adhesive 3, or without any inclusions.

上述の如き@層板は本発明に従って、比較的低圧の初期
成形圧力により成形された後、初期成形圧力よりも高い
圧力で以後の成形が施される。
In accordance with the present invention, the laminate as described above is formed at a relatively low initial forming pressure and then subjected to subsequent forming at a pressure higher than the initial forming pressure.

初期成形圧力は前述のように超塑性合金が超塑性変性さ
れ゛且つ熱成形用樹脂が予備成形される範囲とするが、
具体的には0.1 Kf/art未満の圧力では成形が
不十分となり、rsKp/diを越えると合金板に亀裂
が生ずるため0.1〜5 Kp/dとすることが好まし
い。また成形体の変形量が太きい場合には樹脂の変形に
合金板の変形がおいつかないため3 Kp/cd以下と
することが望ましい。さるに&i!板の構造が超塑性合
金板の片面にのみ熱成形用樹脂で積層された。ものであ
る場合には樹脂の変形に拘束されて合金板も良(変形す
る効果が少な(なるためか1.5にp/ad以内の圧力
であることが望ましい。またこの初期成形圧は加圧であ
る必然性があるわげではなく減圧によって加えられても
よいことは自明のことである。これら初期成形圧力の保
持時間は1秒未満では積層板の変形量が少な(低圧で成
形する効果が不十分となり、また20秒を越えると低圧
で長時間をかけて成形することになり金型により積層板
が冷却されるため、その後高圧で成形しても型再現性が
不足するようになるため1〜20秒とすることが好まし
い。また必要以上に低圧での成形時間をとることは全成
形時間が長くなることになり、工業的にも意味がない。
The initial molding pressure is set within a range in which the superplastic alloy is superplastically modified and the thermoforming resin is preformed, as described above.
Specifically, if the pressure is less than 0.1 Kf/art, the forming will be insufficient, and if it exceeds rsKp/di, cracks will occur in the alloy plate, so the pressure is preferably 0.1 to 5 Kp/d. Furthermore, if the amount of deformation of the molded body is large, the deformation of the alloy plate will not follow the deformation of the resin, so it is desirable that the amount of deformation is 3 Kp/cd or less. Saruni&i! The structure of the plate was a superplastic alloy plate laminated with thermoforming resin on only one side. If the molding pressure is within 1.5 p/ad, it is desirable that the pressure be within 1.5 p/ad. It is obvious that the pressure does not necessarily have to be applied by pressure, but may be applied by reduced pressure.If the holding time of these initial molding pressures is less than 1 second, the amount of deformation of the laminate will be small (the effect of molding at low pressure). If the molding time exceeds 20 seconds, molding will take a long time at low pressure, and the laminate will be cooled by the mold, resulting in poor mold reproducibility even if molded at high pressure afterwards. Therefore, it is preferable to set the molding time to 1 to 20 seconds.In addition, taking a molding time at an unnecessarily low pressure will increase the total molding time and is industrially meaningless.

初期成形以後の成形圧力は型再現性の点から3Ky/c
1以上とすることがt−ζましいが、壓の形状および模
様によっては5KIP/−以上とすることが望ましい。
The molding pressure after the initial molding is 3 Ky/c from the viewpoint of mold reproducibility.
It is preferable that t-ζ be 1 or more, but depending on the shape and pattern of the bottle, it is desirable that it be 5KIP/- or more.

しかし1OK51/1−11!を越えることは実際的で
はない。
But 1OK51/1-11! It is not practical to exceed this.

超塑性合金としてPb −Sn系合金を用いた積層板で
は、120〜183℃の成形温度とすることが望ましい
。すなわち120℃未満の温度では超塑性が十分発揮さ
れず、183℃以上ではpb金合金溶解する。また絞り
比が大きいなどの理由で十分な超塑性を得たい場合には
積層板の温度は150℃〜170℃の温度範囲とするこ
とがより望ましい。また、Pb−8n−Cd系超塑性合
金を用いる場合には、積層板の温度は110℃〜145
℃とすることが望ましい。すなわち110℃未満の温度
では超塑性が十分発揮されず、145℃以上ではpb金
合金溶解する。また、絞り比が太きいなどの理由で十分
な超塑性を得たい場合には125〜135℃の温度範囲
が望ましく1゜以上の例からもわかるように積層板の成
形温度の上限は用いる超塑性金属板が超塑性を示さなく
なる融点或いはZn −AA!合金などのような場合は
変態点で上限が制限され、下限は要求される変形速度を
満たす温度によって制限される。−万態可塑性樹脂の側
から考えれば、積層板の下限温度は111脂の軟化が不
十分となる温度で決定される。また、金型温度は成形後
の樹脂の硬化が不十分とならない温度あるいは成形中の
へ層板の冷却が著しく型再現性が不足したり偏肉を生じ
る温度が下限となり、樹脂の収縮を生じ型再現性に著し
く悪影響を及ぼす温度が上限となる。即ち、積層板の樹
脂としてアクリル変性塩ビ系樹脂を使用する場合の積層
板の温度は110℃以上、金型温度は10〜70℃が適
切であるが、種々の組合わせにより変動することもある
のでこれに限定されるものではない。
In the case of a laminate using a Pb-Sn alloy as a superplastic alloy, the forming temperature is preferably 120 to 183°C. That is, at temperatures below 120°C, superplasticity is not sufficiently exhibited, and at temperatures above 183°C, the PB gold alloy melts. Further, when it is desired to obtain sufficient superplasticity due to a large drawing ratio, etc., it is more desirable that the temperature of the laminate be in the temperature range of 150°C to 170°C. In addition, when using Pb-8n-Cd superplastic alloy, the temperature of the laminate is 110°C to 145°C.
It is desirable to set the temperature to ℃. That is, at temperatures below 110°C, superplasticity is not sufficiently exhibited, and at temperatures above 145°C, the PB gold alloy melts. In addition, if you want to obtain sufficient superplasticity due to a large drawing ratio, etc., a temperature range of 125 to 135°C is desirable. The melting point at which a plastic metal plate no longer exhibits superplasticity or Zn-AA! In the case of alloys, the upper limit is limited by the transformation point, and the lower limit is limited by the temperature that satisfies the required deformation rate. - Considering the universal plastic resin, the lower limit temperature of the laminate is determined at the temperature at which the 111 resin is insufficiently softened. In addition, the lower limit of the mold temperature is the temperature at which the resin does not sufficiently harden after molding, or the temperature at which the cooling of the layer plate during molding significantly reduces mold reproducibility or uneven thickness, causing resin shrinkage. The upper limit is the temperature that has a significant negative effect on mold reproducibility. That is, when using acrylic modified PVC resin as the resin for the laminate, the appropriate temperature for the laminate is 110°C or higher, and the temperature for the mold is 10 to 70°C, but this may vary depending on various combinations. Therefore, it is not limited to this.

同様に変性オレフィン系樹脂を使用する場合は積層板温
度は140℃以上金型温度は30〜120℃が適切であ
り、芳香族ポリエーテル系樹脂を使用する場合は、積層
板温度は150℃以上、金型温度は30−130℃が適
切であるが。
Similarly, when using a modified olefin resin, the appropriate laminate temperature is 140°C or higher and the mold temperature is 30 to 120°C, and when aromatic polyether resin is used, the laminate temperature is 150°C or higher. However, the appropriate mold temperature is 30-130°C.

種々の組合わせにより変動することもあるのでこれに限
定されるものではない。
It may vary depending on various combinations, so it is not limited to this.

〔作  用〕[For production]

か(して本発明では熱成形用積層板の成形に際し、初期
成形圧力をその後の成形圧力に比べて低圧とし、その後
圧力を高め、もしくは順次高めながらそれ以後の成形を
行うため、初期成形により超重性合金が超塑性変形され
、同時に熱成形用樹脂が大部分の変形が終了して予備成
形が終り、それ以後の高圧負荷により樹脂のエツジ部分
等がさらにシャープに成形されて型再現性が達成される
ことになる。
(Thus, in the present invention, when molding a thermoforming laminate, the initial molding pressure is set to be lower than the subsequent molding pressure, and then the pressure is increased, or the pressure is increased sequentially while subsequent molding is performed. The super-heavy alloy is superplastically deformed, and at the same time most of the thermoforming resin is deformed, completing the preforming process.The subsequent high-pressure load causes the edges of the resin to become even sharper, improving mold reproducibility. will be achieved.

以下に実施例を示す。実施例1では二段成形の実施例を
、実施例2では多段成形の実施例を、そして実施例3で
は無段成形の実施例をそれぞれ示す。なお、各実施例で
は幅100■、長さ200智、深さ35mで底面の一部
に筋さ約3日の凹凸がある筐体成形用の型を用いた。
Examples are shown below. Example 1 shows an example of two-stage molding, Example 2 shows an example of multi-stage molding, and Example 3 shows an example of stepless molding. In each of the examples, a mold for molding the casing was used, which had a width of 100 cm, a length of 200 cm, a depth of 35 m, and a part of the bottom surface had unevenness with a width of about 3 days.

実施例1 熱成形用樹脂としては、アクリル変性塩ビ系のものとし
て商品名カイダック(筒中プラスチック工業■製)、変
性メレフイン系樹脂として商品名オレピツク(筒中プラ
スチック工業■製)、芳香族ポリエーテル系樹脂として
ポリフェニレンオキサイド、商品名ノリル(筒中プラス
チック工業■製)を用いた。超塑性合金としては16が
0.2 m厚の70%Pb −30%Sn合金板、10
が0.1 m厚の38%Pb−62%Sn合金似、22
が0.2鵡厚の64%Pb−16%5n−20%Cd合
金板。
Example 1 Thermoforming resins include an acrylic modified PVC resin under the trade name Kaidac (manufactured by Tsutsunaka Plastic Industries), a modified melefin resin under the trade name Olepik (manufactured by Tsutsunaka Plastic Industries), and an aromatic polyether resin. Polyphenylene oxide, trade name Noryl (manufactured by Tsutsunaka Plastic Industry ■), was used as the material. As a superplastic alloy, 16 is a 0.2 m thick 70%Pb-30%Sn alloy plate, 10
Similar to 38%Pb-62%Sn alloy with 0.1 m thickness, 22
A 64%Pb-16%5n-20%Cd alloy plate with a thickness of 0.2 mm.

21が0.1 iwa厚の64%Pb−16%5n−2
0%Cd合金板を用いた。又他の積層板にはすべて0.
2 m厚の38%Pb−62%Snの合金&を用いた。
21 is 64%Pb-16%5n-2 with 0.1 iwa thickness
A 0% Cd alloy plate was used. Also, all other laminates are 0.
An alloy of 38%Pb-62%Sn with a thickness of 2 m was used.

積層法としては1〜17及び21,22については第1
図に示すように厚さ2mと1m+のカイダックの間に超
塑性合金をポリオレフィン系の接着フィルム(東セロ化
学■製商品名アトマーフィルムVE300)を介して接
着した。また18〜20.23〜28については第2図
に示すように樹脂の片側に超塑性合金を積層した。そし
て18〜20ではアトマーフィルムVE300と厚さ2
m厚のカイダックを23〜25ではポリオレフィン系接
着フィルム(東セロ化学■製、商品名アトマーフィルム
XEO70)と厚さ1.5鱈のオレビツクを、26〜2
8ではアトマーフィルムXEO70と厚さ2wxのノリ
ルとを用いた。
As for the lamination method, the first method is used for 1 to 17 and 21 and 22.
As shown in the figure, a superplastic alloy was bonded between 2 m and 1 m+ thick Kaidak via a polyolefin adhesive film (trade name: Atomer Film VE300, manufactured by Tohcello Chemical Co., Ltd.). In addition, as for Nos. 18 to 20 and 23 to 28, a superplastic alloy was laminated on one side of the resin as shown in FIG. And for 18-20, Atomer film VE300 and thickness 2
For 23 to 25 m thick Kaidak, polyolefin adhesive film (manufactured by Tocello Chemical ■, trade name Atmer Film
In No. 8, Atomer film XEO70 and Noryl with a thickness of 2wx were used.

実施例の結果金欠に検討する。第一段の成形圧力につい
ては低い例である14の場合でも成形が可能となってい
る。又高すぎる例である1の場合pb合金板の超塑性変
形が樹脂の変形に追いつかずpb合金板が破れた。なお
第2図のような積層法をとる場合にはpb合金板の変形
が第1図のような場合にくらべ十分でなく、18のよ5
に3 Kt/adではpb板に破れを生じ、樹脂とpb
合金板との間がおいてしまうという密着性の不良現象が
生じることがある。第一段の成形の時間に関して短かす
ぎる例である8の場合十分な一次成形がなされないまま
第二段目の圧カフKg/cdがかかったのでpb合金板
に亀裂が生じている。
As a result of the example, we will consider the lack of money. Regarding the first stage molding pressure, molding is possible even in the case of 14, which is a low example. In the case of 1, which is an example of too high a value, the superplastic deformation of the PB alloy plate could not catch up with the deformation of the resin, and the PB alloy plate was broken. In addition, when using the lamination method as shown in Figure 2, the deformation of the PB alloy plate is not sufficient compared to the case as shown in Figure 1, and 5
At 3 Kt/ad, the PB plate breaks and the resin and PB
Poor adhesion may occur due to gaps between the alloy plate and the alloy plate. In case No. 8, which is an example in which the first stage forming time is too short, the second stage pressure cuff Kg/cd was applied without sufficient primary forming, resulting in cracks in the PB alloy plate.

また長すぎる例である2、13,19の場合第二段成形
の前に横層板が金型により冷却されるため型再現性が不
足となった。第二段の圧力は例20に見るように5 K
W/crd以上あれはよいが、例2の場合から推測され
るように2 ’tt/cr/lのような低い圧力では十
分な型再現性が得られない。なお本発明法によらない例
1,2.18.19では良い結果が得られていない。
Furthermore, in the case of samples 2, 13, and 19, which are too long examples, the horizontal layer plate was cooled by the mold before the second stage molding, resulting in insufficient mold reproducibility. The pressure in the second stage is 5 K as seen in Example 20.
A pressure higher than W/crd is good, but as inferred from the case of Example 2, sufficient mold reproducibility cannot be obtained at a pressure as low as 2'tt/cr/l. Note that good results were not obtained in Examples 1, 2, 18, and 19, which were not based on the method of the present invention.

(以下余白) 実施例2 厚さ1簡のカイダックと厚さ0.1 mのPb−62%
Sn合金板を第1図のごとく私層し、積層板温度160
℃、金型温度50℃で圧空成形を行った。
(Left below) Example 2 Kaidac with a thickness of 1 sheet and Pb-62% with a thickness of 0.1 m
Sn alloy plates were laminated as shown in Figure 1, and the laminated plate temperature was 160.
℃, and the mold temperature was 50℃.

s Ky/diの圧力を20秒間かけて成形したものは
pb板に亀裂が生じた。
In the case of molding by applying a pressure of s Ky/di for 20 seconds, cracks appeared in the PB board.

しかし表2に示すような圧力条件で三段階に分けて成形
したものはいずれも型再現性が良好で、かつpb合金板
の亀裂も生じなかった。
However, all of the moldings molded in three stages under the pressure conditions shown in Table 2 had good mold reproducibility, and no cracks occurred in the PB alloy plate.

表   2 実施例3 厚さ1.5 tramのオレピツクと厚さ0.1 tr
aのpb合金板を第2図のごとく積層し、積層板温度1
60℃、金型温度80℃で圧空成形を行った。
Table 2 Example 3 1.5 tram thickness and 0.1 tram thickness
Laminate the pb alloy plates of a as shown in Figure 2, and set the laminated plate temperature to 1.
Air pressure molding was performed at 60°C and a mold temperature of 80°C.

7 Ktladの圧力を20秒間かげて成形したものは
型再現性は良好であったが、 pb合金板に亀裂が生じ
、  xKp/diの圧力で30秒間成形したものはp
b合金板の亀裂はなかったが、型再現性は不十分であっ
た。しかし成形スタート時の圧力が0、1 Ky/cr
iで成形開始直後に0.IKp/cdから7 Kylc
r&まで一定速度で20秒間かけて徐々に圧力を7にシ
ーまで上げて成形したものはpb合金板の伸び。
7. The mold reproducibility was good for the molded material under a pressure of 7 Ktlad for 20 seconds, but cracks occurred in the PB alloy plate, and the molded material for 30 seconds at a pressure of xKp/di had poor mold reproducibility.
Although there were no cracks in the alloy plate b, the mold reproducibility was insufficient. However, the pressure at the start of molding is 0.1 Ky/cr.
0 immediately after starting molding at i. IKp/cd to 7 Kylc
The elongation of the PB alloy plate was formed by gradually increasing the pressure to 7 and sea at a constant speed for 20 seconds to R&.

型再現性共良好であった。The mold reproducibility was also good.

〔発明の効果」 以上のような本発明によれば、超塑性合金と熱成形用樹
脂とを積層した積層板を型再現性よく厘体等の形状に効
率よく成形し得る方法が得られ、その効果は大きい。
[Effects of the Invention] According to the present invention as described above, a method for efficiently molding a laminate of a superplastic alloy and a thermoforming resin into a shape such as a roll body with good mold reproducibility is obtained. The effect is great.

【図面の簡単な説明】 第1図および第2図は本発明に係る熱成形用積層板の断
面説明図である。 l・・・超鼠性合金板    2・・・熱成形用樹脂シ
ート3・・・接着剤または粘着剤
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are explanatory cross-sectional views of a thermoforming laminate according to the present invention. l... Super rodent alloy plate 2... Resin sheet for thermoforming 3... Adhesive or adhesive

Claims (1)

【特許請求の範囲】 1、超塑性合金と熱成形用樹脂とを積層してなる熱成形
用積層板を圧空成形するに際し、初期成形の圧力をその
後の成形圧力に比べて低圧とし、その後圧力を高め、も
しくは順次高めながらそれ以後の成形を行うことを特徴
とする熱成形用積層板の成形方法。 2、成形圧力を多段に変化させる特許請求の範囲第1項
記載の方法。 3、成形圧力を無段階に変化させる特許請求の範囲第1
項記載の方法。 4、成形初期の圧力が超塑性合金が超塑性変形され且つ
熱成形用樹脂が予備成形される範囲とする特許請求の範
囲第1項〜第3項のいずれかに記載の方法。 5、初期成形を圧力0.1〜5Kg/cm^2で1〜2
0秒間行い、それ以降の成形を3Kg/cm^2以上で
行う特許請求の範囲第1項〜第4項のいずれかに記載の
方法。 6、初期成形圧力が0.1〜3Kg/cm^2であり、
それ以降の成形圧力が5〜10Kg/cm^2である特
許請求の範囲第5項記載の方法。 7、熱成形用積層板が超塑性合金板の片面にのみ熱成形
用樹脂が積層されたものであり、初期成形圧力を0.1
〜1.5Kg/cm^2で行う特許請求の範囲第1項〜
第6項のいずれかに記載の方法。 8、熱成形用樹脂がアクリル変性塩ビ系樹脂であり、積
層板の温度を110℃以上、金型温度を10〜70℃と
する特許請求の範囲第1項〜第7項のいずれかに記載の
方法。 9、熱成形用樹脂が変性オレフィン系樹脂であり、積層
板の温度を140℃以上、金型温度を30〜120℃と
する特許請求の範囲第1項〜第7項のいずれかに記載の
方法。 10、熱成形用樹脂が芳香族ポリエーテル系樹脂であり
、積層板の温度を150℃以上、金型温度を30〜13
0℃とする特許請求の範囲第1項〜第7項のいずれかに
記載の方法。
[Claims] 1. When pressure-forming a thermoforming laminate made by laminating a superplastic alloy and a thermoforming resin, the initial molding pressure is lower than the subsequent molding pressure; A method for forming a thermoforming laminate, characterized in that subsequent forming is carried out while increasing or gradually increasing the temperature. 2. The method according to claim 1, wherein the molding pressure is varied in multiple stages. 3. Claim 1 in which molding pressure is varied steplessly
The method described in section. 4. The method according to any one of claims 1 to 3, wherein the pressure at the initial stage of molding is within a range in which the superplastic alloy is superplastically deformed and the thermoforming resin is preformed. 5. Initial molding 1-2 at a pressure of 0.1-5Kg/cm^2
The method according to any one of claims 1 to 4, wherein the molding is performed for 0 seconds, and the subsequent molding is performed at a pressure of 3 kg/cm^2 or more. 6. The initial molding pressure is 0.1-3Kg/cm^2,
The method according to claim 5, wherein the subsequent molding pressure is 5 to 10 kg/cm^2. 7. The thermoforming laminate is a superplastic alloy plate with thermoforming resin laminated only on one side, and the initial molding pressure is 0.1.
〜1.5Kg/cm^2〜 Claim 1〜
The method according to any of paragraph 6. 8. According to any one of claims 1 to 7, the thermoforming resin is an acrylic modified PVC resin, the temperature of the laminate is 110°C or higher, and the mold temperature is 10 to 70°C. the method of. 9. According to any one of claims 1 to 7, wherein the thermoforming resin is a modified olefin resin, the temperature of the laminate is 140°C or higher, and the mold temperature is 30 to 120°C. Method. 10. The thermoforming resin is an aromatic polyether resin, the temperature of the laminate is 150°C or higher, and the mold temperature is 30-13°C.
The method according to any one of claims 1 to 7, wherein the temperature is 0°C.
JP1877686A 1986-01-30 1986-01-30 Method of molding laminated sheet for thermoforming Granted JPS62176823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1877686A JPS62176823A (en) 1986-01-30 1986-01-30 Method of molding laminated sheet for thermoforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1877686A JPS62176823A (en) 1986-01-30 1986-01-30 Method of molding laminated sheet for thermoforming

Publications (2)

Publication Number Publication Date
JPS62176823A true JPS62176823A (en) 1987-08-03
JPH0144494B2 JPH0144494B2 (en) 1989-09-28

Family

ID=11981034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1877686A Granted JPS62176823A (en) 1986-01-30 1986-01-30 Method of molding laminated sheet for thermoforming

Country Status (1)

Country Link
JP (1) JPS62176823A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869412A (en) * 1991-08-22 1999-02-09 Minnesota Mining & Manufacturing Co. Metal fibermat/polymer composite
JP2008135713A (en) * 2006-10-31 2008-06-12 Sony Chemical & Information Device Corp Method of producing laminate-type soft magnetic sheet
JP2009267237A (en) * 2008-04-28 2009-11-12 Sony Chemical & Information Device Corp Manufacturing method of laminated soft magnetic sheet
JP2012151481A (en) * 2012-02-17 2012-08-09 Sony Chemical & Information Device Corp Method of manufacturing laminated soft magnetic sheet
JP2013046965A (en) * 2011-08-29 2013-03-07 Mitsubishi Gas Chemical Co Inc Mold for pressure forming, pressure forming method, and molding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869412A (en) * 1991-08-22 1999-02-09 Minnesota Mining & Manufacturing Co. Metal fibermat/polymer composite
JP2008135713A (en) * 2006-10-31 2008-06-12 Sony Chemical & Information Device Corp Method of producing laminate-type soft magnetic sheet
JP2009267237A (en) * 2008-04-28 2009-11-12 Sony Chemical & Information Device Corp Manufacturing method of laminated soft magnetic sheet
JP2013046965A (en) * 2011-08-29 2013-03-07 Mitsubishi Gas Chemical Co Inc Mold for pressure forming, pressure forming method, and molding
JP2012151481A (en) * 2012-02-17 2012-08-09 Sony Chemical & Information Device Corp Method of manufacturing laminated soft magnetic sheet

Also Published As

Publication number Publication date
JPH0144494B2 (en) 1989-09-28

Similar Documents

Publication Publication Date Title
US4671985A (en) Thin, deformable composite laminate
JPH05147981A (en) Middle layer for laminated glass
JPS60206304A (en) Production of parabolic antenna reflector
JPH06270325A (en) Metal-polypropylene-metal laminates and method for making shaped sheet article of such laminates
JPS62176823A (en) Method of molding laminated sheet for thermoforming
US4505969A (en) Oriented polypropylene with linear low density poly-ethylene copolymer coating
GB1392560A (en) Laminations
JP2000094575A (en) Metal thin film laminate for molding
JP5576154B2 (en) Aluminum material / foamed resin layer composite and method for producing the same
US3704193A (en) Method of strain-hardening foamed metal
JP4269007B2 (en) A laminated composite plate in which a stainless steel plate and a foamed resin core material are laminated, and a method for manufacturing the same.
JPS58179582A (en) Production of aluminum coated steel plate
JPH07297592A (en) Cold compression molding electromagnetic shielding sheet
JP3044516B2 (en) Metal plate molding method
JPH06330379A (en) Method for conditioning electrolytic copper foil surface
JP3039881B2 (en) Lamination for molding
JP2647155B2 (en) Manufacturing method of laminated cement board
JPH01125221A (en) Metallic decorative panel
JPS6266928A (en) Laminated board for thermoforming and molding method thereof
JPH0221936B2 (en)
JPH03112656A (en) Manufacture of one side copper-spread laminated board and manufacture of one side printed-wiring board employing laminated board thereof
JPS6032997Y2 (en) Composite with embossed pattern
JPS645540B2 (en)
JPS5813248B2 (en) How to pass
JPS6256142A (en) Manufacture of composite laminated steel plate