JPS626537Y2 - - Google Patents

Info

Publication number
JPS626537Y2
JPS626537Y2 JP13500882U JP13500882U JPS626537Y2 JP S626537 Y2 JPS626537 Y2 JP S626537Y2 JP 13500882 U JP13500882 U JP 13500882U JP 13500882 U JP13500882 U JP 13500882U JP S626537 Y2 JPS626537 Y2 JP S626537Y2
Authority
JP
Japan
Prior art keywords
magnet
magnetic flux
conversion element
flux density
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13500882U
Other languages
Japanese (ja)
Other versions
JPS5940856U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13500882U priority Critical patent/JPS5940856U/en
Publication of JPS5940856U publication Critical patent/JPS5940856U/en
Application granted granted Critical
Publication of JPS626537Y2 publication Critical patent/JPS626537Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、無接点式の回転数検出器に関し、特
に磁電変換素子の個々のスイツチング動作点のバ
ラツキに対し、多極着磁のリング状磁石の回転に
よる交番磁束密度のレベルを合わせることを可能
にしたものに関する。
[Detailed description of the invention] [Field of industrial application] The present invention relates to a non-contact type rotation speed detector, and in particular, the present invention is directed to a multi-pole magnetized ring-shaped This relates to something that makes it possible to match the level of alternating magnetic flux density by rotating a magnet.

〔従来の技術と問題点〕[Conventional technology and problems]

従来この種の回転数検出器は第1図と第2図に
示すように、回転軸1に非磁性材の回転体2が固
定され、この回転体2の一側に多極着磁のリング
状磁石3が埋設してある。また、リング状磁石3
に対向する位置に合成樹脂製の円筒ブロツク4が
配置され、円筒ブロツク4のリング状磁石側にホ
ールIC等の磁電変換素子5が固定されている。
ここで、磁電変換素子5の出力電圧と検出する磁
束密度との関係は、一般的に第3図Aに示すよう
なヒステリシス特性を有する。そして、Bに示す
多極着磁のリング状磁石3の回転による交番磁束
密度を検出し、出力としてCに示す矩形パルスを
得ることにより、回転数及び回転速度を求めてい
る。
In the conventional rotational speed detector of this type, as shown in Figs. 1 and 2, a rotating body 2 made of a non-magnetic material is fixed to a rotating shaft 1, and a ring-shaped magnet 3 with multiple magnetized poles is embedded in one side of the rotating body 2.
A cylindrical block 4 made of synthetic resin is disposed at a position facing the ring-shaped magnet, and a magnetoelectric conversion element 5 such as a Hall IC is fixed to the ring-shaped magnet side of the cylindrical block 4.
Here, the relationship between the output voltage of the magnetoelectric conversion element 5 and the detected magnetic flux density generally has a hysteresis characteristic as shown in Fig. 3A. The alternating magnetic flux density caused by the rotation of the multi-pole magnetized ring-shaped magnet 3 shown in B is detected, and a rectangular pulse shown in C is obtained as an output to determine the number of rotations and the rotation speed.

ところで、磁電変換素子5は製品個々のバラツ
キにより磁束密度におけるスイツチングの動作点
が異つているものが多い。そのため従来は磁電変
換素子5個々のバラツキに対し、多極着磁のリン
グ状磁石3の回転による交番磁束密度のレベルに
合つた製品を選別して組合わせているが、これに
より製品選別の工数が増して、価格の上昇につな
がつていた。また、磁電変換素子5個々のスイツ
チング動作点に合わせるため、磁電変換素子5と
多極着磁のリング状磁石3とギヤツプLを細かく
調整しなければならず、この調整に非常に高度の
技術を必要としていた。
Incidentally, many of the magnetoelectric conversion elements 5 have different switching operating points in terms of magnetic flux density due to variations among individual products. Therefore, conventionally, products that match the level of alternating magnetic flux density due to the rotation of the multi-pole magnetized ring-shaped magnet 3 are selected and combined in response to individual variations in the magnetoelectric conversion elements 5, but this reduces the man-hours of product selection. was increasing, leading to a rise in prices. In addition, in order to match the switching operating point of each magnetoelectric transducer 5, the magnetoelectric transducer 5, the multi-pole magnetized ring magnet 3, and the gap L must be finely adjusted, and this adjustment requires very advanced technology. I needed it.

尚この種の無接点式回転数検出器として、従来
例えば実開昭54−88428号公報の先行技術があ
り、ここにおいては固定側の磁電変換素子に磁石
が組付けられ、回転体には磁気回路を構成する誘
電子が設けられる構造になつているが、この場合
でも磁電変換素子のスイツチング動作点及び磁石
の磁束密度が固定化されているため、上述のよう
な問題を生じる。
As for this type of non-contact type rotation speed detector, there is a prior art, for example, in Japanese Utility Model Application Publication No. 54-88428, in which a magnet is attached to the magneto-electric transducer on the fixed side, and the rotating body is magnetically attached. Although the structure is such that an inductor that constitutes the circuit is provided, even in this case, the switching operating point of the magnetoelectric transducer and the magnetic flux density of the magnet are fixed, so the above-mentioned problems occur.

本考案はこのような事情に鑑み、多極着磁のリ
ング状磁石が磁電変換素子に及ぼす磁界の磁束密
度を調整可能にして、磁電変換素子の個々のバラ
ツキに対し製別選別、リング状磁石とのギヤツプ
の調整を不要にするようにした回転数検出器を提
供することを目的とする。
In view of these circumstances, the present invention makes it possible to adjust the magnetic flux density of the magnetic field that a multi-pole magnetized ring-shaped magnet exerts on the magneto-electric transducer. An object of the present invention is to provide a rotation speed detector that eliminates the need for gap adjustment between the rotation speed and the rotation speed.

〔問題点を解決するための手段〕[Means for solving problems]

この目的のため本考案による回転数検出器は、
磁電変換素子の多極着磁リング状磁石と反対の側
に単極磁石を移動可能に付加して、リング状磁石
の磁電変換素子に及ぼす磁界を調整することで、
磁電変換素子の特性のバラツキに対しリング状磁
石の交番磁束密度の波形を合致させ得るようにし
たことを特徴とするものである。
For this purpose, the rotation speed detector according to the present invention is
By movably adding a unipolar magnet to the side opposite to the multipolar magnetized ring-shaped magnet of the magneto-electric conversion element and adjusting the magnetic field exerted on the magneto-electric conversion element of the ring-shaped magnet,
The present invention is characterized in that the waveform of the alternating magnetic flux density of the ring-shaped magnet can be made to match the variation in the characteristics of the magnetoelectric conversion element.

〔実施例〕〔Example〕

以下、図面を参照して本考案の一実施例を具体
的に説明すると、第4図において、回転軸1、非
磁性の回転体2、多極着磁のリング状磁石3、非
磁性の円筒ブロツク4、磁電変換素子5は第1図
及び第2図と同様に構成されており、かかる円筒
ブロツク4において磁電変換素子5の裏側、即ち
リング状磁石3と反対の側に単極磁石6が設置さ
れる。単極磁石6はリング状磁石3から磁電変換
素子5へ及ぼす磁界の磁束密度を調整し得るよう
に、ねじ7により円筒ブロツク4に螺着されて、
磁電変換素子5との距離Mが可変にされ、単極磁
石6の端部には調整時に工具を差込むための溝8
が形成してある。
An embodiment of the present invention will be described in detail below with reference to the drawings. In Fig. 4, a rotating shaft 1, a non-magnetic rotating body 2, a multi-pole magnetized ring-shaped magnet 3, a non-magnetic cylindrical block 4, and a magneto-electric conversion element 5 are configured in the same manner as in Figs. 1 and 2, and a monopole magnet 6 is installed on the back side of the magneto-electric conversion element 5 in the cylindrical block 4, i.e., on the opposite side to the ring-shaped magnet 3. The monopole magnet 6 is screwed into the cylindrical block 4 by a screw 7 so that the magnetic flux density of the magnetic field exerted from the ring-shaped magnet 3 on the magneto-electric conversion element 5 can be adjusted.
The distance M between the magnetoelectric conversion element 5 and the magnet is variable, and a groove 8 is provided at the end of the monopole magnet 6 for inserting a tool during adjustment.
is formed.

更に第5図に示すように、多極着磁のリング状
磁石3に対し磁電変換素子5がN極界でスイツチ
ング動作する場合は、単極磁石6のS極を対向さ
せて磁電変換素子5で検知する磁束密度量を増加
させ、あたかも多極着磁のリング状磁石3の交番
磁束密度の波形レベルが上つた状態にする。従つ
て、磁電変換素子5がS磁界でスイツチング動作
する場合は、単極磁石6のN極を対向するように
する。
Furthermore, as shown in FIG. 5, when the magnetoelectric transducer 5 performs switching operation in the N-pole field with respect to the multi-pole magnetized ring-shaped magnet 3, the S pole of the unipolar magnet 6 is opposed to the magnetoelectric transducer 5. The amount of magnetic flux density detected is increased to make it appear as if the waveform level of the alternating magnetic flux density of the multi-pole magnetized ring-shaped magnet 3 has increased. Therefore, when the magnetoelectric conversion element 5 performs a switching operation in the S magnetic field, the N poles of the unipolar magnets 6 are arranged to face each other.

このように構成されることから、磁電変換素子
5が検知する磁束密度は多極着磁のリング状磁石
3による磁界の磁束密度Byと、円筒ブロツク4
の単極磁石6による磁界の磁束密度Bxになる。
一般に磁束密度はベクトル量であり、加法の定義
が成り立つので、磁電変換素子5で検知する磁束
密度Bzは、 Bz=Bx+By である。ここで、磁束密度Byは多極着磁のリン
グ状磁石3の回転角θの関数であり、このためそ
の回転により発生する交番磁束密度波形である。
一方、磁束密度Bxはは磁電変換素子5と単極磁
石6との距離Mを可変にすることにより、任意に
設定することができる。従つて、磁電変換素子5
で検知される磁束密度は、リング状磁石3の交番
磁束密度の波形が磁電変換素子5と単極磁石6の
距離に応じた磁束密度分だけレベルアツプしたも
のになる。
With this configuration, the magnetic flux density detected by the magnetoelectric conversion element 5 is determined by the magnetic flux density By of the magnetic field produced by the multi-pole magnetized ring magnet 3 and the magnetic flux density By of the magnetic field produced by the multi-pole magnetized ring magnet 3.
The magnetic flux density of the magnetic field due to the single-pole magnet 6 becomes Bx.
Generally, the magnetic flux density is a vector quantity, and the definition of addition holds true, so the magnetic flux density Bz detected by the magnetoelectric conversion element 5 is Bz=Bx+By. Here, the magnetic flux density By is a function of the rotation angle θ of the multi-pole magnetized ring-shaped magnet 3, and is therefore an alternating magnetic flux density waveform generated by its rotation.
On the other hand, the magnetic flux density Bx can be arbitrarily set by varying the distance M between the magnetoelectric conversion element 5 and the unipolar magnet 6. Therefore, the magnetoelectric conversion element 5
The detected magnetic flux density is obtained by increasing the level of the waveform of the alternating magnetic flux density of the ring-shaped magnet 3 by the magnetic flux density corresponding to the distance between the magnetoelectric conversion element 5 and the unipolar magnet 6.

そこで、磁電変換素子5のスイツチング動作の
特性が第6図のイのように低い場合は、リング状
磁石3の交番磁束密度の波形もハのようにイと同
じレベルのもので良く、ここでは単極磁石6を遠
ざけそれによる磁束密度の調整は不要である。し
かるに、磁電変換素子5の特性がロのようにスイ
ツチング動作点の高いものである場合は、リング
状磁石3の交番磁束密度が上述のハのように低い
レベルであるとスイツチング動作しない。そのた
め、単極磁石6において磁電変換素子5との距離
Mを縮め、磁電変換素子5で検知される磁束密度
量を相対的に増加させ、交番磁束密度の波形がロ
の特性と同じレベルのニの位置になるように引上
げることで、マツチングしてスイツチ動作を行う
ことが可能になる。
Therefore, if the characteristics of the switching operation of the magnetoelectric conversion element 5 are low as shown in FIG. It is not necessary to move the unipolar magnet 6 away and thereby adjust the magnetic flux density. However, if the characteristics of the magnetoelectric conversion element 5 are such that the switching operation point is high as in (b), the switching operation will not occur if the alternating magnetic flux density of the ring-shaped magnet 3 is at a low level as in (c) above. Therefore, the distance M between the unipolar magnet 6 and the magnetoelectric transducer 5 is shortened, the amount of magnetic flux density detected by the magnetoelectric transducer 5 is relatively increased, and the waveform of the alternating magnetic flux density is at the same level as the characteristic in (b). By pulling it up to the position, it becomes possible to match and perform a switch operation.

〔考案の効果〕[Effect of idea]

以上の説明から明らかなように本考案による
と、多極着磁のリング状磁石3の交番磁束密度に
対し、磁電変換素子5で検知される磁束密度を調
整して両者のマツチングをとることができるの
で、磁電変換素子5の特性にバラツキがあつて
も、製品選別が不要で組立て工数を節減すること
ができ、且つ磁電変換素子5とリング状磁石3の
ギヤツプの調整が不要で取付けが簡単になる。磁
電変換素子5の裏側に単極磁石6を移動可能に設
け、リング状磁石3の磁界を利用して磁束密度の
調整を行うので、構造が簡単で動作も確実であ
る。
As is clear from the above description, according to the present invention, it is possible to match the alternating magnetic flux density of the multipolar magnetized ring-shaped magnet 3 by adjusting the magnetic flux density detected by the magnetoelectric conversion element 5. Therefore, even if there are variations in the characteristics of the magnetoelectric transducer 5, there is no need for product sorting and assembly man-hours can be reduced, and there is no need to adjust the gap between the magnetoelectric transducer 5 and the ring-shaped magnet 3, making installation easy. become. A unipolar magnet 6 is movably provided on the back side of the magnetoelectric conversion element 5, and the magnetic flux density is adjusted using the magnetic field of the ring-shaped magnet 3, so the structure is simple and the operation is reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回転数検出器の側断面図、第2
図は同検出器の平面図、第3図のAは磁電変換素
子のヒステリシス特性図、Bは多極着磁の回転に
よる交番磁束密度波形図、Cは磁電変換素子Aで
Bの交番磁束密度を検出した時の矩形パルス図、
第4図は本考案の実施例の側断面図、第5図は本
考案の実施例の磁石間の磁束密度分布を示す図、
第6図は磁電変換素子のバラツキによる多極磁石
の交番磁束密度波形の調整解設図で、イ、ロは磁
電変換素子、ハは正規な設定位置関係にある時の
多極磁石の交番磁束密度波形図、ニは本考案によ
る作用を用いて多極磁石の交番磁束密度波形を移
動させた時の波形図である。 1……回転軸、2……回転体、3……リング状
磁石、4……円筒ブロツク、5……磁電変換素
子、6……単極磁石、7……ねじ、8……溝。
Figure 1 is a side sectional view of a conventional rotation speed detector;
The figure is a plan view of the same detector, A in Figure 3 is a hysteresis characteristic diagram of the magnetoelectric conversion element, B is an alternating magnetic flux density waveform diagram due to rotation of multipolar magnetization, and C is an alternating magnetic flux density of B in magnetoelectric conversion element A. Rectangular pulse diagram when detecting
FIG. 4 is a side sectional view of the embodiment of the present invention, and FIG. 5 is a diagram showing the magnetic flux density distribution between the magnets of the embodiment of the present invention.
Figure 6 is an illustration of the adjustment of the alternating magnetic flux density waveform of the multipolar magnet due to variations in the magnetoelectric transducer, where A and B are the magnetoelectric transducer elements, and C is the alternating magnetic flux of the multipolar magnet when the magnetoelectric transducer is in the normal setting positional relationship. Density waveform diagram D is a waveform diagram when the alternating magnetic flux density waveform of a multipolar magnet is moved using the action according to the present invention. DESCRIPTION OF SYMBOLS 1... Rotating shaft, 2... Rotating body, 3... Ring magnet, 4... Cylindrical block, 5... Magnetoelectric conversion element, 6... Unipolar magnet, 7... Screw, 8... Groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転軸に固定した非磁性回転体に多極着磁のリ
ング状磁石を取付け、該リング状磁石に固定側で
磁電変換素子を近接して対向設置するものにおい
て、上記磁電変換素子を挾んでリング状磁石と反
対の側に単極磁石を、上記磁電変換素子との距離
を調整可能に設けたことを特徴とする回転数検出
器。
A multi-pole magnetized ring-shaped magnet is attached to a non-magnetic rotating body fixed to a rotating shaft, and a magneto-electric conversion element is placed close to and facing the fixed side of the ring-shaped magnet, with the magneto-electric conversion element being sandwiched between the rings. A rotation speed detector comprising a unipolar magnet on the opposite side of the shaped magnet, and a distance from the magnetoelectric conversion element to the magnetoelectric conversion element can be adjusted.
JP13500882U 1982-09-06 1982-09-06 rotation speed detector Granted JPS5940856U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13500882U JPS5940856U (en) 1982-09-06 1982-09-06 rotation speed detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13500882U JPS5940856U (en) 1982-09-06 1982-09-06 rotation speed detector

Publications (2)

Publication Number Publication Date
JPS5940856U JPS5940856U (en) 1984-03-15
JPS626537Y2 true JPS626537Y2 (en) 1987-02-14

Family

ID=30304018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13500882U Granted JPS5940856U (en) 1982-09-06 1982-09-06 rotation speed detector

Country Status (1)

Country Link
JP (1) JPS5940856U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228918A (en) * 1984-04-26 1985-11-14 Fanuc Ltd Magnetic sensor
JPH10293042A (en) * 1997-04-16 1998-11-04 Yaskawa Electric Corp Magnetic encoder device
JP2006098159A (en) * 2004-09-29 2006-04-13 Ntn Corp Magnetic encoder and wheel bearing device provided with it
KR102656078B1 (en) * 2016-07-19 2024-04-11 엘지이노텍 주식회사 Apparatus for sensing

Also Published As

Publication number Publication date
JPS5940856U (en) 1984-03-15

Similar Documents

Publication Publication Date Title
EP0611952B1 (en) Position detector
US6232771B1 (en) Device for contactless measurement of angle of rotation of linear motion between rotor and stator composed of a plurality of parts
US4217508A (en) DC motor
JP6382503B2 (en) Magnetizing apparatus and magnetizing method for magnet for magnetic encoder
EP0059763B1 (en) D.c. generator type non-contact speed sensing device
EP0651258A2 (en) DC current sensor
JPS626537Y2 (en)
JPS5917764B2 (en) Rotation detection device
JPH116744A (en) Encoder device
JPH04282417A (en) Magnetic sensor
JPS6176911A (en) Magnetic encoder
KR20060123536A (en) Device for determination of the angular position of a rotating body
EP0192812B1 (en) Position sensing system
US3711724A (en) Speed detecting device
US3596189A (en) Noncontact shaft synchronizer
JP3170806B2 (en) Magnetoelectric converter
JPS6139592A (en) Magnetic encoder
SU1580452A1 (en) Device for controlling speed of displacement of electroconductive objects
JPH04197071A (en) Dc brushless motor
JPS605641Y2 (en) non-contact pulse generator
JP2523654Y2 (en) Magnetoelectric conversion rotation angle detector
JPS562566A (en) Detecting method for rotation of motor
Campbell Magnetic rotary position encoders with magneto-resistive sensors
JPH08233841A (en) Rotation sensor
JPS5839257A (en) Detecting device for speed of revolution