JPS6264922A - Minute area light analyser - Google Patents

Minute area light analyser

Info

Publication number
JPS6264922A
JPS6264922A JP20440185A JP20440185A JPS6264922A JP S6264922 A JPS6264922 A JP S6264922A JP 20440185 A JP20440185 A JP 20440185A JP 20440185 A JP20440185 A JP 20440185A JP S6264922 A JPS6264922 A JP S6264922A
Authority
JP
Japan
Prior art keywords
light
image
slit
concave mirror
spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20440185A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博 山口
Osamu Hirao
修 平尾
Takashi Yoshida
孝 吉田
Sayaka Sudou
須藤 さやか
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20440185A priority Critical patent/JPS6264922A/en
Publication of JPS6264922A publication Critical patent/JPS6264922A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To make it possible to instantaneously observe the whole of a light absorbing image while obtaining high spatial resolving power, by imaging the intensity of infrared rays obtained by an infrared detector as an infrared absorbing image. CONSTITUTION:The light from a light source 1 is reflected by a concave mirror 2 to be converted to parallel luminous flux which is, in turn, allowed to irradiate a substance 3 to be inspected while the diameter thereof is changed by a slit 10 if necessary. Next, the light transmitted through the substance 3 to be inspected is condensed by a concave mirror 4 and passed through a slit 8 to be formed into an enlarged image on a screen 11. Herein, the screen 11 takes a structure opening and closing up and down or left and right like a slide. By this method, the transmitted light is formed into an image on the slit 13 placed immediately behind the screen 11. Next, the light passed through the slit 13 is formed into an image on the slit of a spectrometer 6 by a concave mirror 5 and subjected to light absorbing analysis by the spectrometer 6. Further, by making the scanning of the concave mirror 2 or 4 or a specimen driving apparatus 15 synchronous to the intensity measured value of the light with a specific wavelength spectrally diffracted by the spectrometer 6, an absorbing image with a specific wavelength can be imaged by an imaging apparatus 12.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は微小領域光線分析計に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a micro area optical spectrometer.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

赤外線などの光吸収を利用し、半導体部品をはじめ、金
属材料やセラミックス材料あるいは有機材料など広範な
部品、および材料を分析する装置が開発されている。そ
れらは、いずれも反射鏡あるいはレンズによって絞り込
んだ一次線で被検物質表面を走査し、透過又は反射した
物質の吸収光を分光装置で分光分析する、いわゆる走査
型分析手法を採っている。その−例を第2図に示す。
BACKGROUND ART Devices have been developed that utilize light absorption such as infrared rays to analyze a wide range of components and materials, including semiconductor components, metal materials, ceramic materials, and organic materials. All of these methods employ a so-called scanning analysis method in which the surface of a test substance is scanned with a primary line narrowed down by a reflecting mirror or lens, and the transmitted or reflected light absorbed by the substance is spectrally analyzed using a spectrometer. An example is shown in FIG.

この方法では、光源(1)から発せられた光を凹面鏡(
2)によって−次光線の光路を変え、被検物質(3)上
に集光する。透過又は反射した被検物質の吸収光を凹面
鏡(4)及び(5)により分光装置(6)に導き、分光
分析する。ここで、被検物質の分析する微小領域を変え
るには光源(1)又は凹面鏡(2)を駆動することによ
り、光源(1)から発せられた光を水平又は垂直方向に
走査すればよい。なお図中(7)は試料台を、(8)は
スリットをそれぞれ示す。
In this method, light emitted from a light source (1) is converted into a concave mirror (
2) changes the optical path of the -order light beam and focuses it on the test substance (3). The transmitted or reflected absorbed light of the test substance is guided by concave mirrors (4) and (5) to a spectrometer (6) for spectroscopic analysis. Here, in order to change the microscopic region of the test substance to be analyzed, the light emitted from the light source (1) may be scanned in the horizontal or vertical direction by driving the light source (1) or the concave mirror (2). Note that (7) in the figure indicates a sample stage, and (8) indicates a slit.

しかしながら第2図の如き従来の分析計では、原理的あ
るいはハード機構上以下のような問題点がある。
However, the conventional analyzer as shown in FIG. 2 has the following problems in terms of principle or hardware mechanism.

(1)−次光線を立体的な被検物質上に集光する際に、
非点収差あるいは色収差を生じやすく、このため光吸収
像の空間分解能が低下する。
(1) When condensing a -dimensional light beam onto a three-dimensional test substance,
Astigmatism or chromatic aberration is likely to occur, which reduces the spatial resolution of the light absorption image.

(2)光吸収像を観察するには、光源、反射伊あるいは
試料を機械的に駆動しなければならず、全体像を瞬時に
観察できない。
(2) To observe a light absorption image, the light source, reflector, or sample must be mechanically driven, and the entire image cannot be observed instantly.

13)−次元線を集光する方式であるため、−次光線の
径を最小に保持する必要があり、分析領域が制限される
13) Since it is a method of condensing -dimensional rays, it is necessary to keep the diameter of the -dimensional rays to a minimum, which limits the analysis area.

〔発明の目的〕[Purpose of the invention]

本発明は以上のような問題点を考慮し、なされtもので
従来装置とは異なる原理を採用すること1てより、光吸
収像の全体像を瞬時に観察でき、しかも窩い空間分解能
を有する微小領域光線分析計を提供することを目的とす
る。
The present invention has been devised in consideration of the above-mentioned problems, and employs a principle different from that of conventional devices.1 By this, the entire image of the light absorption image can be observed instantaneously, and moreover, it has a narrow spatial resolution. The purpose of this invention is to provide a micro-area optical spectrometer.

〔発明の概要〕[Summary of the invention]

″に、源と、光源から発せられた光を平行光束に変碕る
第1の光学手段と、該平行光束が照射する被検物質を設
置した試料台と、被検物質の透過光を結像せしめる第2
の光学手段と、前記結像を映像化せしめ、かつ開閉自在
に設けられたスクリーン又は光検出器と、前記透過光か
らなる光吸収像の特定部を選択するためのスリットと、
前記スリットの透過光を分析する分光装置とを具備した
ことを特徴とする微小領域光線分析計である。
'', a source, a first optical means for converting the light emitted from the light source into a parallel light beam, a sample stage on which a test substance to be irradiated with the parallel light flux is installed, and a sample stage that combines the transmitted light of the test substance. The second image
an optical means, a screen or a photodetector that visualizes the image and is provided so as to be freely openable and closable, and a slit for selecting a specific part of the light absorption image made of the transmitted light;
The present invention is a micro-area light ray analyzer characterized by comprising a spectroscopic device that analyzes the light transmitted through the slit.

また、本発明は前記光検出器として赤外線検出器を2次
元的に配電し、肢赤外線検出器で得た赤外線強度を映像
装置により赤外線吸収像として映像化することにより、
物質の全赤外線吸収像を把握し任意の微小部分を選択し
その部分の赤外線吸収分光分析を行iうことかできるも
のである。
Further, the present invention provides two-dimensional power distribution of an infrared detector as the photodetector, and visualizes the infrared intensity obtained by the limb infrared detector as an infrared absorption image using a video device.
It is possible to grasp the total infrared absorption image of a substance, select any minute portion, and perform infrared absorption spectroscopic analysis of that portion.

すなわち1本発明に係る微小領域光線分析計は結像され
た被検物質の全党吸収像から被検物質の全体像を観察す
る事が容易となり、かつ任意の微小部分を選択しその部
分の光吸収分光分析を行なうことができるものである。
In other words, the micro-area light beam spectrometer according to the present invention makes it easy to observe the entire image of the test substance from the formed all-party absorption image of the test substance, and also to select an arbitrary minute part and analyze that part. It is capable of performing optical absorption spectroscopic analysis.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図にて説明する。第1図は本発明
を実施する構成例でおる。第2図において、(1)は光
源であり、赤外線光源、白色光源等、寺に限定されるも
のではなく、目的に応じ適宜選択すればよい。(2)は
光源(1)から発せられた光を平吋束にかえて被検物質
(3)に照射する第1の光学手:ぐとしての凹面鏡であ
る。α1は平行光束の径をかえ。るスリットであり、こ
れにより試料台(7)に設置された被検物質(3)の分
析領域を任意にかえることヱ・;′ごきこのスリットは
必要に応じ適宜設ける事がて゛きる。被検物ff (3
)を透過した光は、第2の光学11段としての凹面鏡(
4)及びスリット(8)により被検白質の透過光を結像
きせる事ができる。αυは、前;11 A通光からなる
光吸収像を拡大して映像化させ乙ためのスクリーン又は
イメージセンサ−などの光検出器であり、開閉自在に設
けられている。α2は結像した像を映写するTV等の映
像装置であり、赤外線等の可視領域を越える光に対して
有効である。このスクリーン又は映像装置に現われた被
検物質の光吸収像の拡大像により、被検物質の形態又構
造等の全体的な観察ができる。0は前記スクリーン、光
検出器を開いた際に、光吸収像の特定部を選択透過きせ
るスリットであり、このスリット03を通過した光は、
必要に応じ凹面鏡(5)を介して光吸収分析を行うため
の分光装置(6)に導かれる。
An embodiment of the present invention will be explained with reference to FIG. FIG. 1 shows an example of a configuration for implementing the present invention. In FIG. 2, (1) is a light source, which may be an infrared light source, a white light source, etc., but is not limited to temples, and may be appropriately selected depending on the purpose. (2) is a concave mirror as a first optical device that converts the light emitted from the light source (1) into a flat beam and irradiates it onto the test substance (3). α1 changes the diameter of the parallel beam. This slit allows the analysis area of the test substance (3) placed on the sample stage (7) to be changed arbitrarily.' This slit can be provided as appropriate as required. Test object ff (3
), the light passes through the concave mirror (
4) and the slit (8), the transmitted light of the white matter to be examined can be imaged. αυ is a photodetector such as a screen or an image sensor for enlarging and visualizing the light absorption image formed by passing 11 A light, and is provided so as to be openable and closable. α2 is a video device such as a TV that projects a formed image, and is effective against light that exceeds the visible range, such as infrared rays. The enlarged light absorption image of the test substance appearing on this screen or imaging device allows the overall observation of the form, structure, etc. of the test substance. 0 is a slit that selectively transmits a specific part of the light absorption image when the screen or photodetector is opened, and the light passing through this slit 03 is
If necessary, it is guided to a spectroscopic device (6) for performing light absorption analysis via a concave mirror (5).

α着は分光装Rt6)及び試料駆動装置(1つと連結す
ることにより、特定波長の吸収像を映像させるためのT
V等の映像装置である0%定波長の吸収像は物質の組成
あるいは化学結合状態を表わすので、分析しようとする
物質の組成成分あるいは結合子の分布像を知ることがで
きる。
By connecting with the spectroscope Rt6) and the sample drive device (one), the α
Since a 0% constant wavelength absorption image obtained by an imaging device such as V indicates the composition or chemical bonding state of a substance, it is possible to know the distribution image of the compositional components or bonds of the substance to be analyzed.

以下、上記構成からなる本発明実施例の動作について説
明する。
The operation of the embodiment of the present invention having the above configuration will be described below.

光源(1)から発せられた光は第1の光学手段としての
凹面鏡(2)で反射され、平行光束となる。この平行光
束は必要に応じスリン)(1(IKより径がかえられ、
被検物質(3)に照射される。被検物質(3)を透過し
た光は凹面鏡(4)で集光され、スリット(8)を通っ
てスクリーンαυに拡大されて結像される。スクリーン
0υ又は映像装置α2に現われだ物質の光吸収像の拡大
像により、物質の形態又は構造等の全体的な観察ができ
る。スクリーンαυは上下あるいは左右にスライド等の
開閉する構造とする。これによりスクリーンαυの直後
に置かれたスリット0上に透過光が結像する。スリット
0を通つ−た光は、凹面鏡(5)により分光装置(6)
のスリット上に結像し分光装置(6)により光吸収分析
される。凹面鏡(2)又は(4)あるいは試料駆動装置
αつの走査と分光装置(6)で分光された特定の波長の
光の強度測定値を同期させることにより、映像装置*a
’aで特定波長の吸収像を映像させることができる。さ
らに、凹面鏡(2)又は(4)あるいは被検物質(3)
を垂直・水平方向にずらすことによりスクリーン(11
)上の吸収像の位置をかえ、被検物質の任意の微小部分
の光吸収分析をすることができる。スリットα口の口径
は任意に可変できる構造とし、スリット翰と併せて被検
物質の分析領域を任意にかえることができる。凹面鏡(
2) 、 (4) 、 +5+を走査する方法としては
パルスモータが一般的であるが、電磁気を利用する方法
等も可能である。
Light emitted from a light source (1) is reflected by a concave mirror (2) serving as a first optical means, and becomes a parallel beam of light. This parallel light beam can be changed in diameter from 1 (IK) as necessary.
The test substance (3) is irradiated. The light transmitted through the test substance (3) is collected by a concave mirror (4), passes through a slit (8), and is magnified and imaged onto a screen αυ. The enlarged light absorption image of the substance appearing on the screen 0υ or the imaging device α2 allows the overall observation of the form or structure of the substance. The screen αυ has a structure that can be opened and closed by sliding vertically or horizontally. As a result, the transmitted light forms an image on the slit 0 placed immediately after the screen αυ. The light passing through slit 0 is transferred to a spectrometer (6) by a concave mirror (5).
An image is formed on the slit of the light beam, and the light absorption is analyzed by a spectrometer (6). The imaging device*a
It is possible to image an absorption image of a specific wavelength using 'a'. Furthermore, concave mirror (2) or (4) or test substance (3)
By shifting the screen vertically and horizontally (11
) By changing the position of the absorption image above, it is possible to perform optical absorption analysis of any minute part of the test substance. The diameter of the slit α can be arbitrarily changed, and together with the slit holder, the analysis area of the test substance can be changed arbitrarily. concave mirror(
2), (4), +5+ Although a pulse motor is generally used as a method for scanning, a method using electromagnetism is also possible.

〔発明の効果〕〔Effect of the invention〕

本発明に係る微小領域光線分析計は、原理・機能上下記
利点を有している。
The micro area light spectrometer according to the present invention has the following advantages in terms of principle and function.

(1)被検物質上で結像する方式ではないので1色収差
等の収差が少なく空間分解能が向上する。
(1) Since the method does not form an image on the test substance, there are few aberrations such as monochromatic aberration, and the spatial resolution is improved.

(2)光吸収像を瞬時に観察でき、被検物質の形態又は
構造の観察が極めて容易にできる。
(2) A light absorption image can be observed instantaneously, and the morphology or structure of the test substance can be observed extremely easily.

【図面の簡単な説明】[Brief explanation of the drawing]

3111図は本発明実施例の構成説明図、第2図は従来
例の構成説明図である。 1・・・光源、2,4.5・・・凹面鏡、3・・・被検
物質、10.8.13・・・スリット、6・・・分光装
置、7・・・試料台、11・・・スクリーン、12.1
3・・・映像装置。 代理人 弁理士 則 近 憲 梧 同    竹 花 喜久男 第1図 第2図
FIG. 3111 is an explanatory diagram of the configuration of the embodiment of the present invention, and FIG. 2 is an explanatory diagram of the configuration of the conventional example. DESCRIPTION OF SYMBOLS 1... Light source, 2, 4.5... Concave mirror, 3... Test substance, 10.8.13... Slit, 6... Spectrometer, 7... Sample stand, 11... ...Screen, 12.1
3...Video device. Agent Patent Attorney Ken Nori Chika Kikuo Takehana Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)光源と、光源から発せられた光を平行光束に変え
る第1の光学手段と、該平光束が照射する被検物質を設
置した試料台と、被検物質の透過光を結像せしめる第2
の光学手段と、前記結像を映像化せしめ、かつ開閉自在
に設けられたスクリーン又は光検出器と、前記透過光か
らなる光吸収像の特定部を選択するためのスリットと前
記スリットの透過光を分析する分光装置とを具備したこ
とを特徴とする微小領域光線分析計
(1) A light source, a first optical means that converts the light emitted from the light source into a parallel beam of light, a sample stage on which a test substance to be irradiated with the flat light beam is installed, and the light transmitted through the test substance is formed into an image. Second
an optical means for visualizing the image, a screen or a photodetector provided to be openable and closable, a slit for selecting a specific portion of the light absorption image made of the transmitted light, and the transmitted light of the slit. A micro-area light beam analyzer characterized by comprising a spectrometer for analyzing
(2)前記光検出器として赤外線検出器を2次元的に配
置し、該赤外線検出器で得た赤外線強度を映像装置によ
り赤外線吸収像として映像することを特徴とする特許請
求の範囲第1項記載の微小領域光線分析計
(2) An infrared detector is arranged two-dimensionally as the photodetector, and the infrared intensity obtained by the infrared detector is imaged as an infrared absorption image by an imaging device. Micro area light spectrometer described
JP20440185A 1985-09-18 1985-09-18 Minute area light analyser Pending JPS6264922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20440185A JPS6264922A (en) 1985-09-18 1985-09-18 Minute area light analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20440185A JPS6264922A (en) 1985-09-18 1985-09-18 Minute area light analyser

Publications (1)

Publication Number Publication Date
JPS6264922A true JPS6264922A (en) 1987-03-24

Family

ID=16489933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20440185A Pending JPS6264922A (en) 1985-09-18 1985-09-18 Minute area light analyser

Country Status (1)

Country Link
JP (1) JPS6264922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226027A (en) * 1989-02-27 1990-09-07 Hamamatsu Photonics Kk Spectroscopic analyser
JPH02226028A (en) * 1989-02-27 1990-09-07 Hamamatsu Photonics Kk Spectroscopic operation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226027A (en) * 1989-02-27 1990-09-07 Hamamatsu Photonics Kk Spectroscopic analyser
JPH02226028A (en) * 1989-02-27 1990-09-07 Hamamatsu Photonics Kk Spectroscopic operation apparatus

Similar Documents

Publication Publication Date Title
US6274871B1 (en) Method and system for performing infrared study on a biological sample
JP4312777B2 (en) Confocal self-interference microscope with side lobes removed
US7330268B2 (en) Spectral imaging apparatus and methodology
US4195930A (en) Optical Raman microprobe with laser
US6548810B2 (en) Scanning confocal electron microscope
US7023954B2 (en) Optical alignment of X-ray microanalyzers
JPH0226177B2 (en)
JP2010525310A (en) Spectral imaging method and system for inspecting sample surface
JP2007071646A (en) Cathode luminescence detector
JPH10206356A (en) Fluorescent x-ray analysis device
JPS6264922A (en) Minute area light analyser
JP2007033207A (en) Fluorescence x-ray three-dimensional analyzer
JPH01270644A (en) Particle analyser
JP3667397B2 (en) Raman spectrometer
JP2001174708A (en) Infrared microscope
JPH0524203Y2 (en)
JPH0427844A (en) Method and apparatus for measuring microscopic absorption distribution of opaque sample
JPH0439657Y2 (en)
JPH06177218A (en) Measuring device for free-carrier life and the like of semiconductor
JP2558202Y2 (en) Microscopic infrared spectrum measurement device
JPS638551A (en) Microscope photoacoustic infrared spectroscopic analysis method and apparatus
JP2865298B2 (en) Optical heterodyne fluorescence microscope
JPH08122500A (en) X-ray image observing apparatus
JP2943236B2 (en) Total reflection absorption spectrum measurement device
JP2003004677A (en) Indicator of location of x-ray irradiation and x-ray spectroscope