JPH0427844A - Method and apparatus for measuring microscopic absorption distribution of opaque sample - Google Patents

Method and apparatus for measuring microscopic absorption distribution of opaque sample

Info

Publication number
JPH0427844A
JPH0427844A JP13306790A JP13306790A JPH0427844A JP H0427844 A JPH0427844 A JP H0427844A JP 13306790 A JP13306790 A JP 13306790A JP 13306790 A JP13306790 A JP 13306790A JP H0427844 A JPH0427844 A JP H0427844A
Authority
JP
Japan
Prior art keywords
light
sample
optical path
optical system
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13306790A
Other languages
Japanese (ja)
Other versions
JPH0721451B2 (en
Inventor
Tsutomu Ichimura
市村 勉
Fumio Inaba
稲場 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP2133067A priority Critical patent/JPH0721451B2/en
Priority to DE69121633T priority patent/DE69121633T2/en
Priority to EP91304605A priority patent/EP0458601B1/en
Priority to US07/704,142 priority patent/US5345306A/en
Publication of JPH0427844A publication Critical patent/JPH0427844A/en
Publication of JPH0721451B2 publication Critical patent/JPH0721451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure the absorption of a sample with high resolving power without picking up the scattering beam and noise from the circumference of a measuring point by a method wherein beam having high directionality is condensed and applied to the minute measuring point of the sample and the diffused beam is converted to parallel beam to be detected by a highly directional detection system. CONSTITUTION:The beam from a laser 1 is applied to the minute point of a sample S by a condensing lens L1 and the beam emitted from said point is condensed by an objective lens L2 to be converted to parallel beam in a predetermined direction and, by detecting only the beam turning toward a highly directional detection system by a detector 2, the scattering beam only from the minute point region corresponding to the zero order component of the diffraction image component of the lens of the sample S can be condensed to be detected. Therefore, when a resolving power detection system 30 is used, the mixing of the unnecessary scattering beam from the circumference of the measuring point can be avoided and the absorption characteristics of the sample can be measured with extremely high resolving power.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は生体試料等の不透明試料のN微吸収分布測定方
法及びそのだめの装置に関し、特に、試料の微小領域の
吸収を正確に測定できるように、不要な散乱光を除去し
分解能を高めた顕微吸収分布測定方法及びそのだめの装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for measuring N minute absorption distribution of an opaque sample such as a biological sample, and in particular, to a method and apparatus for measuring the N minute absorption distribution of an opaque sample such as a biological sample, and in particular to a method that can accurately measure the absorption of a minute region of the sample. The present invention relates to a method for measuring a microscopic absorption distribution, which removes unnecessary scattered light and improves resolution, and an apparatus therefor.

〔従来の技術〕[Conventional technology]

X線の発見以来、生体(人体)内部を外部より損傷を与
えずに観察する技術(非観血的、あるいは無侵襲的計測
法)は、生物学、特に医学の分野で強く求められ発達し
てきた。この技術は電磁波として見ると最も波長の短い
ガンマ線やX線と、最も波長の長いラジオ波が使用され
ている。前者はX線CTとして、後者はNMR−CT 
(Magnetic  Re5onance  rma
ginglMRr)として実用化されている。
Since the discovery of X-rays, technology for observing the inside of living organisms (human bodies) from the outside without causing damage (non-invasive or non-invasive measurement methods) has been strongly sought after and developed in the field of biology, especially medicine. Ta. This technology uses gamma rays and X-rays, which have the shortest wavelengths of electromagnetic waves, and radio waves, which have the longest wavelengths. The former is an X-ray CT, the latter is an NMR-CT
(Magnetic Re5onance rma
ginglMRr).

一方、物理や化学の分野で広く用いられている紫外−可
視一近赤外一赤外の領域の分光学を“丸ごと″生体(i
n  vivo)へ応用する試みは比較的少ない。これ
は光を用いた生体計測、特に吸収や発光の過程を利用す
るものにおいて、もつとも基本的な“定量性”に関し多
くの問題が解決されずに残されているからである。現在
、固体素子を用いた反射スペクトルの測定装置や高感度
TVカメラ等による計測が試みられているが、再現性や
得られた絶対値に対し信頼性が少ないのはこの理由によ
る。
On the other hand, spectroscopy in the ultraviolet-visible, near-infrared, and infrared regions, which is widely used in the fields of physics and chemistry, can be applied to the entire living body (i.e.
There have been relatively few attempts to apply it to n vivo. This is because in biological measurements using light, especially those that utilize absorption and luminescence processes, many problems remain unsolved regarding basic "quantitativeness." At present, attempts are being made to measure reflection spectra using solid-state devices, high-sensitivity TV cameras, etc., but this is the reason why the reproducibility and reliability of the obtained absolute values is low.

生体組織のような散乱体に光を照射した際、180°向
かい合わせで受光すればある程度直進光を取り出すこと
ができるが、今のところ、その空間分解能はあまり良い
とはいえない。
When light is irradiated onto a scattering object such as biological tissue, it is possible to extract a certain amount of straight light if the light is received 180 degrees facing the object, but at present the spatial resolution is not very good.

X線と光とでの空間分離能の差は今のところ埋めること
はできない。しかしながら光、特に近赤外光を用いると
、血液中のヘモグロビンから組織酸素濃度のイメージン
グができるはずである。これらは他のNMR−CTやX
線CTと異なった情報を与えてくれるであろう。
The difference in spatial resolution between X-rays and light cannot currently be bridged. However, using light, particularly near-infrared light, it should be possible to image tissue oxygen levels from hemoglobin in the blood. These are other NMR-CT and
It will give different information than line CT.

3〜5cmの厚さの組織ならば、われわれは透過してき
た光を検出することができる。このことは“光−レント
ゲン写真”を診断に使えることを意味する。女憧の乳房
は組織が比較的均一であり光が透過しやすく、またその
形状から透過光の検出(厚さ二〜3cm程度)が容易で
あり、古くから乳ガンの診断に、Diaphanogr
aphy (Lightscanning)という名で
用いられてきた。
If the tissue is 3 to 5 cm thick, we can detect the light that passes through it. This means that "optical radiography" can be used for diagnosis. The tissue of the female breast is relatively uniform, allowing light to easily pass through it, and its shape makes it easy to detect transmitted light (approximately 2 to 3 cm thick).
It has been used under the name aphy (Lightscanning).

このような状況の下で、本発明者は、特願平1−628
98号、特願平1−250034号、特願平2−776
90号等において、散乱光に混入している平面波を分離
して取り出し、観察するには、平面波のフランフオーフ
ァ回折像(エアリ−ディスク)00次スペクトル(エア
リ−ディスクの第1暗輪内の部分が対応する。)のみを
観察するようにすればよく、このようにすることによっ
て散乱成分を殆ど除くことができることを示した。
Under these circumstances, the present inventor filed Japanese Patent Application No. 1-628.
No. 98, Japanese Patent Application No. 1-250034, Japanese Patent Application No. 2-776
No. 90, etc., in order to separate and extract the plane wave mixed in the scattered light and observe it, the 00th order spectrum of the Framphoffer diffraction image (Airy disk) of the plane wave (inside the first dark ring of the Airy disk) is used. It is sufficient to observe only the corresponding parts), and it was shown that by doing this, it is possible to almost eliminate the scattered components.

そして、このような観察を実現する高指向性光学系の1
つとして、第16図のように相互に離れた2つのピンホ
ールP l、 P xからなる光学系を提案した。この
光学系は、ピンホールP、を通して0次光を検出器23
で検出するものである。また、第17図に示すように、
直線状の細長い中空のガラス繊維35からなっており、
その内壁面には光吸収材、例えばカーボン等の吸収材3
5が塗布されている高指向性光学系を提案した。さらに
、第18図から第25図に示すような、対物レンズOb
とその焦点面に配置した対物レンズobによるフランフ
ォーファ回折の0次の回折像のみを通過させるピンホー
ルPとからなる高指向性光学系(第18図)、屈折率分
布レンズGLとその一端の焦点面に配置した同様なピン
ホールPとからなる高指向性光学系(第19図)、ピン
ホールPの代わりにそれと同様な作用をする光ファイバ
ーSMを配置した高指向性光学系(第20図、第21図
)、これらの高指向性光学系のピンホールP又は光ファ
イバーSMの出射側に、入射側の対物レンズOblと同
様の対物レンズOb2を配置した高指向性光学系(第2
2図、第24図))、入射側の屈折率分布レンズGLI
と同様の屈折率分布レンズGL2を配置した高指向性光
学系(第23図、第25図)等を提案した。
One of the highly directional optical systems that realizes this type of observation is
As one example, we proposed an optical system consisting of two pinholes P l and P x separated from each other as shown in Fig. 16. This optical system passes the zero-order light through the pinhole P to the detector 23.
It is detected by Additionally, as shown in Figure 17,
It is made of straight, elongated, hollow glass fiber 35,
The inner wall surface has a light absorbing material, for example an absorbing material 3 such as carbon.
We proposed a highly directional optical system coated with 5. Furthermore, as shown in FIGS. 18 to 25, an objective lens Ob
A highly directional optical system (Fig. 18) consisting of a pinhole P that allows only the zero-order diffraction image of Franphofer diffraction by an objective lens ob placed on its focal plane to pass through, a gradient index lens GL, and one end thereof. A highly directional optical system (Fig. 19) consisting of a similar pinhole P placed in the focal plane of the pinhole P, and a highly directional optical system (Fig. 21), a highly directional optical system (second
Figure 2, Figure 24)) Gradient index lens GLI on the entrance side
We have proposed a highly directional optical system (Figs. 23 and 25) in which a gradient index lens GL2 similar to the above is arranged.

ところで、従来、散乱を伴う試料の顕微吸収分布を測定
するには、例えば第26図に示したように、広範囲のス
ペクトル成分の光を発光する光源からの光をフーリエ分
光用の干渉計を通して透過型と反射型の切替鏡により透
過光路又は落射光路に切り換える。透過型の場合、コン
デンサーレンズの作用をする下側のカセグレイン系によ
り、照明光を試料台上の試料の微小点に絞って当て、そ
の点を透過した光及びその点で前方散乱を受けた光を対
物レンズの作用をする上側のカセグレイン系によりアパ
ーチャー上に結像し、アパーチャーを通過した光を検出
器に入射させて、その点の吸収特性を測定する。そして
、試料台をX−Y方向に走査して同様な測定を繰り返す
ことにより、試料の透過顕微吸収分布を測定することが
できる。
By the way, conventionally, in order to measure the microscopic absorption distribution of a sample that involves scattering, for example, as shown in Figure 26, light from a light source that emits light with a wide range of spectral components is transmitted through an interferometer for Fourier spectroscopy. The optical path is switched to a transmitted optical path or an incident optical path using a switching mirror between a type and a reflective type. In the case of a transmission type, the lower Cassegrain system, which acts as a condenser lens, focuses the illumination light onto a minute point on the sample on the sample stage, and collects the light that passes through that point and the light that is forward scattered at that point. is imaged onto an aperture by an upper Cassegrain system that acts as an objective lens, and the light that passes through the aperture is incident on a detector to measure the absorption characteristics at that point. Then, by scanning the sample stage in the X-Y direction and repeating similar measurements, the transmission microscopic absorption distribution of the sample can be measured.

切替鏡を落射光路に切り換え、上側のカセグレイン系に
より照明光を絞って試料上の点へ当て、その点より後側
に反射散乱された光を同じ上側のカセグレイン系により
アパーチャー上に結像し、同様にして、試料の反射顕微
吸収分布を測定することができる。
The switching mirror is switched to the incident light path, and the upper Cassegrain system focuses the illumination light to a point on the sample, and the light reflected and scattered behind that point is imaged onto the aperture by the same upper Cassegrain system. Similarly, the reflection microscopic absorption distribution of the sample can be measured.

また、微小な部分の吸収スペクトルを調べる方法として
、光学顕微鏡と分光光度計とを組み合せた顕微分光法の
別の従来法として、第27図に示したものがある。光源
lからの光を分光器moで単色光とし、絞り(ピンホー
ル)pを照明する。
Further, as a method for examining the absorption spectrum of a minute portion, there is another conventional method of microspectroscopy that combines an optical microscope and a spectrophotometer, as shown in FIG. 27. Light from a light source l is made into monochromatic light by a spectroscope mo, and a diaphragm (pinhole) p is illuminated.

この絞りpを顕微鏡系の光源とし、照明用顕微鏡m+に
光を通すと、絞りpの縮小された像が試料面Sにできる
。これをもう1個の顕微鏡m2によって拡大し、検出器
dに導く。このとき、絞りの縮小像の位置Sに試料を置
けば、試料の中の局部的な部分だけの吸光度を測定する
ことができる。
When this aperture p is used as the light source of the microscope system and light is passed through the illumination microscope m+, a reduced image of the aperture p is formed on the sample surface S. This is magnified by another microscope m2 and guided to the detector d. At this time, if the sample is placed at the position S of the reduced image of the aperture, the absorbance of only a local part of the sample can be measured.

ところで、従来、散乱を伴う試料の吸収スペクトルを散
乱のない試料と同じ測定法で求めると、散乱による影響
が大きくなり正確な吸収スペクトルは得られない。これ
ら散乱を伴う不透明試料の吸収測定法として、オパール
グラスや積分球等を用いて透過積分減光度を測定する測
定法は知られている(例えば、柴田和雄著「先生物シリ
ーズ分光測定入門」第62〜82頁、昭5116.20
、共立出版■)発行)参照)。
By the way, conventionally, when the absorption spectrum of a sample with scattering is determined by the same measurement method as that of a sample without scattering, the influence of scattering becomes large and an accurate absorption spectrum cannot be obtained. As an absorption measurement method for opaque samples that involves scattering, there is a known measurement method that measures the transmission integrated attenuation using an opal glass or integrating sphere (for example, Kazuo Shibata, "Introduction to Spectroscopic Measurement Series", Vol. pp. 62-82, 1985, 16.20
, Kyoritsu Shuppan ■) Published)).

〔発明が解決しようとする課題〕 ところで、前述したフリーエ分光器を用いた赤外領域の
顕微分光測定法も、回折折子分光器を用いた可視領域の
顕微分光測定法も、散乱を伴う不透明試料に対する対策
をしていないため、これらの試料の測定は誤差が大きく
、信頼できるデータは得られない。すなわち、測定点の
前後を含む周囲から不要な散乱光が混入するたt1正確
な吸収特性を測定することができず、また、対物レンズ
に0次以外のフランフォーファ回折像成分が入ってくる
ため、分解能に限界がある。不透明試料の吸収測定法と
して開発されたオパールグラスや積分球を用いた測定法
と顕微分光測定法を単に結び付けた測定法は、検出信号
光が弱く測定が困難となるため、実用化されない。また
、検出感度が飛躍的に向上されても、オパールグラス法
や積分球を用いた方法はあくまで近似法であるため、反
射光束が大きくなったり、散乱透過光束の波長変化と散
乱反射光束の波長変化が同じであると近似できない試料
では、誤差が大きく使用できない。このように、散乱を
伴う不透明試料の微小な部分の吸収スペイトルは、現在
、適切な測定法がないのが現状である。
[Problems to be Solved by the Invention] By the way, both the above-mentioned microspectrometry method in the infrared region using a Frie spectrometer and the microspectrometry method in the visible region using a diffraction refractometer spectrometer, both involve the use of opaque samples that involve scattering. Because no measures have been taken to prevent this, measurements of these samples have large errors, making it impossible to obtain reliable data. In other words, unnecessary scattered light from the surrounding area including before and after the measurement point mixes in, making it impossible to measure t1 accurate absorption characteristics, and in addition, non-zero-order Franphofer diffraction image components enter the objective lens. Therefore, resolution is limited. Measurement methods that simply combine measurement methods using opal glasses or integrating spheres, which were developed to measure absorption of opaque samples, with microspectrometry methods are not put into practical use because the detection signal light is weak and measurements are difficult. In addition, even if the detection sensitivity is dramatically improved, the opal glass method and the method using an integrating sphere are only approximate methods, so the reflected light flux may increase, and the wavelength of the scattered transmitted light flux may change and the wavelength of the scattered reflected light flux may change. Samples whose changes cannot be approximated as being the same have a large error and cannot be used. As described above, there is currently no suitable method for measuring absorption spectra in minute portions of opaque samples that involve scattering.

本発明はこのような状況に鑑みてなされたものであり、
その目的は、生体組織等の不透明試料の微小領域の吸収
を正確に測定できるように、不要な散乱光を除去し、分
解能を高めた顕微吸収分布測定方法及びそのための装置
を提供することである。
The present invention was made in view of this situation, and
The purpose is to provide a microscopic absorption distribution measurement method that removes unnecessary scattered light and improves resolution so that the absorption of minute regions of opaque samples such as biological tissue can be accurately measured, and an apparatus therefor. .

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の不透明試料の顕微吸収分布
測定方法は、試料の微小な測定点に指向性の高い光を集
光して照射し、測定点から発散する光を平行光に変換し
て、その平行光のみの強度を高指向性検出系を用いて検
出し、かつ、試料を前記集光光に対して相対的に走査し
ながら前記検出操作を繰り返すことにより、試料の吸収
分市特法を測定することを特徴とする方法である。
The method for measuring the microscopic absorption distribution of an opaque sample according to the present invention, which achieves the above object, focuses and irradiates highly directional light onto a minute measurement point on the sample, and converts the light diverging from the measurement point into parallel light. Then, by detecting the intensity of only the parallel light using a highly directional detection system and repeating the detection operation while scanning the sample relative to the focused light, absorption separation of the sample is performed. This method is characterized by measuring a specific method.

この場合、測定点に極近接して集光光のフランフォーフ
ァ回折像成分の0次像の大きさより小さいピンホールを
配置して照明領域を制限するようにすると、より分解能
の高い顕微吸収分布測定が可能となる。
In this case, if you limit the illumination area by placing a pinhole that is smaller than the zero-order image of the Franphofer diffraction image component of the condensed light very close to the measurement point, you can obtain a higher-resolution microscopic absorption distribution. Measurement becomes possible.

さらに、指向性の高い光として可変波長の光を用いるこ
とにより、顕微分光吸収分布測定が可能となる。
Furthermore, by using variable wavelength light as highly directional light, microspectral absorption distribution measurement becomes possible.

また、測定点から検出器に到る光路中に照射光の波長の
光を遮断する励起光カットフィルターを挿入することに
より、試料の顕微蛍光分布測定が可能になる。
Further, by inserting an excitation light cut filter that blocks light at the wavelength of the irradiation light in the optical path from the measurement point to the detector, it becomes possible to measure the microscopic fluorescence distribution of the sample.

また、試料に照射する照射光束の一部を取り出してその
光束強度を検出して参照光強度とし、高指向性検出系を
用いて検出した光強度を試料からの信号光強度として透
過積分減光度を求めるようにすることもできる。
In addition, a part of the irradiation light beam irradiating the sample is extracted and the intensity of the light beam is detected as a reference light intensity, and the light intensity detected using a highly directional detection system is used as the signal light intensity from the sample. It is also possible to ask for

また、このような方法を実施する本発明の不透明試料の
顕微吸収分布測定製蓋の第1のものは、波長変更可能な
単色光源からの光を2分して、方の光路中に入射光の周
波数をシフトさせる周波数シフト手段を設け、他方の光
路中に2個の収束光学系よりなる共焦点光学系を配置し
、共焦点光学系の集光位置に相対的に走査可能な試料を
配置し、周波数シフト手段から射出する指向性の高い光
と試料の測定点から発散され共焦点光学系によって平行
光に変換された光とを合成して同方向に射出させるビー
ム合成手段を設け、ビーム合成手段によって合成された
光を電気信号に変換してシフト周波数に等しい交流成分
のみの強度を検出する検出手段を設けたことを特徴とす
るものである。
In addition, the first lid for microscopic absorption distribution measurement of opaque samples of the present invention, which implements such a method, divides light from a monochromatic light source whose wavelength can be changed into two, and directs the incident light into one optical path. A confocal optical system consisting of two converging optical systems is arranged in the other optical path, and a sample that can be scanned relatively is arranged at the focusing position of the confocal optical system. A beam combining means is provided to combine the highly directional light emitted from the frequency shifting means and the light diverged from the measurement point of the sample and converted into parallel light by the confocal optical system and emit the same in the same direction. The present invention is characterized in that it includes a detection means that converts the light synthesized by the synthesis means into an electrical signal and detects the intensity of only the alternating current component equal to the shift frequency.

第2の不透明試料の顕微吸収分布測定装置は、波長変更
可能な単色光源からの光を2分して、方の光路中に光路
長を所定速度で変更する光路長変更手段を設け、他方の
光路中に2個の収束光学系よりなる共焦点光学系を配置
し、共焦点光学系の集光位置に相対的に走査可能な試料
を配置し、光路長変更手段から射出する指向性の高い光
と試料の測定点から発散され共焦点光学系によって平行
光に変換された光とを合成して同方向に射出させるビー
ム合成手段を設け、ビーム合成手段によって合成された
光を電気信号に変換して光路長変更速度に応じた周波数
の交流成分のみの強度を検出する検出手段を設けたこと
を特徴とするものである。
The second microscopic absorption distribution measuring device for opaque samples divides the light from the wavelength-changeable monochromatic light source into two parts, is provided with an optical path length changing means for changing the optical path length at a predetermined speed in one optical path, and is provided with an optical path length changing means for changing the optical path length at a predetermined speed in one optical path, A confocal optical system consisting of two converging optical systems is arranged in the optical path, a sample that can be scanned relatively is arranged at the converging position of the confocal optical system, and a highly directional light beam is emitted from the optical path length changing means. A beam combining means is provided to combine the light and the light diverged from the measurement point of the sample and converted into parallel light by the confocal optical system and emit it in the same direction, and the beam combining means converts the combined light into an electrical signal. The present invention is characterized in that a detection means is provided for detecting the intensity of only the alternating current component of a frequency corresponding to the speed of changing the optical path length.

さらに、本発明の第3の不透明試料の顕微吸収分布測定
装置は、波長変更可能な単色光源から出る光の光路中に
2個の収束光学系よりなる共焦点光学系を配置し、共焦
点光学系の集光位置に相対的に走査可能な試料を配置し
、試料の測定点から発散され共焦点光学系によって平行
光に変換された光の進行方向の光のみを抽出する高指向
性光学系を配置し、高指向性光学系により抽出された光
の強度を検出する検出手段を設けたことを特徴とするも
のである。
Furthermore, the third apparatus for measuring the microscopic absorption distribution of an opaque sample according to the present invention has a confocal optical system consisting of two converging optical systems disposed in the optical path of the light emitted from a wavelength-changeable monochromatic light source. A highly directional optical system that places a sample that can be scanned relative to the focusing position of the system and extracts only the light in the traveling direction of the light that diverges from the measurement point of the sample and is converted into parallel light by the confocal optical system. The device is characterized in that it is provided with a detection means for detecting the intensity of the light extracted by the highly directional optical system.

第3の装置の場合、波長変更可能な単色光源から出る光
の光路中に2光路切替え手段を設け、方の光路と他方の
光路が同軸でかつ光の進行方向が反対になるように構成
し、同軸になった光路中に前記共焦点光学系を配置し、
前屈共焦点光学系の一方の側に試料を透過した光又は試
料により反射散乱された光を取り出す光取り出し手段を
設け、光取り出し手段の後方に前記高指向性光学系を配
置することにより、1つの装置で試料の透過光と反射散
乱光の両吸収分布特性を測定することができる。
In the case of the third device, two optical path switching means are provided in the optical path of the light emitted from the wavelength-changeable monochromatic light source, and the one optical path and the other optical path are configured to be coaxial and the traveling direction of the light is opposite. , placing the confocal optical system in a coaxial optical path;
By providing a light extraction means for extracting the light transmitted through the sample or the light reflected and scattered by the sample on one side of the forward-bending confocal optical system, and arranging the highly directional optical system behind the light extraction means, One device can measure the absorption distribution characteristics of both transmitted light and reflected scattered light of a sample.

第1の装置の変形である第4の不透明試料の顕微吸収分
布測定装置は、波長変更可能な単色光源からの光を2分
して一方の光路中に入射光の周波数をシフトさせる周波
数シフト手段を設け、他方の光路中に指向性の高い光を
集光して試料の微小な測定点に照射する第1の収束光学
系を配置し、第1の収束光学系の集光位置に相対的に走
査可能な試料を配置し、周波数シフト手段から射出する
指向性の高い光を試料に照射する第1の収束光学系と同
じ収束球面波となる第2の収束光学系を配置し、両光束
を合成して同方向に射出するビーム合成手段を設け、ビ
ーム合成手段によって合成された光を電気信号に変換し
てシフト周波数に等しい交流成分のみの強度を検出する
検出手段を設けたことを特徴とするものである。
A fourth opaque sample microscopic absorption distribution measuring device, which is a modification of the first device, has a frequency shifting means that divides light from a wavelength-changeable monochromatic light source into two and shifts the frequency of the incident light into one optical path. A first converging optical system that condenses highly directional light and irradiates it onto a minute measurement point on the sample is placed in the other optical path, and a A second converging optical system that produces the same convergent spherical wave as the first convergent optical system that irradiates the sample with highly directional light emitted from the frequency shift means is disposed, and both light beams A beam combining means is provided to combine the lights and emit them in the same direction, and a detection means is provided to convert the light combined by the beam combining means into an electrical signal and detect the intensity of only the alternating current component equal to the shift frequency. That is.

これらのいずれの装置も、試料を透過した光強度又は特
定方向に反射される光強度を信号光強度とし、照射光束
の全部又はその一部を取り出して参照光強度として、透
過積分減光度を求めるようにすることができる。高指向
性検出系を用いる場合、照射光束の一部を取り出して参
照光強度とし、高指向性検出系を用いて検出した光強度
を信号強度として透過積分減光度を求めるようにする。
In both of these devices, the light intensity transmitted through the sample or the light intensity reflected in a specific direction is used as the signal light intensity, and all or a part of the irradiated light beam is taken out and used as the reference light intensity to determine the transmitted integral attenuation degree. You can do it like this. When using a highly directional detection system, a part of the irradiated light beam is taken out and used as a reference light intensity, and the transmitted integral attenuation degree is determined using the light intensity detected using the highly directional detection system as a signal intensity.

ヘテロダイン検出系、マイケルソン検出系を用いる場合
、散乱性試料からの光を遮断して、周波数シフト手段又
は光路長変更手段から射出する指向性の高い光のみを検
出して参照光強度とし、ヘテロゲイン検出系又はマイケ
ルソン検出系のビート成分を信号光強度として透過積分
減光度を求めるようにする。
When using a heterodyne detection system or a Michelson detection system, the light from the scattering sample is blocked and only the highly directional light emitted from the frequency shift means or optical path length change means is detected and used as the reference light intensity, and the heterodyne The transmitted integral attenuation degree is determined by using the beat component of the detection system or the Michelson detection system as the signal light intensity.

〔作用〕[Effect]

本発明の不透明試料の顕微吸収分布測定方法及び装置に
よれば、試料の微小な測定点に指向性の高い光を集光し
て照射し、測定点から発散する光を平行光に変換して、
又は、球面波のままその強度をヘテロダイン受光系、マ
イケルソン受光系、高指向性光学系等の高指向性検出系
を用いて検出するって、測定点周囲からの散乱光、その
他のノイズ光を拾うことなく高分解能でtJ=)の微小
領域の吸収を正確に測定でき、生体組織等の不透明試料
の顕微吸収分布測定に適した方法及び装置である。
According to the method and apparatus for measuring the microscopic absorption distribution of an opaque sample of the present invention, highly directional light is focused and irradiated onto a minute measurement point on the sample, and the light diverging from the measurement point is converted into parallel light. ,
Alternatively, by detecting the intensity of the spherical wave as it is using a highly directional detection system such as a heterodyne light receiving system, Michelson light receiving system, or highly directional optical system, it is possible to detect scattered light and other noise light from around the measurement point. This method and apparatus can accurately measure the absorption in a microscopic region of tJ=) with high resolution without picking up the rays, and are suitable for measuring the microscopic absorption distribution of opaque samples such as biological tissues.

〔実施例〕〔Example〕

従来、高感度でコヒーレント光を検出する手段としてヘ
テロダイン受光系が知られている。この受光系3は、例
えば第1図に簡単に示したように、レーザ1から出た特
定の周波数ω1の光をビームスプリッタ−BSにより2
分し、一方の直進光中に試料Sを挿入し、他方の反射光
はミラーM1、M2を経て上記直進光とハーフミラ−H
Mにより合成し、その合成光を検出器2により光電変換
する。反射光中に周波数をシフトさせてω2にする超音
波光学変調器等の周波数シフターAOを挿入すると、検
出器2からは周波数ω1とω3の差の観測可能な周波数
のビート信号が表れ、その交流成分の強さは試料Sの透
過率に比例する。したがって、試料Sを透過した微弱な
信号を検知することができることになる。ところで、こ
のようなヘテロダイン受光系3は、上記のような微弱な
信号を検知できるだけでなく、試料Sによって上記反射
光(周波数ω2の光。以下、参照光とも言う。
Conventionally, a heterodyne light receiving system is known as a means for detecting coherent light with high sensitivity. This light receiving system 3, as briefly shown in FIG.
The sample S is inserted into one of the straight beams, and the reflected light of the other passes through mirrors M1 and M2 to form the straight beam and the half mirror H.
The combined light is photoelectrically converted by the detector 2. When a frequency shifter AO such as an ultrasonic optical modulator is inserted into the reflected light to shift the frequency to ω2, a beat signal with an observable frequency difference between frequencies ω1 and ω3 appears from the detector 2, and the alternating current The strength of the component is proportional to the transmittance of the sample S. Therefore, a weak signal transmitted through the sample S can be detected. By the way, such a heterodyne light receiving system 3 can not only detect the above-mentioned weak signals, but also detect the above-mentioned reflected light (light with frequency ω2; hereinafter also referred to as reference light) by the sample S.

)の方向と異なる方向へ散乱された成分は、検出器2の
検出面上で上記参照光と重なり合わないので、ビート信
号を発生させず、単に直流成分として検出されるため、
このような散乱成分を容易に取り除き、参照光と同じ方
向に進む光成分のみを検出することができる高指向性検
出系としての性質を有する。
) does not overlap with the reference light on the detection surface of the detector 2, so it does not generate a beat signal and is simply detected as a DC component.
It has the property of being a highly directional detection system that can easily remove such scattered components and detect only light components traveling in the same direction as the reference light.

また、微少な屈折率変化等を検出できる手段としてマイ
ケルソン受光系が良(知られている。この受光系4は、
第2図に示すように、レーザ1から出た光をビームスプ
リッタ−BSにより2分し、一方のミラーML M2を
経た反射光中に試料Sを挿入し、その透過光を後記する
直進光とハーフミラ−HMにより合成する。ビームスプ
リッタ−BSを透過した直進光(以下、参照光とも言う
In addition, a Michelson light receiving system is well known as a means for detecting minute changes in refractive index, etc. This light receiving system 4 is
As shown in Fig. 2, the light emitted from the laser 1 is split into two by a beam splitter BS, a sample S is inserted into the reflected light that has passed through one mirror ML M2, and the transmitted light is divided into straight light and the straight light, which will be described later. Synthesize by half mirror HM. The straight light that has passed through the beam splitter BS (hereinafter also referred to as reference light).

)は、ハーフミラ−HMを透過して図示両矢符で示した
ように移動される移動鏡Mに当たり、逆方向に反射され
、ハーフミラ−HMにより試料を透過した光と合成され
、その合成光は検出器2により光電変換される。検出器
2からは移動鏡Mの速度に応じた周波数の干渉信号が重
畳した信号が得られる。その交流成分の強さは試料Sの
透過率に比例し、位相は試料Sの厚さ又は屈折率に依存
する。このマイケルソン受光系4も、上記したヘテロダ
イン受光系3と同様、微少な屈折率変化等を検出できる
だけでなく、試料Sによって上記参照光と異なる方向へ
散乱された成分は、検出器2の検出面上で上記参照光と
重なり合わないので、干渉信号を発生させず、単に直流
成分として検出されるため、このような散乱成分を容易
に取り除きことができ、参照光と同じ方向に進む光成分
のみを検出することができる高指向性検出系としての性
質を有する。
) passes through the half mirror HM and hits the movable mirror M, which is moved as shown by the double arrow mark, is reflected in the opposite direction and is combined with the light that has passed through the sample by the half mirror HM, and the combined light is The detector 2 performs photoelectric conversion. The detector 2 obtains a signal on which an interference signal having a frequency corresponding to the speed of the movable mirror M is superimposed. The strength of the AC component is proportional to the transmittance of the sample S, and the phase depends on the thickness or refractive index of the sample S. Like the heterodyne light receiving system 3 described above, this Michelson light receiving system 4 is also capable of detecting minute changes in refractive index, etc., and the components scattered by the sample S in a direction different from the reference light are detected by the detector 2. Since it does not overlap with the reference light on the surface, it does not generate an interference signal and is simply detected as a DC component, so such scattered components can be easily removed and the light component traveling in the same direction as the reference light can be detected. It has the property of being a highly directional detection system that can detect only

ところで、上記ヘテロゲイン受光系3もマイケルソン受
光系4も同じ原理に基づいて試料Sを透過した光ないし
試料Sによって散乱された光の強度を検出するものであ
ると言うことができる。この点を簡単に説明する。合成
される参照光をV。
By the way, it can be said that the heterogain light receiving system 3 and the Michelson light receiving system 4 detect the intensity of light transmitted through the sample S or light scattered by the sample S based on the same principle. This point will be briefly explained. The reference light to be synthesized is V.

、試料Sを透過した光ないし試料Sによって散乱された
光(以下、試料光とも言う。)をVIとし、それぞれ次
のように表現する。
, the light transmitted through the sample S or the light scattered by the sample S (hereinafter also referred to as sample light) is defined as VI, and each is expressed as follows.

V +  = A +  exp[−+ (rn  +
 t + φ 1)] 、V 2 = A 2 eXP
[−i ((11at+φ2)]これらの2つの光波V
1、■2を重ね合わせて観測(検出)すると、その検出
信号Sは次のようになる。
V + = A + exp [-+ (rn +
t + φ 1)], V 2 = A 2 eXP
[-i ((11at+φ2)] These two light waves V
When 1 and 2 are observed (detected) in a superimposed manner, the detection signal S is as follows.

S=  V+ +V2 =V+   ・ V+   ”  +V2   ・ V
2+V、  ・V2 ” +v、”  ・V2ところで
、 V、・V、”=A、  、V、・V2”=A。
S= V+ +V2 =V+ ・V+ ” +V2 ・V
2+V, ・V2 ” +v,” ・V2 By the way, V, ・V, ”=A, ,V, ・V2”=A.

であり、 V+  ’ V2 ” =A+ A28XIll[−1
((ll+−a+2)j−i(φ1−φ、)コ 、 v 1 傘  ・ V2  =A+  Aa  eXp
[+1(ω t−QJa)t+i(φ1−φ2)] V+  ・V2 ”  +V+  ”  ・Vz= 2
 A +  A 2cos[(ω1−al z)を十(
φ 1−φ、)]であるので、 S=A+ 2+A2 十2 A + A zcos[(a+ I w 2) 
t+(φドφ2)コとなる。
and V+ 'V2'' = A+ A28XIll[-1
((ll+-a+2)j-i(φ1-φ,)ko, v 1 umbrella ・V2 =A+ Aa eXp
[+1(ω t-QJa)t+i(φ1-φ2)] V+ ・V2 ” +V+ ” ・Vz= 2
A + A 2cos [(ω1-al z) as 10(
φ 1−φ, )], so S=A+ 2+A2 12 A + A zcos[(a+I w 2)
It becomes t+(φdoφ2)ko.

ところで、ヘテロダイン受光系3においては、ω2=ω
1−Δω、φ皿=φ2と書けるので、S=A+ ’ +
A2 ’ +2AI A2C09Δactとなり、検出
された信号の交流成分の大きさから、試料光V1の振幅
A1を知ることができる。
By the way, in the heterodyne light receiving system 3, ω2=ω
Since it can be written as 1-Δω, φ plate = φ2, S=A+ '+
A2'+2AI A2C09Δact, and the amplitude A1 of the sample light V1 can be determined from the magnitude of the AC component of the detected signal.

同様に、マイケルソン受光系4によると、ω。Similarly, according to the Michelson light receiving system 4, ω.

=ω2、φ2=φI+ktと書けるので、検出信号Sは
、 S=A+ 2+A22+2AI Atcosktとなり
、ヘテロダイン受光系3の場合と同様の信号が得られる
。すなわち、ヘテロダイン受光系3もマイケルソン受光
系4も同様に、検出信号の交流成分の大きさから、試料
光V1の振幅A1を知ることができるものである。
Since it can be written as =ω2, φ2=φI+kt, the detection signal S becomes S=A+ 2+A22+2AI Atcoskt, and the same signal as in the case of the heterodyne light receiving system 3 is obtained. That is, in both the heterodyne light receiving system 3 and the Michelson light receiving system 4, the amplitude A1 of the sample light V1 can be determined from the magnitude of the AC component of the detection signal.

さらに、高指向性検出系として上記したヘテロゲイン受
光系3及びマイケルソン受光系4以外に、第16図から
第25図に例示した高指向性光学系がある。これらの高
指向性光学系を代表するものとして、入射側の対物レン
ズOblと、その焦点面に配置され対物レンズOblに
よるフランフォーファ回折の0次の回折像のみを通過さ
せるピンホールPと、ピンホールPに前側焦点が一致す
るように配置された同様の対物レンズOb2からなる高
指向性光学系5を第3図に示す(図の高指向性光学系5
は第22図に示した光学系と同様である。)。ただし、
以下の説明において、高指向性光学系5は第3図のもの
に限定されるものではない。
Furthermore, in addition to the heterogain light receiving system 3 and the Michelson light receiving system 4 described above as high directivity detection systems, there are high directivity optical systems illustrated in FIGS. 16 to 25. These highly directional optical systems are representative of an objective lens Obl on the incident side, a pinhole P that is placed on its focal plane and allows only the 0th-order diffraction image of Franhofer diffraction by the objective lens Obl to pass; FIG. 3 shows a highly directional optical system 5 consisting of a similar objective lens Ob2 arranged so that its front focus coincides with the pinhole P (highly directional optical system 5 in the figure).
is similar to the optical system shown in FIG. ). however,
In the following description, the highly directional optical system 5 is not limited to the one shown in FIG.

ところで、第1図から第3図に示したような高指向性検
出系3.4.5において、試料Sと平行光束の関係を、
第4図Aから第6図に示したような構成の高分解能検出
系30.40.50に変更することにより、レンズのフ
ランフォーファ回折像成分の0構成分に相当する試料S
の微小な黒領域に入射光を当て、その点のみからの散乱
光を集めて検出するようにすることができる。すなわち
、試料Sの入射方向に、試料Sの測定点に後側焦点が一
致するように開口数(NA)の大きい集光レンズL1を
介在させ、また、集光レンズL1の後側焦点に前側焦点
が一致するように同じように大きいNAを有する対物レ
ンズL2を配置して、レーザ1からの光を集光レンズL
1によって試料Sの微小点に当て、その点から出てくる
光を対物レンズL2によって集めて所定方向に向く平行
光に変換し、上記の高指向性検出系3.4.5の原理に
より、この方向に向く光のみを検出器2により検出する
ようにすることで、試料Sのレンズのフランフォーファ
回折像成分の0構成分に相当する微点領域のみからの散
乱光を集とて検出するようにすることができる。そのた
め、上記のような高分解能検出系30.40.50を用
いると、測定点の前後を含む周囲からの不要な散乱光の
混入を避けることができ、また、極めて高い分解能で試
料の吸収特性を測定することができる。
By the way, in the highly directional detection system 3.4.5 shown in Figs. 1 to 3, the relationship between the sample S and the parallel light flux is as follows:
By changing to the high-resolution detection system 30.40.50 having the configuration shown in FIG. 4A to FIG.
It is possible to irradiate incident light onto a minute black area of the object and collect and detect the scattered light from only that point. That is, a condensing lens L1 with a large numerical aperture (NA) is interposed in the incident direction of the sample S so that the rear focal point coincides with the measurement point of the sample S, and the front focal point is aligned with the rear focal point of the condensing lens L1. An objective lens L2 having a similarly large NA is arranged so that the focus coincides, and the light from the laser 1 is transferred to the condenser lens L.
1 to a minute point on the sample S, and the light emitted from that point is collected by the objective lens L2 and converted into parallel light directed in a predetermined direction, and according to the principle of the high-directivity detection system 3.4.5 described above, By detecting only the light directed in this direction with the detector 2, the scattered light from only the minute region corresponding to the 0 component of the Franphofer diffraction image component of the lens of the sample S is collected and detected. You can do as you like. Therefore, by using the high-resolution detection system 30.40.50 as described above, it is possible to avoid the contamination of unnecessary scattered light from the surroundings, including before and after the measurement point, and also to detect the absorption characteristics of the sample with extremely high resolution. can be measured.

第4図への変形を第4−8に示す。第4図Aにおいては
、集光レンズL1によって試USの微小点に光を照射し
、その点から出てくる光を対物レンズL2によって所定
方向に向く平行光(略平面波)に変換してヘテロダイン
受光するが、第4−8においては、対物レンズL2を周
波数シフターA○の光束側に配置し、集光レンズL1の
焦点からの発散球面波と対物レンズL2の焦点からの発
散球面波が一致するように配置して、検出器2によりヘ
テロダイン検出する。これは、レンズにより平面波に変
換してヘテロゲイン検出するのと、球面波でへ゛テロダ
イン検出するのが等しいビート成分が得られ、波面整合
に要求される条件が等しいことによる。
A modification to Fig. 4 is shown in Fig. 4-8. In Fig. 4A, a condensing lens L1 irradiates light onto a minute point on the test US, and an objective lens L2 converts the light emitted from that point into parallel light (approximately a plane wave) directed in a predetermined direction and converts it into a heterodyne. In 4-8, the objective lens L2 is placed on the light flux side of the frequency shifter A○, and the diverging spherical wave from the focus of the condenser lens L1 and the divergent spherical wave from the focus of the objective lens L2 match. Detector 2 performs heterodyne detection. This is because the same beat component is obtained by converting into a plane wave using a lens and performing heterogain detection, and by heterodyne detection using a spherical wave, and the conditions required for wavefront matching are the same.

さて、本発明における分光吸収測定の対象となる不透明
試料は、まず第1に、完全には入射光を阻止して前方へ
透過させないような試料ではなく、例えば生体試料のよ
うに、試料によって何ら散乱を受けずに直接透過する光
は殆ど存在しないが、試料中の散乱微粒子によって多重
散乱を受け、前方へ散乱された光が試料より出てくるよ
うな試料である。もちろん、直接透過する光が存在する
ような試料についても測定対象にできる。また、本発明
の第2の測定対象は、例えば粉体のように、入射光を略
完全に遮断して後方へのみ反射及び散乱する試料である
。前者の試料を透過試料、後者の試料を反射試料と呼ぶ
ことにする。
First of all, the opaque sample that is the subject of spectral absorption measurement in the present invention is not a sample that completely blocks incident light and does not transmit it forward; for example, it is not a sample that completely blocks incident light and does not transmit it forward. Although there is almost no light that directly passes through the sample without being scattered, the sample is one in which light is subjected to multiple scattering by scattering particles in the sample, and light that is scattered forward comes out of the sample. Of course, samples in which directly transmitted light exists can also be measured. Furthermore, the second measurement object of the present invention is a sample, such as a powder, which substantially completely blocks incident light and reflects and scatters it only backwards. The former sample will be called a transmission sample, and the latter sample will be called a reflection sample.

第7図に示した本発明による不透明試料顕微吸収分布測
定製電は、第4図Aに示したヘテロダイン受光系による
高分解能検出系30を用いて、透過試料20の顕微吸収
分布測定を行うものである。
The method for measuring the microscopic absorption distribution of a transparent sample 20 according to the present invention shown in FIG. It is.

このような測定のた於に、単色光源として、広いスペク
トル範囲の単色光を連続的に掃引して出すことができる
可変波長レーザ」Qを用いる。レーザ10から発した光
束は、ビームスプリッタ−BSにより2分され、直進光
は集光レンズLlにより透過試料20の測定点に集光さ
れ、透過散乱光は対物レンズL2により平行光に変換さ
れてハーフミラ−HMにより参照光と合成される。ビー
ムスプリッタ−BSにより反射された参照光は、上記の
合成前に超音波光学変調器等の周波数シフターAOによ
り周波数が僅かに変えられており、試料光と合成して光
電変換すると、参照光と試料光の周波数差に相当する周
波数の交流信号を含む信号が検出器2より出力される。
For such measurements, a tunable wavelength laser "Q" that can continuously sweep and emit monochromatic light in a wide spectral range is used as a monochromatic light source. The light flux emitted from the laser 10 is split into two by the beam splitter BS, the straight light is focused on the measurement point of the transmission sample 20 by the condenser lens Ll, and the transmitted scattered light is converted into parallel light by the objective lens L2. It is combined with the reference light by the half mirror HM. The frequency of the reference light reflected by the beam splitter BS is slightly changed by a frequency shifter AO such as an ultrasonic optical modulator before the above synthesis, and when it is combined with the sample light and photoelectrically converted, it becomes the reference light and The detector 2 outputs a signal including an alternating current signal with a frequency corresponding to the frequency difference between the sample lights.

検出器2より得られる信号の交流成分の大きさは、試料
光の振幅に比例するので、検出器2の出力の交流成分を
分離し、その大きさから、測定点の吸収特性が得られる
。試料光の強度は試料20の測定点の吸収特性に応じて
変化するので、試料20をX−Y走査装置XYによって
走査するようにすることにより、試料20の走査面上で
の吸収分布を測定することができる。なお、レーザ10
の波長を掃引しながら各測定点の吸収を測定することに
より、試料20の分光吸収分布を測定することもできる
。ところで、測定の分解能をレンズL1、L2のフラン
フォーファ回折像成分のO&像の大きさより小さくする
た杓に、測定点(レンズLlの焦点)に極近接してその
像の大きさより小さいピンホール板PHを配置して照明
領域を制限することもできる。
Since the magnitude of the AC component of the signal obtained from the detector 2 is proportional to the amplitude of the sample light, the AC component of the output of the detector 2 is separated and the absorption characteristics of the measurement point can be obtained from its magnitude. The intensity of the sample light changes depending on the absorption characteristics of the measurement point on the sample 20, so by scanning the sample 20 with the X-Y scanning device XY, the absorption distribution on the scanning surface of the sample 20 can be measured. can do. In addition, laser 10
The spectral absorption distribution of the sample 20 can also be measured by measuring the absorption at each measurement point while sweeping the wavelength. By the way, in order to make the measurement resolution smaller than the size of the O& image of the Franphofer diffraction image components of lenses L1 and L2, a pinhole that is located very close to the measurement point (focal point of lens L1) and smaller than the size of the image is used. It is also possible to limit the illumination area by arranging a plate PH.

この場合、分解能は向上するが、透過光量が少なくなる
欠点を有する。なお、以下の実施例においても同様にピ
ンホール板PHを配置することができる。
In this case, although the resolution is improved, there is a drawback that the amount of transmitted light is reduced. Note that pinhole plates PH can be similarly arranged in the following embodiments as well.

さて、第8図は第7図の高分解能検出系30を用いるも
のを変形して、散乱を伴う反射試料21を測定するよう
にしたものである。この場合、このレーザ10から出た
光束を適当な径の平行光束に変換するために、ビーム変
換器11をレーザ10の前に配置しであるが、このビー
ム変換器11は必ずしも必要なものではない。この配置
においては、第7図のハーフミラ−HMの向きを変え、
レーザ10からの光がビームスプリッタ−BSを透過し
、ハーフミラ−HMを透過した位置に集光レンズ及び対
物レンズの作用をするレンズLを配置し、その後側焦点
面に反射試料21を配置し、その反射散乱光をハーフミ
ラ−HMで参照光と合成させるようにしたものである。
Now, FIG. 8 shows a modification of the system using the high-resolution detection system 30 of FIG. 7 to measure a reflection sample 21 accompanied by scattering. In this case, a beam converter 11 is placed in front of the laser 10 in order to convert the beam emitted from the laser 10 into a parallel beam of appropriate diameter, but this beam converter 11 is not necessarily necessary. do not have. In this arrangement, change the direction of the half mirror-HM in Fig. 7,
A lens L functioning as a condensing lens and an objective lens is placed at the position where the light from the laser 10 passes through the beam splitter BS and passes through the half mirror HM, and a reflection sample 21 is placed on the focal plane on the rear side. The reflected and scattered light is combined with the reference light by a half mirror HM.

例えば、散乱体NZを図のように試料21の前に存在し
ていているように模式的に書いた場合、散乱体NZによ
る散乱光は検出器2の直流成分となり、高分解能検出系
30を用いると、検出器2によって交流成分として検出
されない。
For example, if the scatterer NZ is schematically drawn as being present in front of the sample 21 as shown in the figure, the light scattered by the scatterer NZ becomes a DC component of the detector 2, and the high-resolution detection system 30 is If used, it will not be detected by the detector 2 as an alternating current component.

次に、第9図に示した装置は、第5図に示したマイケル
ソン受光系による高分解能検出系40を適用して透過試
料20の顕微吸収分布測定を行うものであり、可変波長
レーザ10から出た光をビーム変換器11により適当な
径の平行光束に変換して、ビームスプリッタ−BSによ
り2分し、方のミラーML M2を経た反射光中に集光
レンズL1と対物レンズL2を共焦点で配置しその共通
の焦点の位置に透過試料20を挿入し、その散乱透過光
を参照光とハーフミラ−HMにより合成する。ビームス
プリッタ−BSを透過した参照光は、ハーフミラ−HM
を透過して図示両矢符で示したように移動される移動鏡
Mに当たり、逆方向に反射され、ハーフミラ−HMによ
り試料光と合成され、その合成光は検出器2により光電
変換される。検出器2からは移動鏡Mの速度に応じた周
波数の干渉信号が重畳した信号が得られる。その交流成
分の強さは透過試料20の散乱光の強さに比例するので
、試料20をXY走査装!tXYにより走査しながら各
測定点の交流成分の大きさを求めることにより、試料2
0の吸収分布を測定することができる。なお、可変波長
レーザ10の波長を掃引しながら吸収分布を求めること
により、分光吸収分布も測定することができる。
Next, the apparatus shown in FIG. 9 measures the microscopic absorption distribution of the transmission sample 20 by applying the high-resolution detection system 40 using the Michelson light receiving system shown in FIG. The beam converter 11 converts the light emitted from the beam into a parallel beam of an appropriate diameter, the beam splitter BS splits the light into two, and the reflected light passes through one mirror ML M2, and the condensing lens L1 and objective lens L2 are inserted into the reflected light. A transmission sample 20 is inserted at the common focal point of the confocal arrangement, and the scattered and transmitted light is combined with the reference light and the half mirror HM. The reference light transmitted through the beam splitter BS is transferred to the half mirror HM.
The light passes through the mirror M and is reflected in the opposite direction, and is combined with the sample light by the half mirror HM, and the combined light is photoelectrically converted by the detector 2. The detector 2 obtains a signal on which an interference signal having a frequency corresponding to the speed of the movable mirror M is superimposed. The strength of the alternating current component is proportional to the strength of the scattered light of the transmitted sample 20, so the sample 20 can be scanned with an XY scanning device! By determining the magnitude of the AC component at each measurement point while scanning with tXY, sample 2
0 absorption distribution can be measured. Note that the spectral absorption distribution can also be measured by determining the absorption distribution while sweeping the wavelength of the variable wavelength laser 10.

第10図は、マイケルソン受光系を利用した高分解能検
出系40を反射試料21の吸収分布を求めるように変形
したものである。この場合、ビームスプリッタ−BSを
反射した位置に集光レンズ及び対物レンズの作用をする
レンズLを配置し、その後側焦点面に反射試料21を配
置し、その反射散乱光をビームスプリッタ−BSで移動
鏡Mから反射してきた参照光と合成させるようにしたも
のである。
FIG. 10 shows a modification of the high-resolution detection system 40 using a Michelson light receiving system so as to determine the absorption distribution of the reflection sample 21. In this case, a lens L functioning as a condenser lens and an objective lens is placed at the position reflected by the beam splitter BS, a reflection sample 21 is placed at the focal plane on the rear side, and the reflected and scattered light is reflected by the beam splitter BS. It is designed to be combined with the reference light reflected from the movable mirror M.

さて、第11図と第12図は、透過試料20又は反射試
料21の吸収分布を測定するのに、第6図の高指向性光
学系5を用いた高分解能検出系50を適用したものであ
る。第11図のものは、試料20の測定点から生じる蛍
光光のみを通過させる励起光カットフィルター12を対
物レンズL2の後側に挿入し、試料20の顕微蛍光分布
測定を行う場合の配置を示しているが、吸収分布測定の
場合は、この励起光カットフィルター12は取り外す。
Now, FIGS. 11 and 12 show cases in which the high-resolution detection system 50 using the highly directional optical system 5 of FIG. 6 is applied to measure the absorption distribution of the transmission sample 20 or the reflection sample 21. be. The one in FIG. 11 shows the arrangement when the excitation light cut filter 12 that passes only the fluorescent light generated from the measurement point of the sample 20 is inserted behind the objective lens L2 and the microscopic fluorescence distribution measurement of the sample 20 is performed. However, in the case of absorption distribution measurement, this excitation light cut filter 12 is removed.

第11図の顕微吸収分布測定においては、ビーム変換器
11から適当は径の平行光束に変換されて出てくるレー
ザ10からの光は、集光レンズLlにより透過試料20
の測定点に集光され、その点を透過しまたその点から前
方へ散乱された光は、測定点に前側焦点一致するように
配置された対物レンズL2により平行光に変換され、高
指向性光学系5により他の方向へ向かう光から分離され
て検出器2によりその強さが検出される。したがって、
試料20をxY走査装置xYにより走査しながら各測定
点からの光の強さを求めることにより、試料20の吸収
分布を測定することができる。なお、この場合も、可変
波長レーザ10の波長を掃引しながら吸収分布を求める
ことにより、分光吸収分布も測定することができる。た
だし、励起光カットフィルター12を挿入して蛍光分布
を測定する場合は、レーザ10の波長掃引は行わないか
、又は、レーザ10として可変波長のものでなく、固定
波長のものを用いる。第12図の反射試料21の吸収分
布を測定する装置の場合は、ハーフミラ−HMを透過し
た位置に集光レンズ及び対物レンズの作用をするレンズ
Lを配置し、その後側焦点面に反射試料21を配置し、
反射試料21からの反射散乱光をレンズLによって平行
光に変換し、ハーフミラ−HMにより入射光の方向とは
異なる方向に反射させ、反射試料21の測定点からの光
のみを高指向性光学系5により抽出するようにしたもの
である。その他は、第11図と同様である。
In the microscopic absorption distribution measurement shown in FIG.
The light that is focused on the measurement point, transmitted through that point, and scattered forward from that point is converted into parallel light by the objective lens L2, which is arranged so that the front focus coincides with the measurement point. The optical system 5 separates the light from the light going in other directions, and the detector 2 detects its intensity. therefore,
The absorption distribution of the sample 20 can be measured by determining the intensity of light from each measurement point while scanning the sample 20 with the xY scanning device xY. In this case as well, the spectral absorption distribution can also be measured by finding the absorption distribution while sweeping the wavelength of the variable wavelength laser 10. However, when measuring the fluorescence distribution by inserting the excitation light cut filter 12, the wavelength sweep of the laser 10 is not performed, or a laser 10 with a fixed wavelength is used instead of one with a variable wavelength. In the case of the apparatus for measuring the absorption distribution of the reflection sample 21 shown in FIG. Place the
The reflected and scattered light from the reflective sample 21 is converted into parallel light by the lens L, and reflected in a direction different from the direction of the incident light by the half mirror HM, and only the light from the measurement point of the reflective sample 21 is converted into a highly directional optical system. 5. Others are the same as in FIG. 11.

ところで、レーザ100波長を掃引した場合、光強度が
一般に変化する。そこで、高指向性検出系を用いる場合
、照射光束の一部を取り出して、例えば第3図では、レ
ーザ10と試料Sの中間にハーフミラ−を挿入して、出
力レーザ光強度を検出する。ヘテロダイン検出系を用い
る場合、第4図Aで、試料Sの後方に光遮断素子を挿入
、して、検出器2でレーザの出力強度をモニターする。
By the way, when a laser sweeps 100 wavelengths, the light intensity generally changes. Therefore, when using a highly directional detection system, a part of the irradiated light beam is taken out and, for example, in FIG. 3, a half mirror is inserted between the laser 10 and the sample S to detect the output laser light intensity. When using a heterodyne detection system, as shown in FIG. 4A, a light blocking element is inserted behind the sample S, and the output intensity of the laser is monitored by the detector 2.

あるいは、第4図Aのハーフミラ−HMの後方に光強度
モニター用検出器を設置して検出してもよい(図示して
いない。)。これらの光強度を参照光強度とし、試料S
を透過した光強度または特定方向に反射される光強度を
高指向性検出系またはヘテロダイン検出系で検出して信
号光強度として、これらの値を用いて透過積分減光度を
求めて試料の吸収スペクトルを算出する。これは、すで
に従来の不透明試料の吸収スペクトルを求める方法にお
いても、あるいは、散乱のない試料の吸収度を求める方
法においても、用いられている方法である。
Alternatively, a light intensity monitoring detector may be installed behind the half mirror HM in FIG. 4A for detection (not shown). These light intensities are used as reference light intensities, and sample S
The intensity of the transmitted light or the intensity of light reflected in a specific direction is detected by a high-directivity detection system or a heterodyne detection system, and these values are used to determine the transmission integral attenuation and determine the absorption spectrum of the sample. Calculate. This is a method that has already been used in the conventional method of determining the absorption spectrum of an opaque sample, or in the method of determining the absorbance of a sample without scattering.

次に、具体的に試料のミクロサイズ領域の顕微吸収分布
測定を測定する装置のいくつかの例について簡単に説明
する。第13図は、X−Y走査可能な試料台13上に配
置した試料20の透過吸収分布特性及び反射吸収分布特
性を測定できる装置の概略の構成を示すもので、可変波
長レーザ10からの単色光は切り換え鏡MSにより実線
の透過光路と点線の反射光路に切り換えられる。実線光
路を選択すると、ミラーM3、M4を経た光は、集光レ
ンズL1の作用をするカセグレイン反射光学系に1によ
り試料20の測定点に集光され、試料2aを透過した光
は対物レンズL2の作用をするカセグレイン反射光学系
に2により平行光に変換され、ミラーM6を経て、例え
ば第18図に示した対物レンズObとその焦点に配置し
たピンホールPとからなる高指向性光学系5に入射する
Next, some examples of devices for specifically measuring the microscopic absorption distribution of a microscopic region of a sample will be briefly described. FIG. 13 shows a schematic configuration of an apparatus capable of measuring the transmission absorption distribution characteristics and reflection absorption distribution characteristics of a sample 20 placed on a sample stage 13 capable of X-Y scanning. The light is switched by a switching mirror MS into a transmitted optical path indicated by a solid line and a reflected optical path indicated by a dotted line. When the solid optical path is selected, the light that has passed through mirrors M3 and M4 is focused by 1 on the measurement point of the sample 20 by the Cassegrain reflective optical system that acts as a condenser lens L1, and the light that has passed through the sample 2a is focused on the measurement point of the sample 20. It is converted into parallel light by the Cassegrain reflective optical system 2, which has the function of incident on .

高指向性光学系5により測定点以外から出た光が取り除
かれ、試料20の吸収特性を示す光の強度が検出器2に
より検出される。したがって、試料20をXY定走査な
がら各測定点からの光の強さを求めることにより、試料
20の透過吸収分布を測定することができる。切り換え
鏡MSを点線の反射光路に切り換えると、可変波長レー
ザ10からの単色光はミラーM5を経てハーフミラ−H
Mにより下方に反射され、集光レンズ及び対物レンズの
作用をするカセグレイン反射光学系に2により試料20
の測定点に集光される。測定点から後方に散乱された光
はカセグレイン反射光学系に2により平行光に変換され
、ミラーM6を経て高指向性光学系5に入射し、測定点
以外から出た光が取り除かれ、試料20の反射吸収特性
を示す光の強度が検出器2により検出される。同様に試
#J20をXY定走査ながら各測定点からの光の強さを
求することにより、試料20の反射吸収分布を測定する
ことができる。カセグレイン反射光学系に2の後に励起
光カットフィルター12を挿入して顕微蛍光分布測定を
行うことができる。なお、図中、符号15はチョッパー
を示しており、試料に入射させるレーザ光を所定周波数
で変調し、同期検波してノイズを取り除くためのもので
ある。また、符号14はアパーチャー、16は接眼レン
ズを示している。
The highly directional optical system 5 removes light emitted from areas other than the measurement point, and the detector 2 detects the intensity of the light indicating the absorption characteristics of the sample 20. Therefore, the transmission absorption distribution of the sample 20 can be measured by determining the intensity of light from each measurement point while constantly scanning the sample 20 in the XY direction. When the switching mirror MS is switched to the reflection optical path indicated by the dotted line, the monochromatic light from the variable wavelength laser 10 passes through the mirror M5 and reaches the half mirror H.
The sample 20 is reflected downward by M, and the sample 20
The light is focused on the measurement point. The light scattered backward from the measurement point is converted into parallel light by the Cassegrain reflection optical system 2, and enters the highly directional optical system 5 via the mirror M6, where the light emitted from other than the measurement point is removed and the sample 20 The detector 2 detects the intensity of light exhibiting reflection/absorption characteristics. Similarly, the reflection/absorption distribution of the sample 20 can be measured by determining the intensity of light from each measurement point while scanning the sample #J20 at a constant XY rate. Microscopic fluorescence distribution measurement can be performed by inserting an excitation light cut filter 12 after 2 into the Cassegrain reflective optical system. In the figure, reference numeral 15 indicates a chopper, which modulates the laser beam incident on the sample at a predetermined frequency and performs synchronous detection to remove noise. Further, the reference numeral 14 indicates an aperture, and the reference numeral 16 indicates an eyepiece.

第14図、第15図の装置は、それぞれ第4図へのヘテ
ロダイン受光系による高分解能検出系30を用いた装置
、第5図のマイケルソン受光系による高分解能検出系4
0を用いた装置を縦型に変形しただけのものであり、格
別の!!門は必要なかろう。なお、第15図のものにお
いて、駆動系17は移動鏡Mを光軸方向に移動させるた
めのものである。
The devices shown in FIGS. 14 and 15 are the devices using the high-resolution detection system 30 using the heterodyne light receiving system shown in FIG. 4, and the high-resolution detection system 4 using the Michelson light receiving system shown in FIG.
It is simply a vertical version of the device using 0, and it is exceptional! ! A gate may not be necessary. In addition, in the one shown in FIG. 15, the drive system 17 is for moving the movable mirror M in the optical axis direction.

なお、以上の説明においては、可変波長レーザ10は連
続的に発振するものを前提にしていたが、パルス動作を
する可変波長レーザを用いてもよい。
In the above description, it is assumed that the tunable wavelength laser 10 oscillates continuously, but a tunable wavelength laser that operates in pulses may also be used.

特に、レーザ光を連続的に照射すると、その特性が急激
に変化する試料の場合、パルス動作をする可変波長レー
ザを用いることが好ましい。また、検出器2については
、格別説明しなかったが、公知の何れの手段でも用いる
ことができる。また、検出信号の処理方式としても、例
えば入射光をチョッパ等によって強度変調し、検出信号
を位相同期検出することが考えられる。この場合、赤外
光検出の時定数が長いため、同期変調周波数を小さくす
る必要がある。また、光子計数方式(可視光)、電荷蓄
積方式(赤外光)等の同期信号積分検出方式、ヘテロダ
インビート信号検出方式等を用いてもよい。さらに、周
波数シフターとしては、超音波変調Y等の超音波光回折
を用いたものばかりでなく、波長板の組み合わせ及び回
折格子のほか、結晶の電気光学効果を利用することもで
きる。
In particular, in the case of a sample whose characteristics change rapidly when continuously irradiated with laser light, it is preferable to use a variable wavelength laser that operates in pulses. Moreover, although the detector 2 was not specifically explained, any known means can be used. Further, as a method of processing the detection signal, for example, intensity modulation of incident light may be performed using a chopper or the like, and phase synchronization detection of the detection signal may be considered. In this case, since the time constant of infrared light detection is long, it is necessary to reduce the synchronous modulation frequency. Furthermore, a synchronous signal integral detection method such as a photon counting method (visible light) or a charge accumulation method (infrared light), a heterodyne beat signal detection method, or the like may be used. Further, as a frequency shifter, not only one using ultrasonic light diffraction such as ultrasonic modulation Y, but also a combination of wave plates, a diffraction grating, and the electro-optic effect of a crystal can be used.

また、反射鏡を一定速度で移動させるマイケルソン干渉
計ばかりでなく鋸歯状波で反射鏡を振動させてもよい。
In addition to a Michelson interferometer that moves a reflecting mirror at a constant speed, it is also possible to use a sawtooth wave to vibrate the reflecting mirror.

また、ヘテロダイン受信をするのに、単色光源のレーザ
ーを2光束に分割して局発光を作るだけでなく、2個の
レーザーを用いてもよいことはもちろんである。
Furthermore, for heterodyne reception, it is of course possible to use two lasers instead of just dividing a monochromatic light source laser into two beams to create local light.

C発明の効果〕 本発明の不透明試料の顕微吸収分布測定方法及び装置に
おいては、試料の微小な測定点に指向性の高い光を集光
して照射し、測定点から発散する光を平行光に変換して
、又は、球面波のままその強度をヘテロゲイン受光系、
マイケルソン受光系、高指向性光学系等の高指向性検出
系を用いて検出するので、測定点周囲からの散乱光、そ
の他のノイズ光を拾うことなく高分解能で試料の微小領
域の吸収を正確に測定でき、生体組織等の不透明試料の
顕微吸収分布測定に適した方法及び装置である。
C Effects of the Invention] In the method and apparatus for measuring the microscopic absorption distribution of an opaque sample of the present invention, highly directional light is focused and irradiated onto a minute measurement point on the sample, and the light diverging from the measurement point is converted into parallel light. or convert the intensity of the spherical wave into a heterogain light receiving system,
Since detection is performed using a highly directional detection system such as a Michelson light receiving system or a highly directional optical system, it is possible to detect absorption in minute areas of the sample with high resolution without picking up scattered light or other noise light from around the measurement point. This method and device allow accurate measurement and are suitable for measuring microscopic absorption distribution of opaque samples such as biological tissues.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の前提になるヘテロダイン受光系の構成
と作用を説明するための図、第2図は同様なマイケルソ
ン受光系の構成と作用を説明するための図、第3図は同
様な高指向性光学系の代表的なものの構成を示すための
図、第4図Aは本発明の不透明試料の顕微吸収分布測定
方法及び装置に用いられるヘテロダイン受光系を用いた
高分解能検出系の構成と作用を説明するための図、第4
図Bは第4図への測定方法及び装置の変形を示すための
図、第5図はマイケルソン受光系を用いた高分解能検出
系の構成と作用を説明するための図、第6図は高指向性
光学系を用いた高分解能検出系の構成と作用を説明する
ための図、第7図は透過試料に適用する本発明のヘテロ
ゲイン受光系を用いた顕微吸収分布測定の実施例の構成
を示す図、第8図は第7図の装置を反射試料用に変形し
た顕微吸収分布測定の実施例の構成を示す図、第9図は
透過試料に適用する本発明のマイケルソン受光系を用い
た顕微吸収分布測定の実施ケ=)構成を示す図、第10
図は第9図の装置を反射試料用に変形した顕微吸収分布
測定の実施例の構成を示す図、第11図と第12図は本
発明の高指向性光学系を用いた顕微吸収分布測定の実施
例の構成を示す図、第13図から第15図は本発明によ
る試料の顕微吸収分布特性を測定する装置のいくつかの
具体例を示すための図、第16図から第25図は先に提
案した高指向性光学系の構成を示す図、第25図は従来
のフーリエ分光器を用いた顕微吸収分布を測定するため
の装置の構成を示す図、第27図は従来の回折格子分光
器を用いた微小試料の顕微吸収分光分布を測定するため
の装置の構成を示す図である。 1・・・レーザ、2・・・検出器、3・・・ヘテロダイ
ン受光系、4・・・マイケルソン受光系、5−・・高指
向性光学系、10・・・可変波長レーザ、11・・・ビ
ーム変換器12・・・励起光カットフィルター、13・
・・試料台、14・・・アパーチャー、15・・・チョ
ッパー、16・・・接眼レンズ、17・・・駆動系、2
0・・・透過試料、21・・・反射試料、30.40.
50・・・高分解能検出系、S・・・試料、BS・・・
ビームスプリッタ−1HM・・・ハーフミラ−1M1〜
M7・・・ミラー、AO・・・周波数シフター、M・・
・移動鏡、Ob、Obl、Ob2・・・対物レンズ、P
・・・ピンホール、Ll・・・集光レンズ、L2・・・
対物レンズ、XY・・・X−Y走査装置、PH・・・ピ
ンホール板、NZ・・・散乱体、L・・・レンズ、MS
・・・切り換え鏡、K1、K2・・・カセグレイン反射
光学系 出  願  人 新技術事業団 代理人 弁理士 蛭 川 昌 信 第1 図 芽2 図 第3 図 第4mへ 第5図 第6図 第7図 第8図 M9図 第10図 第11図 第13図 第14図 第15図 第19図 GL 第20図 N、A子0.1 NA=0.1 第21図 第22図 第23図 第26図
Figure 1 is a diagram for explaining the configuration and operation of a heterodyne light receiving system, which is the premise of the present invention, Figure 2 is a diagram for explaining the configuration and operation of a similar Michelson light receiving system, and Figure 3 is a similar diagram. Figure 4A is a diagram showing the configuration of a typical highly directional optical system. Diagram for explaining the configuration and operation, No. 4
Figure B is a diagram showing a modification of the measurement method and apparatus to Figure 4, Figure 5 is a diagram explaining the configuration and operation of a high-resolution detection system using a Michelson light receiving system, and Figure 6 is a diagram to explain the configuration and operation of a high-resolution detection system using a Michelson light receiving system. A diagram for explaining the configuration and operation of a high-resolution detection system using a highly directional optical system. Figure 7 shows the configuration of an example of microscopic absorption distribution measurement using the heterogain light receiving system of the present invention applied to a transmitted sample. 8 is a diagram showing the configuration of an embodiment of the microscopic absorption distribution measurement by modifying the apparatus shown in FIG. 7 for use with reflective samples. FIG. Figure 10 showing the configuration of the microscopic absorption distribution measurement using
The figure shows the configuration of an embodiment of the microscopic absorption distribution measurement by modifying the apparatus shown in Fig. 9 for reflection samples, and Figs. 11 and 12 show the configuration of the microscopic absorption distribution measurement using the highly directional optical system of the present invention. Figures 13 to 15 are diagrams showing some specific examples of the apparatus for measuring the microscopic absorption distribution characteristics of a sample according to the present invention, and Figures 16 to 25 are diagrams showing the configuration of an embodiment of the present invention. Figure 25 is a diagram showing the configuration of the highly directional optical system proposed earlier, Figure 25 is a diagram showing the configuration of an apparatus for measuring microscopic absorption distribution using a conventional Fourier spectrometer, and Figure 27 is a diagram showing the configuration of a conventional diffraction grating. FIG. 2 is a diagram showing the configuration of an apparatus for measuring the microscopic absorption spectral distribution of a microsample using a spectrometer. DESCRIPTION OF SYMBOLS 1... Laser, 2... Detector, 3... Heterodyne light receiving system, 4... Michelson light receiving system, 5-... Highly directional optical system, 10... Tunable wavelength laser, 11... ... Beam converter 12 ... Excitation light cut filter, 13.
... Sample stage, 14... Aperture, 15... Chopper, 16... Eyepiece, 17... Drive system, 2
0...Transmission sample, 21...Reflection sample, 30.40.
50... High resolution detection system, S... Sample, BS...
Beam splitter-1HM...Half mirror-1M1~
M7...Mirror, AO...Frequency shifter, M...
・Moving mirror, Ob, Obl, Ob2...Objective lens, P
...Pinhole, Ll...Condensing lens, L2...
Objective lens, XY...X-Y scanning device, PH...pinhole plate, NZ...scatterer, L...lens, MS
...Switching mirror, K1, K2...Cassegrain reflective optical system Applicant: New Technology Corporation Agent Patent attorney Masaru Hirukawa Shindai 1 Zume 2 Figure 3 Go to Figure 4m Figure 5 Figure 6 Fig. 7 Fig. 8 Fig. M9 Fig. 10 Fig. 11 Fig. 13 Fig. 14 Fig. 15 Fig. 19 Fig. GL Fig. 20 N, A child 0.1 NA = 0.1 Fig. 21 Fig. 22 Fig. 23 Figure 26

Claims (11)

【特許請求の範囲】[Claims] (1)試料の微小な測定点に指向性の高い光を集光して
照射し、測定点から発散する光を平行光に変換して、そ
の平行光のみの強度を高指向性検出系を用いて検出し、
かつ、試料を前記集光光に対して相対的に走査しながら
前記検出操作を繰り返すことにより、試料の吸収分布特
性を測定することを特徴とする不透明試料の顕微吸収分
布測定方法。
(1) Highly directional light is focused and irradiated onto a minute measurement point on the sample, the light diverging from the measurement point is converted into parallel light, and the intensity of only the parallel light is detected using a highly directional detection system. Detect using
A method for measuring a microscopic absorption distribution of an opaque sample, characterized in that the absorption distribution characteristics of the sample are measured by repeating the detection operation while scanning the sample relative to the condensed light.
(2)測定点に極近接して集光光のフランフォーファ回
折像成分の0次像の大きさより小さいピンホールを配置
して照明領域を制限することを特徴とする請求項1記載
の不透明試料の顕微吸収分布測定方法。
(2) The opaque device according to claim 1, characterized in that a pinhole smaller than the size of the zero-order image of the Franphofer diffraction image component of the condensed light is arranged extremely close to the measurement point to limit the illumination area. A method for measuring the microscopic absorption distribution of a sample.
(3)指向性の高い光が可変波長の光であることを特徴
とする請求項1又は2記載の不透明試料の顕微吸収分布
測定方法。
(3) The method for measuring microscopic absorption distribution of an opaque sample according to claim 1 or 2, wherein the highly directional light is light with a variable wavelength.
(4)測定点から検出器に到る光路中に照射光の波長の
光を遮断する励起光カットフィルターを挿入して、試料
の顕微蛍光分布測定を行うことを特徴とする請求項1又
は2記載の不透明試料の顕微吸収分布測定方法。
(4) The microfluorescence distribution measurement of the sample is performed by inserting an excitation light cut filter that blocks light at the wavelength of the irradiation light into the optical path from the measurement point to the detector. A method for measuring the microscopic absorption distribution of an opaque sample as described above.
(5)試料に照射する照射光束の一部を取り出してその
光束強度を検出して参照光強度とし、高指向性検出系を
用いて検出した光強度を試料からの信号光強度として透
過積分減光度を求めることを特徴とする請求項1から3
の何れか1項記載の不透明試料の顕微吸収分布測定方法
(5) Take out a part of the irradiation light flux that irradiates the sample, detect the intensity of the light flux, and use it as the reference light intensity, and use the light intensity detected using the highly directional detection system as the signal light intensity from the sample, and reduce the transmission integral. Claims 1 to 3 characterized in that the luminous intensity is determined.
A method for measuring microscopic absorption distribution of an opaque sample according to any one of the above.
(6)波長変更可能な単色光源からの光を2分して、一
方の光路中に入射光の周波数をシフトさせる周波数シフ
ト手段を設け、他方の光路中に2個の収束光学系よりな
る共焦点光学系を配置し、共焦点光学系の集光位置に相
対的に走査可能な試料を配置し、周波数シフト手段から
射出する指向性の高い光と試料の測定点から発散され共
焦点光学系によって平行光に変換された光とを合成して
同方向に射出させるビーム合成手段を設け、ビーム合成
手段によって合成された光を電気信号に変換してシフト
周波数に等しい交流成分のみの強度を検出する検出手段
を設けたことを特徴とする不透明試料の顕微吸収分布測
定装置。
(6) The light from the wavelength-changeable monochromatic light source is divided into two, a frequency shifting means for shifting the frequency of the incident light is provided in one optical path, and a common system consisting of two converging optical systems is provided in the other optical path. A focusing optical system is arranged, a sample that can be scanned relatively is arranged at the focusing position of the confocal optical system, and the highly directional light emitted from the frequency shift means and the confocal optical system are separated from the measurement point of the sample. A beam combining means is provided to combine the light converted into parallel light by the converter and emit it in the same direction, and the beam combining means converts the combined light into an electrical signal and detects the intensity of only the alternating current component equal to the shift frequency. 1. A microscopic absorption distribution measuring device for an opaque sample, characterized in that it is provided with a detection means for detecting.
(7)波長変更可能な単色光源からの光を2分して、一
方の光路中に光路長を所定速度で変更する光路長変更手
段を設け、他方の光路中に2個の収束光学系よりなる共
焦点光学系を配置し、共焦点光学系の集光位置に相対的
に走査可能な試料を配置し、光路長変更手段から射出す
る指向性の高い光と試料の測定点から発散され共焦点光
学系によって平行光に変換された光とを合成して同方向
に射出させるビーム合成手段を設け、ビーム合成手段に
よって合成された光を電気信号に変換して光路長変更速
度に応じた周波数の交流成分のみの強度を検出する検出
手段を設けたことを特徴とする不透明試料の顕微吸収分
布測定装置。
(7) Light from a wavelength-changeable monochromatic light source is divided into two, an optical path length changing means for changing the optical path length at a predetermined speed is provided in one optical path, and two converging optical systems are provided in the other optical path. A confocal optical system is arranged, and a sample that can be scanned relatively is arranged at the focusing position of the confocal optical system. A beam combining means is provided to combine the light converted into parallel light by the focusing optical system and emit it in the same direction, and the beam combining means converts the combined light into an electrical signal and generates a frequency corresponding to the optical path length change speed. 1. A microscopic absorption distribution measuring device for an opaque sample, characterized in that it is provided with a detection means for detecting the intensity of only the alternating current component.
(8)波長変更可能な単色光源から出る光の光路中に2
個の収束光学系よりなる共焦点光学系を配置し、共焦点
光学系の集光位置に相対的に走査可能な試料を配置し、
試料の測定点から発散され共焦点光学系によって平行光
に変換された光の進行方向の光のみを抽出する高指向性
光学系を配置し、高指向性光学系により抽出された光の
強度を検出する検出手段を設けたことを特徴とする不透
明試料の顕微吸収分布測定装置。
(8) In the optical path of the light emitted from the wavelength-changeable monochromatic light source,
A confocal optical system consisting of several converging optical systems is arranged, a sample that can be scanned relatively is arranged at the converging position of the confocal optical system,
A highly directional optical system is installed to extract only the light in the traveling direction of the light that is diverged from the measurement point of the sample and converted into parallel light by the confocal optical system, and the intensity of the light extracted by the highly directional optical system is A microscopic absorption distribution measuring device for an opaque sample, characterized in that it is provided with a detection means for detection.
(9)波長変更可能な単色光源から出る光の光路中に2
光路切替え手段を設け、一方の光路と他方の光路が同軸
でかつ光の進行方向が反対になるように構成し、同軸に
なった光路中に前記共焦点光学系を配置し、前記共焦点
光学系の一方の側に試料を透過した光又は試料により反
射散乱された光を取り出す光取り出し手段を設け、光取
り出し手段の後方に前記高指向性光学系を配置したこと
を特徴とする請求項8記載の不透明試料の顕微吸収分布
測定装置。
(9) In the optical path of the light emitted from the wavelength-changeable monochromatic light source,
An optical path switching means is provided, one optical path and the other optical path are coaxial, and the traveling directions of light are opposite to each other, and the confocal optical system is arranged in the coaxial optical path, and the confocal optical system is arranged in the coaxial optical path. 8. A light extracting means for extracting light transmitted through the sample or light reflected and scattered by the sample is provided on one side of the system, and the highly directional optical system is disposed behind the light extracting means. A microscopic absorption distribution measuring device for an opaque sample as described above.
(10)波長変更可能な単色光源からの光を2分して一
方の光路中に入射光の周波数をシフトさせる周波数シフ
ト手段を設け、他方の光路中に指向性の高い光を集光し
て試料の微小な測定点に照射する第1の収束光学系を配
置し、第1の収束光学系の集光位置に相対的に走査可能
な試料を配置し、周波数シフト手段から射出する指向性
の高い光を試料に照射する第1の収束光学系と同じ収束
球面波となる第2の収支光学系を配置し、両光束を合成
して同方向に射出するビーム合成手段を設け、ビーム合
成手段によって合成された光を電気信号に変換してシフ
ト周波数に等しい交流成分のみの強度を検出する検出手
段を設けたことを特徴とする不透明試料の顕微吸収分布
測定装置。
(10) A frequency shifting means is provided to split the light from a wavelength-changeable monochromatic light source into two, shift the frequency of the incident light into one optical path, and focus highly directional light into the other optical path. A first converging optical system that irradiates a minute measurement point on the sample is arranged, a sample that can be scanned relatively is arranged at the condensing position of the first converging optical system, and the directional light emitted from the frequency shift means is A first converging optical system that irradiates the sample with high-temperature light and a second converging optical system that emits the same convergent spherical wave are arranged, and a beam combining means is provided that combines both light beams and emits them in the same direction. 1. An apparatus for measuring microscopic absorption distribution of an opaque sample, comprising a detection means for converting light synthesized by the above into an electrical signal and detecting the intensity of only an alternating current component equal to a shift frequency.
(11)散乱性試料からの光を遮断して、周波数シフト
手段又は光路長変更手段から射出する光束強度を検出し
て参照光強度とし、ビーム合成手段によって合成された
光を電気信号に変換してシフト周波数に等しい交流成分
又は光路長変更速度に応じた周波数の交流成分を試料か
らの信号強度とし、これらの参照強度と信号光強度を用
いて透過積分減光度を求めることを特徴とする請求項6
、7又は10の何れか1項記載の不透明試料の顕微吸収
分布測定装置。
(11) Blocking the light from the scattering sample, detecting the intensity of the luminous flux emitted from the frequency shifting means or the optical path length changing means and using it as a reference light intensity, and converting the combined light into an electrical signal by the beam combining means. A claim characterized in that an alternating current component equal to the shift frequency or an alternating current component with a frequency corresponding to the optical path length change speed is used as the signal intensity from the sample, and the transmission integral attenuation is determined using these reference intensities and signal light intensities. Item 6
, 7 or 10. The apparatus for measuring the microscopic absorption distribution of an opaque sample according to any one of Items 7 and 10.
JP2133067A 1990-05-22 1990-05-22 Microscopic absorption distribution measuring device for opaque samples Expired - Fee Related JPH0721451B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2133067A JPH0721451B2 (en) 1990-05-22 1990-05-22 Microscopic absorption distribution measuring device for opaque samples
DE69121633T DE69121633T2 (en) 1990-05-22 1991-05-21 Method and apparatus for measuring spectral absorption in opaque material and method and apparatus for measuring a distribution of microscopic absorption
EP91304605A EP0458601B1 (en) 1990-05-22 1991-05-21 Method of and apparatus for measuring spectral absorption in opaque specimens and method of and apparatus for measuring microscopic absorption distribution
US07/704,142 US5345306A (en) 1990-05-22 1991-05-22 Method and apparatus for measuring spectral absorption in an opaque specimen and method and apparatus for measuring the microscopic absorption distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133067A JPH0721451B2 (en) 1990-05-22 1990-05-22 Microscopic absorption distribution measuring device for opaque samples

Publications (2)

Publication Number Publication Date
JPH0427844A true JPH0427844A (en) 1992-01-30
JPH0721451B2 JPH0721451B2 (en) 1995-03-08

Family

ID=15096067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133067A Expired - Fee Related JPH0721451B2 (en) 1990-05-22 1990-05-22 Microscopic absorption distribution measuring device for opaque samples

Country Status (1)

Country Link
JP (1) JPH0721451B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240783A (en) * 1992-02-28 1993-09-17 Shimadzu Corp Spectrophotometer
JPH08110296A (en) * 1994-09-30 1996-04-30 Fumio Inaba Optical image measuring device
JP2003106997A (en) * 2001-09-28 2003-04-09 Jasco Corp Microspectroscope device
US8136899B2 (en) 2006-07-05 2012-03-20 Sanyo Electric Co., Ltd. Rack device and incubator having the same
JP2016109702A (en) * 2014-12-02 2016-06-20 浜松ホトニクス株式会社 Image acquisition device and image acquisition method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2576510C (en) * 2004-08-06 2014-10-14 Compucyte Corporation Multiple-color monochromatic light absorption and quantification of light absorption in a stained sample

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243839A (en) * 1987-03-31 1988-10-11 Fujitsu Ltd Instrument for measuring infrared scattering intensity
JPS63274848A (en) * 1987-05-01 1988-11-11 Hitachi Ltd Measuring instrument for local stress distribution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243839A (en) * 1987-03-31 1988-10-11 Fujitsu Ltd Instrument for measuring infrared scattering intensity
JPS63274848A (en) * 1987-05-01 1988-11-11 Hitachi Ltd Measuring instrument for local stress distribution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240783A (en) * 1992-02-28 1993-09-17 Shimadzu Corp Spectrophotometer
JPH08110296A (en) * 1994-09-30 1996-04-30 Fumio Inaba Optical image measuring device
JP2003106997A (en) * 2001-09-28 2003-04-09 Jasco Corp Microspectroscope device
US8136899B2 (en) 2006-07-05 2012-03-20 Sanyo Electric Co., Ltd. Rack device and incubator having the same
JP2016109702A (en) * 2014-12-02 2016-06-20 浜松ホトニクス株式会社 Image acquisition device and image acquisition method

Also Published As

Publication number Publication date
JPH0721451B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US5345306A (en) Method and apparatus for measuring spectral absorption in an opaque specimen and method and apparatus for measuring the microscopic absorption distribution
US6274871B1 (en) Method and system for performing infrared study on a biological sample
CN103969239B (en) A kind of point pupil laser differential confocal Raman spectra test method and device
JP5134177B2 (en) Systems using light-scattering spectroscopy based on electric fields
JP5317298B2 (en) Spectroscopic measurement apparatus and spectral measurement method
JP2004518125A (en) Composition analysis
US20040100636A1 (en) Microscopy
JPH0226177B2 (en)
JP2009008393A (en) Optical image measuring device
CN110426372B (en) Elastic modulus imaging detection method for frequency-sweeping Brillouin scatterer
JPH04122248A (en) Optical tomographic image imaging device
JPH0427844A (en) Method and apparatus for measuring microscopic absorption distribution of opaque sample
KR20150146075A (en) Confocal spectrogram microscope
CN209264563U (en) A kind of refractive index micrometering system
CN104990908A (en) Laser biax confocal induced breakdown-Raman spectrum imaging detection method and device
CN109211874A (en) Postposition is divided pupil confocal laser Raman spectra test method and device
JP2890309B2 (en) Form and function imaging device
CN109142273A (en) A kind of refractive index micrometering system
JPH0427845A (en) Method and apparatus for measuring spectral absorption of opaque sample
JPH0621868B2 (en) Heterodyne detection imaging system and optical tomographic imaging apparatus using the imaging system
JP3077703B2 (en) Phase image detection device using heterodyne detection light receiving system
JP3597887B2 (en) Scanning optical tissue inspection system
JP2644609B2 (en) Simultaneous detection of amplitude image and phase image using heterodyne detection light receiving system
JP2748269B2 (en) Functional imaging device
JPH0483149A (en) Fluorescent image imaging device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees