JPH0427845A - Method and apparatus for measuring spectral absorption of opaque sample - Google Patents

Method and apparatus for measuring spectral absorption of opaque sample

Info

Publication number
JPH0427845A
JPH0427845A JP13306690A JP13306690A JPH0427845A JP H0427845 A JPH0427845 A JP H0427845A JP 13306690 A JP13306690 A JP 13306690A JP 13306690 A JP13306690 A JP 13306690A JP H0427845 A JPH0427845 A JP H0427845A
Authority
JP
Japan
Prior art keywords
light
sample
optical path
intensity
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13306690A
Other languages
Japanese (ja)
Other versions
JPH0721452B2 (en
Inventor
Tsutomu Ichimura
市村 勉
Fumio Inaba
稲場 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP2133066A priority Critical patent/JPH0721452B2/en
Priority to DE69121633T priority patent/DE69121633T2/en
Priority to EP91304605A priority patent/EP0458601B1/en
Priority to US07/704,142 priority patent/US5345306A/en
Publication of JPH0427845A publication Critical patent/JPH0427845A/en
Publication of JPH0721452B2 publication Critical patent/JPH0721452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained

Abstract

PURPOSE:To measure the spectral absorption characteristics of a sample having scattering properties with high accuracy without picking up scattering beam and noise by irradiating the sample having scattering properties with beam of a variable wavelength having high directionality to detect the intensity only of beam scattered in a specific direction by a highly directional detection system. CONSTITUTION:The beam having specific frequency omega1 emitted from a laser 1 is split into two beams by a beam splitter BS and a sample S is inserted in the straight advance beam among two beams while the other reflected beam is synthesized with the straight advance beam by a half mirror HM through mirrors M1, M2 and the synthesized beam is photoelectrically converted by a detector 2. When a frequency shifter AO is inserted in the reflected beam, a beat signal having the frequency corresponding to the difference between frequencies omega1, omega2 appears from the detector 2 and the intensity of the AC component thereof is proportional to the transmissivity of the sample S. Therefore, the weak signal transmitted through the sample S can be detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は懸濁液や粉体等の散乱体の分光吸収測定方法及
びそのための装置に関し、特に、試料に対して特定の方
向からビームを当てた時の特定の方向に散乱される光の
分光吸収特性を測定する方法及び装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for measuring the spectral absorption of scattering materials such as suspensions and powders, and particularly relates to a method for measuring the spectral absorption of scattering materials such as suspensions and powders, and particularly relates to a method for measuring the spectral absorption of scattering materials such as suspensions and powders, and in particular, a method for measuring the spectral absorption of scattering materials such as suspensions and powders. The present invention relates to a method and apparatus for measuring the spectral absorption characteristics of light scattered in a specific direction when applied.

〔従来の技術〕[Conventional technology]

X線の発見以来、生体(人体)内部を外部より損傷を与
えずに観察する技術(非観血的、あるいは無侵襲的計測
法)は、生物学、特に医学の分野で強く求められ発達し
てきた。この技術は電磁波として見ると最も波長の短い
ガンマ線やX線と、最も波長の長いラジオ波が使用され
ている。前者はX線CTとして、後者はNMR−CT 
(Magnetic  Re5onance  Ima
ging、MRI)として実用化されている。
Since the discovery of X-rays, technology for observing the inside of living organisms (human bodies) from the outside without causing damage (non-invasive or non-invasive measurement methods) has been strongly sought after and developed in the field of biology, especially medicine. Ta. This technology uses gamma rays and X-rays, which have the shortest wavelengths of electromagnetic waves, and radio waves, which have the longest wavelengths. The former is an X-ray CT, the latter is an NMR-CT
(Magnetic Re5onance Ima
ing, MRI).

一方、物理や化学の分野で広く用いられている紫外−可
視一近赤外一赤外の領域の分光学を“丸ごと”生体(i
n  vivo)へ応用する試みは比較的少ない。これ
は光を用いた生体計測、特に吸収や発光の過程を利用す
るものにおいて、もっとも基本的な“定量性”に関し多
くの問題が解決されずに残されているからである。現在
、固体素子を用いた反射スペクトルの測定装置や高感度
TVカメラ等による計測が試みられているが、再現性や
得られた絶対値に対し信頼性が少ないのはこの理由によ
る。
On the other hand, spectroscopy in the ultraviolet-visible, near-infrared, and infrared regions, which are widely used in the fields of physics and chemistry, can be applied to the entire living body (i.e.
There have been relatively few attempts to apply it to n vivo. This is because many problems regarding the most basic "quantitativeness" remain unsolved in biological measurements using light, especially those that utilize absorption and luminescence processes. At present, attempts are being made to measure reflection spectra using solid-state devices, high-sensitivity TV cameras, etc., but this is the reason why the reproducibility and reliability of the obtained absolute values is low.

生体組織のような散乱体に光を照射した際、180°向
かい合わせで受光すればある程度直進光を取り出すこと
ができるが、今のところ、その空間分解能はあまり良い
とはいえない。
When light is irradiated onto a scattering object such as biological tissue, it is possible to extract a certain amount of straight light if the light is received 180 degrees facing the object, but at present the spatial resolution is not very good.

X線と光とでの空間分離能の差は今のところ埋めること
はできない。しかしながら光、特に近赤外光を用いると
、血液中のヘモグロビンから組織酸素濃度のイメージン
グができるはずである。これらは他のNMR−CTやX
1lCTと異なった情報を与えてくれるであろう。
The difference in spatial resolution between X-rays and light cannot currently be bridged. However, using light, particularly near-infrared light, it should be possible to image tissue oxygen levels from hemoglobin in the blood. These are other NMR-CT and
It will give you different information than 11CT.

3〜5工の厚さの組織ならば、われわれは透過してきた
光を検出することができる。このことは“光−レントゲ
ン写真“を診断に使えることを意味する。女性の乳房は
組織が比較的均一であり光が透過しやすく、またその形
状から透過光の検出(厚さ二〜3叩程度)が容易であり
、古くから乳ガンの診断に、[]iaphanogra
phy (Lightscann ing)という名で
用いられてきた。
If the tissue is 3 to 5 microns thick, we can detect the light that passes through it. This means that "optical radiographs" can be used for diagnosis. The tissue of the female breast is relatively uniform, making it easy for light to pass through it, and its shape makes it easy to detect transmitted light (about 2 to 3 inches thick).
It has been used under the name phy (Lightscanning).

このような状況の下で、本発明者は、特願平1−628
98号、特願平1−250034号、特願平2−776
90号等において、散乱光に混入している平面波を分離
して取り出し、観察するには、平面波のフランフォーフ
ァ回折像(エアリーディスク)の0次スペクトル(エア
リ−ディスクの第1暗輪内の部分が対応する。)のみを
観察するようにすればよく、このようにすることによっ
て散乱成分を殆ど除くことができることを示した。
Under these circumstances, the present inventor filed Japanese Patent Application No. 1-628.
No. 98, Japanese Patent Application No. 1-250034, Japanese Patent Application No. 2-776
No. 90 etc., in order to separate and extract the plane wave mixed in the scattered light and observe it, the 0th order spectrum (inside the first dark ring of the Airy disk) of the Franhofer diffraction image (Airy disk) of the plane wave is used. It is sufficient to observe only the corresponding parts), and it was shown that by doing this, it is possible to almost eliminate the scattered components.

そして、このような観察を実現する高指向性光学系の1
つとして、第15図のように相互に離れた2つのピンホ
ールP、 、P、からなる光学系を提案した。この光学
系は、ピンホールP2を通して0次光を検出器23で検
出するものである。また、第16図に示すように、直線
状の細長い中空のガラス繊維35からなっており、その
内壁面には光吸収材、例えばカーボン等の吸収材35が
塗布されている高指向性光学系を提案した。さらに、第
17図から第24図に示すような、対物レンズObとそ
の焦点面に配置した対物レンズObによるフランフォー
ファ回折の0次の回折像のみを通過させるピンホールP
とからなる高指向性光学系(第17図)、屈折率分布レ
ンズGLとその一端の焦点面に配置した同様なピンホー
ルPとからなる高指向性光学系(第18図)、ピンホー
ルPの代わりにそれと同様な作用をする光ファイバーS
Mを配置した高指向性光学系(第19図、第20図)、
これらの高指向性光学系のピンホールP又は光ファイバ
ーSMの出射側に、入射側の対物レンズOblと同様の
対物レンズOb2を配置した高指向性光学系(第21図
、第23図))、入射側の屈折率分布レンズGLIと同
様の屈折率分布レンズGL2を配置した高指向性光学系
(第22図、第24図)等を提案した。
One of the highly directional optical systems that realizes this type of observation is
As one example, we proposed an optical system consisting of two mutually separated pinholes P, , P, as shown in Fig. 15. In this optical system, the zero-order light is detected by the detector 23 through the pinhole P2. In addition, as shown in FIG. 16, the highly directional optical system is made of a straight, elongated hollow glass fiber 35, and the inner wall surface of the glass fiber 35 is coated with a light absorbing material such as carbon. proposed. Furthermore, as shown in FIGS. 17 to 24, a pinhole P through which only the 0th-order diffraction image of Franhofer diffraction due to the objective lens Ob and the objective lens Ob placed at its focal plane passes through.
(Fig. 17), a highly directional optical system (Fig. 18) consisting of a gradient index lens GL and a similar pinhole P placed in the focal plane at one end of the lens, and a pinhole P (Fig. 18). Optical fiber S with the same effect as that instead of
Highly directional optical system with M (Fig. 19, Fig. 20),
A highly directional optical system in which an objective lens Ob2 similar to the objective lens Obl on the incident side is arranged on the output side of the pinhole P or optical fiber SM of these highly directional optical systems (Figs. 21 and 23); We have proposed a highly directional optical system (FIGS. 22 and 24) in which a gradient index lens GL2 similar to the gradient index lens GLI on the incident side is arranged.

ところで、従来、散乱を伴う試料の直進成分と透過散乱
成分をオパールグラスで均等に散乱させて試料の透過積
分減光度を測定するオパールグラス法等の不透明試料の
吸収測定法は知られている(例えば、柴田和雄著「光生
物学シーズ 分光測定入門」第62〜82頁(昭51.
 6. 20. 。
By the way, absorption measurement methods for opaque samples are known, such as the opal glass method, which measures the transmitted integrated attenuation of the sample by uniformly scattering the linear component and the transmitted scattering component of the sample accompanied by scattering with an opal glass ( For example, "Photobiology Seeds: Introduction to Spectrometry" by Kazuo Shibata, pp. 62-82 (1972).
6. 20. .

共立出版■発行)参照)。細胞、顆粒、固体粉末などの
粒子懸濁液のような不均一系は、一般に光を吸収かつ散
乱する。したがって、吸収波長特性だけを求めることは
困難となる。そこで、吸収波長特性と近似できる量を求
めて、近似している。
(Refer to Kyoritsu Shuppan ■Published)). Heterogeneous systems such as particle suspensions such as cells, granules, solid powders, etc. generally absorb and scatter light. Therefore, it is difficult to obtain only the absorption wavelength characteristics. Therefore, an amount that can be approximated to the absorption wavelength characteristic is determined and approximated.

すなわち、透過積分減光度を求めて吸収に置き換えてい
る。この透過積分減光度とは、吸収と散乱の両者により
減衰した光束の入射光束に対する比の逆数の対数であり
、一般には吸収特性とは一致しない。そこで、できるだ
け吸収特性に近似できるようにするために、平行透過光
束と散乱透過光束を検出器で同一補足率で検出すれば、
それらの比は散乱の影響が少なくなる。この方法として
オパールグラス法が実用化されている。また、別の方法
として、平行透過光束と散乱透過光束よりなる全透過光
束を全部補足することにより散乱の影響を少なくする方
法として、透過型積分球法や光電面密着法等が実用され
ている。同−補足率検出と全補足検出の中間的な方法と
して、密着散乱併用法も用いられる。
That is, the transmission integral attenuation is calculated and replaced with absorption. The transmission integral attenuation is the logarithm of the reciprocal of the ratio of the light flux attenuated by both absorption and scattering to the incident light flux, and generally does not match the absorption characteristic. Therefore, in order to approximate the absorption characteristics as much as possible, if the parallel transmitted light flux and the scattered transmitted light flux are detected with the same capture rate by the detector, then
Their ratio becomes less affected by scattering. As this method, the opal glass method has been put into practical use. In addition, as another method, the transmission type integrating sphere method and the photocathode contact method are used to reduce the influence of scattering by capturing the total transmitted light beam consisting of the parallel transmitted light beam and the scattered transmitted light beam. . A combined close scattering method is also used as an intermediate method between the same-completion rate detection and the total complement detection.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記した従来の■オパールグラス法は光
散乱能が波長によって変化してしまう欠点がある。■透
過積分球は、積分球内の白色反射材料は最良のものとし
て知られるMgO粉末の場合でも、短波長特に紫外領域
に近くなると反射率が大きく減少し、信頼し得るデータ
が得られない欠点がある。■光電面密着法は2つの検出
器を用いるものは、同一の波長感度特性を得ることが難
しい。1つの検出器の場合、試料と対照とを限られた空
間に設置するのが困難になる。■密着散乱併用法は、前
王者に比して優れているものの、試料の大きさと検出器
の距離と大きさを適切に選ばなければならない問題点が
ある。
However, the above-mentioned conventional opal glass method has the drawback that the light scattering ability changes depending on the wavelength. ■The transmission integrating sphere has the disadvantage that even if the white reflective material inside the sphere is MgO powder, which is known to be the best, the reflectance decreases significantly at short wavelengths, especially near the ultraviolet region, making it impossible to obtain reliable data. There is. ■In the photocathode contact method, which uses two detectors, it is difficult to obtain the same wavelength sensitivity characteristics. A single detector makes it difficult to install the sample and control in a confined space. ■Although the combined contact scattering method is superior to the former champion, there is a problem in that the size of the sample and the distance and size of the detector must be appropriately selected.

しかも、従来法の4つの方法に共通した欠点は、透過積
分減光度を測定しても、それが懸濁粒子の吸収波長と近
似できないときがある。すなわち、反射光束が大きくな
ると近似できない。また、試料による散乱空間パターン
が波長により異なる場合、散乱透過光束の波長変化と散
乱反射光束の波長変化が同じでなくなり、近似できなく
なる。
Moreover, a common drawback of the four conventional methods is that even if the transmission integral attenuation is measured, it may not be able to approximate the absorption wavelength of suspended particles. In other words, if the reflected light flux becomes large, approximation cannot be achieved. Further, if the scattering spatial pattern by the sample differs depending on the wavelength, the wavelength change of the scattered transmitted light flux and the wavelength change of the scattered reflected light flux will not be the same, and it will no longer be possible to approximate them.

本発明はこのような状況に鑑みてなされたものであり、
その目的は、懸濁液、生体組織等の散乱物体の特定方向
の透過ないし反射成分の分光吸収特性を測定する方法及
び装置を提供することてある。
The present invention was made in view of this situation, and
The purpose is to provide a method and apparatus for measuring the spectral absorption characteristics of transmitted or reflected components in a specific direction of a scattering object such as a suspension or biological tissue.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の不透明試料の分光吸収測定
方法は、散乱性試料に特定方向から指向性の高い可変波
長の光を照射して、特定の方向に散乱された光のみの強
度を高指向性検出系を用いて検出することにより、散乱
性試料の分光吸収特性を測定することを特徴とする方法
である。
The spectral absorption measurement method of an opaque sample according to the present invention achieves the above object by irradiating a scattering sample with highly directional variable wavelength light from a specific direction to increase the intensity of only the light scattered in a specific direction. This method is characterized by measuring the spectral absorption characteristics of a scattering sample by detecting it using a directional detection system.

この場合、前記高指向性検出系により強度を検出する特
定の方向が、試料による透過散乱光を検出する方向であ
る場合と、試料による反射散乱光を検出する方向である
場合とがある。
In this case, the specific direction in which the intensity is detected by the highly directional detection system may be a direction in which transmitted and scattered light by the sample is detected, or a direction in which reflected and scattered light by the sample is detected.

また、このような方法を実施する本発明の不透明試料の
分光吸収測定装置の第1のものは、波長変更可能な単色
光源からの光を2分して、一方の光路中に入射光の周波
数をシフトさせる周波数シフト手段を設け、他方の光路
中に散乱性試料を配置し、周波数シフト手段から射出す
る指向性の高い光と散乱性試料から特定方向に出る光と
を合成して同方向に射出させるビーム合成手段を設け、
ビーム合成手段によって合成された光を電気信号に変換
してシフト周波数に等しい交流成分のみの強度を検出す
る検出手段を設けたことを特徴とするものである。
In addition, the first apparatus for spectroscopic absorption measurement of opaque samples of the present invention, which implements such a method, divides light from a wavelength-changeable monochromatic light source into two, and enters the frequency of the incident light into one optical path. A scattering sample is placed in the other optical path, and the highly directional light emitted from the frequency shift means and the light emitted from the scattering sample in a specific direction are combined and directed in the same direction. A beam combining means for emitting is provided,
The present invention is characterized in that a detection means is provided for converting the light combined by the beam combining means into an electrical signal and detecting the intensity of only the alternating current component equal to the shift frequency.

第2の不透明試料の分光吸収測定装置は、波長変更可能
な単色光源からの光を2分して、一方の光路中に光路長
を所定速度で変更する光路長変更手段を設け、他方の光
路中に散乱性試料を配置し、光路長変更手段から射出す
る指向性の高い光と散乱性試料から特定方向に出る光と
を合成して同方向に射出させるビーム合成手段を設け、
ビーム合成手段によって合成された光を電気信号に変換
して光路長変更速度に応じた周波数の交流成分のみの強
度を検出する検出手段を設けたことを特徴とするもので
ある。
The second spectroscopic absorption measuring device for an opaque sample divides the light from the wavelength-changeable monochromatic light source into two parts, is provided with an optical path length changing means for changing the optical path length at a predetermined speed in one optical path, and is provided with an optical path length changing means for changing the optical path length at a predetermined speed, and the other optical path is divided into two parts. A scattering sample is placed inside, and a beam combining means is provided for combining highly directional light emitted from the optical path length changing means and light emitted from the scattering sample in a specific direction and emitting the same in the same direction.
The present invention is characterized in that a detection means is provided for converting the light combined by the beam combining means into an electrical signal and detecting the intensity of only the alternating current component of a frequency corresponding to the speed of changing the optical path length.

第3の不透明試料の分光吸収測定装置は、波長変更可能
な単色光源から出る光の光路中に散乱性試料を配置し、
散乱性試料から特定方向に出る光を抽出する高指向性光
学系を配置し、高指向性光学系により抽出された光の強
度を検出する検出手段を設けたことを特徴とするもので
ある。
The third opaque sample spectroscopic absorption measuring device places a scattering sample in the optical path of light emitted from a wavelength-changeable monochromatic light source,
The present invention is characterized in that a highly directional optical system is arranged to extract light emitted from a scattering sample in a specific direction, and a detection means is provided to detect the intensity of the light extracted by the highly directional optical system.

第3の装置の場合、波長変更可能な単色光源から出る光
の光路中に2光路切替え手段を設け、方の光路と他方の
光路が同軸でかつ光の進行方向が反対になるように構成
し、同軸になった光路中に高指向性光学系を配置し、高
指向性光学系の一方の側に散乱性試料を配置し、高指向
性光学系の他方の側から試料を特定方向に透過した光又
は試料により特定方向に反射散乱された光を取り出すよ
うに構成することにより、1つの装置で試料による透過
散乱光と反射散乱光の両分光吸収特性を測定することが
できる。
In the case of the third device, two optical path switching means are provided in the optical path of the light emitted from the wavelength-changeable monochromatic light source, and the one optical path and the other optical path are configured to be coaxial and the traveling direction of the light is opposite. , a highly directional optical system is placed in the coaxial optical path, a scattering sample is placed on one side of the highly directional optical system, and the sample is transmitted in a specific direction from the other side of the highly directional optical system. By configuring the device to take out the light reflected or scattered in a specific direction by the sample, it is possible to measure the spectral absorption characteristics of both transmitted scattered light and reflected scattered light by the sample with one device.

これらのいずれの装置も、試料を透過した光強度又は特
定方向に反射される光強度を信号光強度とし、照射光束
の全部又はその一部を取り出して参照光強度として透過
積分減光度を求することができる。高指向性検出系を用
いる場合、照射光束の一部を取り出して参照光強度とし
、高指向性検出系を用いて検出した光強度を信号強度と
して透過積分減光度を求めるようにする。ヘテロダイン
受光系又はマイケルソン受光系を用いる場合、散乱性試
料からの光を遮断して、周波数シフト手段又は光路長変
更手段から射出する指向性の窩い光の光束強度を検出し
て参照光強度とし、ビーム合成手段によって合成された
光を電気信号に変換してシフト周波数に等しい交流成分
又は光路長変更速度に応じた周波数の交流成分を試料か
らの信号強度とし、これらの強度を用いて透過積分減光
度を求めるようにする。
In both of these devices, the intensity of light transmitted through the sample or the intensity of light reflected in a specific direction is used as the signal light intensity, and all or part of the irradiated light beam is taken out and used as the reference light intensity to calculate the integrated attenuation of the transmitted light. be able to. When using a highly directional detection system, a part of the irradiated light beam is taken out and used as a reference light intensity, and the transmitted integral attenuation degree is determined using the light intensity detected using the highly directional detection system as a signal intensity. When using a heterodyne light receiving system or a Michelson light receiving system, the light from the scattering sample is blocked, and the luminous flux intensity of the directional light emitted from the frequency shift means or optical path length changing means is detected to obtain a reference light intensity. Then, the combined light is converted into an electric signal by the beam combining means, and an AC component equal to the shift frequency or an AC component with a frequency corresponding to the optical path length change speed is used as the signal intensity from the sample, and these intensities are used to transmit the signal. Calculate the integral attenuation.

〔作用〕[Effect]

本発明の不透明試料の分光吸収測定方法及び装置によれ
ば、散乱性試料に特定方向から指向性の高い可変波長の
光を照射して、特定の方向に散乱された光のみの強度を
ヘテロダイン受光系、マイケルソン受光系、高指向性光
学系等の高指向性検出系を用いて検出するので、余分な
方向の散乱光、その他のノイズ光を拾うことなく高精度
で散乱性試料の分光吸収特性を測定することができる。
According to the method and apparatus for measuring spectral absorption of an opaque sample of the present invention, a scattering sample is irradiated with highly directional variable wavelength light from a specific direction, and the intensity of only the light scattered in the specific direction is received by heterodyne. Since detection is performed using a highly directional detection system such as a Michelson light receiving system, a highly directional optical system, etc., it is possible to detect the spectral absorption of a scattering sample with high precision without picking up scattered light in extra directions or other noise light. Characteristics can be measured.

しかも、対照についての測定が従来法に比べて非常に簡
単になり、測定が極めて容易であり、懸濁液、生体組織
等の散乱物体の特定方向の透過ないし反射成分の分光吸
収を測定するのに適した方法及び装置である。
Moreover, the measurement of the control is much simpler than with conventional methods, and the measurement is extremely easy. The method and apparatus are suitable for

〔実施例〕〔Example〕

従来、高感度でコヒーレント光を検出する手段としてヘ
テロダイン受光系が知られている。この受光系3は、例
えば第1図に簡単に示したように、レーザ1から出た特
定の周波数ω1の光をビームスプリッタ−BSにより2
分し、一方の直進光中に試料Sを挿入し、他方の反射光
はミラーM1、M2を経て上記直進光とハーフミラ−H
Mにより合成し、その合成光を検出器2により光電変換
する。反射光中に周波数をシフトさせてω2にする超音
波光学変調器等の周波数シフターA○を挿入すると、検
出器2からは周波数ω1とω2の差の観測可能な周波数
のビート信号が表れ、その交流成分の強さは試料Sの透
過率に比例する。したがって、試料Sを透過した微弱な
信号を検知することができることになる。ところで、こ
のようなヘテロダイン受光系3は、上記のような微弱な
信号を検知できるだけでなく、試料Sによって上記反射
光(周波数ω2の光。以下、参照光とも言う。
Conventionally, a heterodyne light receiving system is known as a means for detecting coherent light with high sensitivity. This light receiving system 3, as briefly shown in FIG.
The sample S is inserted into one of the straight beams, and the reflected light of the other passes through mirrors M1 and M2 to form the straight beam and the half mirror H.
The combined light is photoelectrically converted by the detector 2. When a frequency shifter A○ such as an ultrasonic optical modulator that shifts the frequency to ω2 in the reflected light is inserted, a beat signal with an observable frequency difference between frequencies ω1 and ω2 appears from the detector 2, and the beat signal is The strength of the AC component is proportional to the transmittance of the sample S. Therefore, a weak signal transmitted through the sample S can be detected. By the way, such a heterodyne light receiving system 3 can not only detect the above-mentioned weak signals, but also detect the above-mentioned reflected light (light with frequency ω2; hereinafter also referred to as reference light) by the sample S.

)の方向と異なる方向へ散乱された成分は、検出器2の
検出面上で上記参照光と重なり合わないので、ビート信
号を発生させず、単に直流成分として検出されるため、
このような散乱成分を容易に取り除き、参照光と同じ方
向に進む光成分のみを検出することができる高指向性検
出系としての性質を有する。したがって、本発明におい
ては、第1図に示したようなヘテロダイン受光系3の上
記高指向性検出系としての性質を利用する。
) does not overlap with the reference light on the detection surface of the detector 2, so it does not generate a beat signal and is simply detected as a DC component.
It has the property of being a highly directional detection system that can easily remove such scattered components and detect only light components traveling in the same direction as the reference light. Therefore, in the present invention, the properties of the heterodyne light receiving system 3 as shown in FIG. 1 as the above-mentioned highly directivity detection system are utilized.

また、微少な屈折率変化等を検出できる手段としてマイ
ケルソン受光系が良く知られている。この受光系4は、
第2図に示すように、レーザ1から出た光をビームスプ
リッタ−BSにより2分し、一方のミラーM1、M2を
経た反射光中に試料Sを挿入し、その透過光を後記する
直進光とハーフミラ−HMにより合成する。ビームスプ
リッタ−BSを透過した直進光(以下、参照光とも言う
Furthermore, a Michelson light receiving system is well known as a means for detecting minute changes in refractive index. This light receiving system 4 is
As shown in Figure 2, the light emitted from the laser 1 is split into two by a beam splitter BS, a sample S is inserted into the reflected light that has passed through one of the mirrors M1 and M2, and the transmitted light is a straight beam that will be described later. and half mirror HM. The straight light that has passed through the beam splitter BS (hereinafter also referred to as reference light).

)は、ハーフミラ−HMを透過して図示両矢符で示した
ように移動される移動鏡Mに当たり、逆方向に反射され
、ハーフミラ−HMにより試料を透過した光と合成され
、その合成光、検出器2により光電変換される。検出器
2からは移動鏡Mの速度に応じた周波数の干渉信号が重
畳した信号が得られる。その交流成分の強さは試料Sの
透過率に比例し、位相は試料Sの厚さ又は屈折率に依存
する。このマイケルソン受光系4も、上記したヘテロダ
イン受光系3と同様、微少な屈折率変化等を検出できる
だけでなく、試料Sによって上記参照光と異なる方向へ
散乱された成分は、検出器2の検出面上で上記参照光と
重なり合わないので、干渉信号を発生させず、単に直流
成分として検出されるため、このような散乱成分を容易
に取り除きことができ、参照光と同じ方向に進む光成分
のみを検出することができる高指向性検出系としての性
質を有するたt、本発明においては、第2図に示したよ
うなマイケルソン受光系4のこの高指向性検出系として
の性質を利用する。
) passes through the half mirror HM and hits the movable mirror M, which is moved as shown by the double arrow mark, is reflected in the opposite direction and is combined with the light that has passed through the sample by the half mirror HM, resulting in the combined light, The detector 2 performs photoelectric conversion. The detector 2 obtains a signal on which an interference signal having a frequency corresponding to the speed of the movable mirror M is superimposed. The strength of the AC component is proportional to the transmittance of the sample S, and the phase depends on the thickness or refractive index of the sample S. Like the heterodyne light receiving system 3 described above, this Michelson light receiving system 4 is also capable of detecting minute changes in refractive index, etc., and the components scattered by the sample S in a direction different from the reference light are detected by the detector 2. Since it does not overlap with the reference light on the surface, it does not generate an interference signal and is simply detected as a DC component, so such scattered components can be easily removed and the light component traveling in the same direction as the reference light can be detected. In the present invention, the characteristics of the Michelson light receiving system 4 as shown in FIG. 2 as a highly directional detection system are utilized. do.

ところで、上記へテロダイン受光系3もマイケルソン受
光系4も同じ原理に基づいて試料Sを透過した光ないし
試料Sによって散乱された光の強度を検出するものであ
ると言うことができる。この点を簡単に説明する。合成
される参照光を■。
By the way, it can be said that the heterodyne light receiving system 3 and the Michelson light receiving system 4 detect the intensity of light transmitted through the sample S or light scattered by the sample S based on the same principle. This point will be briefly explained. ■Reference light to be synthesized.

、試料Sを透過した光ないし試料Sによって散乱された
光(以下、試料光とも言う。)をVlとし、それぞれ次
のように表現する。
, the light transmitted through the sample S or the light scattered by the sample S (hereinafter also referred to as sample light) is represented by Vl, and each is expressed as follows.

Vl =A+ expc−i(a+、t−φ1)1、V
2 =A2 eXI][−1(a+3t−φ2)]これ
らの2つの光波V、 、V、を重ね合わせて観測(検出
)すると、その検出信号Sは次のようになる。
Vl =A+expc-i(a+,t-φ1)1,V
2 = A2 eXI][-1(a+3t-φ2)] When these two light waves V, , V are observed (detected) in a superimposed manner, the detection signal S is as follows.

S = : V 1+ V 2 =Vよ ・Vl” 十V2HV− +V+  HV2 ” +V+ ”  ・V2ところで
、 Vl ’ Vl” =A+  、V2  ・V2”=A
2であり、 Vl  ・V2 ” =A+ A2expニーi(a+
、−ω2)t=1(φニーφ2)〕 、 V+  ”  ・Va  =A+  A2 exp[+
+(ωt−ω2)t+1(φ1−φ2)] ■1 ・V2 ”  +v、”  ・V2= 2 A 
IAzcos[(ω1−ω2)t+(φ1−φ2)1で
あるので、 S=A+ 2十A2 + 2 A + A 2CO5[(ω1−ω2)t”(
φ1−φ2)1となる。
S = : V 1+ V 2 =V ・Vl" 10V2HV- +V+ HV2 "+V+" ・V2By the way, Vl'Vl" =A+, V2 ・V2"=A
2, and Vl ・V2 ” = A+ A2expnee i(a+
, -ω2) t=1 (φ knee φ2)] , V+ ” ・Va = A+ A2 exp[+
+(ωt-ω2)t+1(φ1-φ2)] ■1 ・V2 ” +v,” ・V2= 2 A
IAzcos[(ω1-ω2)t+(φ1-φ2)1, so S=A+ 20A2 + 2 A+A 2CO5[(ω1-ω2)t”(
φ1−φ2)1.

ところで、ヘテロダイン受光系3においては、ω2=ω
1−Δω、φ1=φ2と書けるので、S =/’+ 2
+A22+ 2 A+ A2cosΔωtとなり、検出
された信号の交流成分の大きさから、試料光V1の振幅
A)を知ることができる。
By the way, in the heterodyne light receiving system 3, ω2=ω
Since it can be written as 1-Δω, φ1=φ2, S =/'+ 2
+A22+ 2 A+ A2cosΔωt, and the amplitude A) of the sample light V1 can be determined from the magnitude of the AC component of the detected signal.

同様に、マイケルソン受光系4によると、ω=ω2、φ
2=φ、+ktと書けるので、検出信号Sは、 S =A+ ” + Al ” + 2 A+ A2c
osk tとなり、ヘテロダイン受光系3の場合と同様
の信号が得られる。すなわち、ヘテロダイン受光系3も
マイケルソン受光系4も同様に、検出信号の交流成分の
大きさから、試料光Vlの振幅A1を知ることができる
ものである。
Similarly, according to the Michelson light receiving system 4, ω=ω2, φ
Since it can be written as 2=φ, +kt, the detection signal S is: S = A+ ” + Al ” + 2 A+ A2c
osk t, and the same signal as in the case of the heterodyne light receiving system 3 is obtained. That is, in both the heterodyne light receiving system 3 and the Michelson light receiving system 4, the amplitude A1 of the sample light Vl can be determined from the magnitude of the AC component of the detection signal.

本発明においては、高指向性検出系として上記したヘテ
ロダイン受光系3及びマイケルソン受光系4を用いるが
、これらの他に、第15図から第24図に例示した高指
向性光学系を用いる。これらの高指向性光学系を代表す
るものとして、入射側の対物レンズOblと、その焦点
面に配置され対物レンズOblによるフランフオーファ
回折の0次の回折像のみを通過させるピンホールPと、
ピンホールPに前側焦点が一致するように配置された同
様の対物レンズOb2からなる高指向性光学系5を第3
図に示す(図の高指向性光学系5は第21図に示した光
学系と同様である。)。ただし、以下の説明において、
高指向性光学系5は第3rgJのものに限定されるもの
ではない。
In the present invention, the above-described heterodyne light receiving system 3 and Michelson light receiving system 4 are used as the high directivity detection system, but in addition to these, the high directivity optical systems illustrated in FIGS. 15 to 24 are used. As representative of these highly directional optical systems, there is an objective lens Obl on the incident side, a pinhole P arranged at its focal plane and which allows only the zero-order diffraction image of Franff-Offer diffraction by the objective lens Obl to pass;
A third highly directional optical system 5 consisting of a similar objective lens Ob2 arranged so that its front focus coincides with the pinhole P
(The highly directional optical system 5 in the figure is the same as the optical system shown in FIG. 21.) However, in the following explanation,
The highly directional optical system 5 is not limited to the third rgJ.

さて、本発明における分光吸収測定の対象となる不透明
試料は、まず第1に、完全には入射光を阻止して前方へ
透過させないような試料ではなく、例えば生体試料のよ
うに、試料によって何ら散乱を受けずに直接透過する光
は殆ど存在しないが、試料中の散乱微粒子によって多重
散乱を受け、前方へ散乱された光が試料より出てくるよ
うな試料である。もちろん、直接透過する光が存在する
ような試料についても、後記するように測定対象にでき
る。また、本発明の第2の測定対象は、例えば粉体のよ
うに、入射光を略完全に遮断して後方へのみ反射及び散
乱する試料である。前者の試料を透過試料、後者の試料
を反射試料と呼ぶことにする。
First of all, the opaque sample that is the subject of spectral absorption measurement in the present invention is not a sample that completely blocks incident light and does not transmit it forward; for example, it is not a sample that completely blocks incident light and does not transmit it forward. Although there is almost no light that directly passes through the sample without being scattered, the sample is one in which light is subjected to multiple scattering by scattering particles in the sample, and light that is scattered forward comes out of the sample. Of course, samples in which directly transmitted light exists can also be measured as described later. Furthermore, the second measurement object of the present invention is a sample, such as a powder, which substantially completely blocks incident light and reflects and scatters it only backwards. The former sample will be called a transmission sample, and the latter sample will be called a reflection sample.

第4図から第9図は、透過試料20の分光吸収特性を測
定する装置の概要を示したものであり、第10図及び第
11図は、反射試料21の分光吸収特性を測定する装置
の概要を示したものである。
4 to 9 show an outline of the apparatus for measuring the spectral absorption characteristics of the transmission sample 20, and FIGS. 10 and 11 show the outline of the apparatus for measuring the spectral absorption characteristics of the reflection sample 21. This is an overview.

第4図に示した不透明試料分光吸収測定装置は、第1図
に示したヘテロダイン受光系3を高指向性検出系として
用いて、透過試料20によって前方の特定方向へ散乱さ
れる光のみを取り出し、試料20による分光吸収特性を
測定しようとするものである。このような測定のために
、単色光源として、広いスペクトル範囲の単色光を連続
的に掃弓して出すことができる可変波長レーザ10を用
いる。このレーザ10から出た光束を適当な径の平行光
束に変換するために、ビーム変換器11をレーザ10の
前に配置する。ビーム変換器11から出た光束は、ビー
ムスプリッタ−BSにより2分され、直進光は透過試料
20に当たり、その中で多重散乱を受け、前方へ通常等
方的に散乱される。
The opaque sample spectroscopic absorption measuring device shown in FIG. 4 uses the heterodyne light receiving system 3 shown in FIG. , the spectral absorption characteristics of the sample 20 are to be measured. For such measurements, a tunable wavelength laser 10 that can continuously sweep and emit monochromatic light in a wide spectral range is used as a monochromatic light source. A beam converter 11 is placed in front of the laser 10 in order to convert the light beam emitted from the laser 10 into a parallel light beam of an appropriate diameter. The light flux emitted from the beam converter 11 is split into two by the beam splitter BS, and the straight light hits the transmission sample 20, undergoes multiple scattering therein, and is generally isotropically scattered forward.

その散乱光は、透過試料20中の微粒子等により、入射
波長に応じて選択吸収されるため、散乱光強度は試料2
0特有の波長依存件を有する。この前方散乱光の中、特
定の方向、第4図の場合は入射光の方向と同一の方向の
光がハーフミラ−HMにより参照光と合成される。ビー
ムスプリッタ−BSにより反射された参照光は、上記の
合成前に超音波光学変調器等の周波数ンフターAOによ
り周波数が僅かに変えられており、試料光と合成して光
電変換すると、参照光と試料光の周波数差に相当する周
波数の交流信号を含む信号が検出器2より出力される。
The scattered light is selectively absorbed by fine particles in the transmitted sample 20 depending on the incident wavelength, so the intensity of the scattered light is
It has wavelength dependence peculiar to 0. Among this forward scattered light, light in a specific direction, in the case of FIG. 4, light in the same direction as the incident light is combined with the reference light by the half mirror HM. The frequency of the reference light reflected by the beam splitter BS is slightly changed by a frequency filter AO such as an ultrasonic optical modulator before the above synthesis, and when it is combined with the sample light and photoelectrically converted, it becomes the reference light and The detector 2 outputs a signal including an alternating current signal with a frequency corresponding to the frequency difference between the sample lights.

検出器2より得られる信号の交流成分の大きさは、試料
光の振幅に比例するので、検出器2の出力の交流成分を
分離し、その大きさから、入射波長に応じた相対透過特
性ないし吸収特性が得られる。参照光と合成する散乱光
の方向は、必ずしも試料20への入射光と同一方向のも
のである必要はない。なお、以上のようにして、レーザ
10の波長を掃引して測定した吸収スペクトルは、レー
ザ10の波長を掃引した場合、光強度が一般に変化する
。そこで高指向性検出系を用いる場合、照射光束の一部
を取り出して、例えば第3図では、レーザ1と試料Sの
中間にハーフミラ−を挿入して、出力レーザ光強度を検
出する。
Since the magnitude of the AC component of the signal obtained from the detector 2 is proportional to the amplitude of the sample light, the AC component of the output of the detector 2 is separated, and based on its magnitude, the relative transmission characteristics or Absorption properties are obtained. The direction of the scattered light combined with the reference light does not necessarily have to be in the same direction as the light incident on the sample 20. Note that in the absorption spectrum measured by sweeping the wavelength of the laser 10 as described above, the light intensity generally changes when the wavelength of the laser 10 is swept. Therefore, when using a highly directional detection system, a part of the irradiated light beam is taken out and, for example, in FIG. 3, a half mirror is inserted between the laser 1 and the sample S to detect the output laser light intensity.

ヘテロダイン検出系を用いる場合、第4図で、試料20
の後方に光遮断素子を挿入して、検出器2でレーザの出
力強度をモニターする。あるいは、第4図のハーフミラ
−HMの後方に光強度モニター用検出器を設置して検出
してもよい(図示していない。)。
When using a heterodyne detection system, in Figure 4, sample 20
A light blocking element is inserted behind the laser, and the output intensity of the laser is monitored by a detector 2. Alternatively, a light intensity monitoring detector may be installed behind the half mirror HM in FIG. 4 for detection (not shown).

さて、第5図は第4図のヘテロダイン受光系3を用いる
ものを変形して、散乱媒質中の内にある特定試料のある
特定方向の反射型分光装置を示したものである。この場
合、ビームスプリッタ−BSの直後には試料を配置せず
、ハーフミラ−HMの向きを変え、ビームスプリッタ−
BSを透過した光がハーフミラ−HMを透過した位置に
散乱媒質20を模式的に示し、散乱媒質20の背後に前
方散乱光を逆の方向に反射する特定試料Sを模式的に図
示してあり、反射光を再度逆方向から散乱媒質20を透
過させ、その透過散乱光をハーフミラ−HMで参照光と
合成させるようにしたものである。散乱媒質20の厚さ
が薄く、直接透過成分の割合が高い場合等にを効な構成
である。
Now, FIG. 5 shows a reflection type spectrometer which uses the heterodyne light-receiving system 3 of FIG. 4 and which is modified to look at a specific sample in a specific direction in a scattering medium. In this case, do not place the sample immediately after the beam splitter BS, change the direction of the half mirror HM, and place the sample directly behind the beam splitter BS.
A scattering medium 20 is schematically shown at the position where the light transmitted through the BS passes through the half mirror HM, and a specific sample S that reflects the forward scattered light in the opposite direction is schematically shown behind the scattering medium 20. , the reflected light is transmitted through the scattering medium 20 again from the opposite direction, and the transmitted and scattered light is combined with the reference light by a half mirror HM. This configuration is effective when the thickness of the scattering medium 20 is thin and the proportion of directly transmitted components is high.

次に、第6図に示した装置は、第2図に示したマイケル
ソン受光系4を適用して透過試料20の分光吸収特性を
測定するものであり、可変波長レーザ10から出た光を
ビーム変換器11により適当な径の平行光束に変換して
、ビームスプリッタ−BSにより2分し、一方のミラー
M1、M2を経た反射光中に透過試料20を挿入し、そ
の散乱透過光を参照光とハーフミラ−HMにより合成す
る。ビームスプリッタ−BSを透過した参照光は、ハー
フミラ−HMを透過して図示側矢符で示したように移動
される移動鏡Mに当たり、逆方向に反射され、ハーフミ
ラ−HMにより試料光と合成され、その合成光は検出器
2により光電変換される。
Next, the apparatus shown in FIG. 6 measures the spectral absorption characteristics of the transmission sample 20 by applying the Michelson light receiving system 4 shown in FIG. The beam converter 11 converts the beam into a parallel beam of an appropriate diameter, the beam splitter BS splits the beam into two, and the transmitted sample 20 is inserted into the reflected light that has passed through one of the mirrors M1 and M2, and the scattered transmitted light is referred to. Synthesize using light and half mirror HM. The reference light that has passed through the beam splitter BS passes through the half mirror HM, hits the movable mirror M that is moved as shown by the side arrow in the figure, is reflected in the opposite direction, and is combined with the sample light by the half mirror HM. , the combined light is photoelectrically converted by the detector 2.

検出器2からは移動鏡Mの速度に応じた周波数の干渉信
号が重畳した信号が得られる。その交流成分の強さは透
過試料20の散乱光の強さに比例するので、可変波長レ
ーザ10の波長を掃引してこの交流成分の強度から分光
吸収特性を求めることができる。
The detector 2 obtains a signal on which an interference signal having a frequency corresponding to the speed of the movable mirror M is superimposed. Since the intensity of the alternating current component is proportional to the intensity of the scattered light of the transmitted sample 20, the spectral absorption characteristics can be determined from the intensity of this alternating current component by sweeping the wavelength of the variable wavelength laser 10.

第7図は、マイケルソン受光系4を反射型にしたもので
ある。散乱媒質中の内に特定試料の反射分光を模式的に
示した。この場合、ビームスプリッタ−BSを反射した
位置に試料を配置し、散乱媒質20の背後に前方散乱光
を逆の方向に反射する反射分光試料Sを模式的に示した
。散乱光を再度逆方向から散乱媒質20を透過させ、そ
の透過散乱光をビームスプリッタ−BSにより移動鏡M
から反射してきた参照光と合成させるようにしたもので
ある。この場合も、第5図の場合と同様に、散乱媒質2
0の厚さが薄く、直接透過成分の割合が高い場合等に有
効な配置である。
FIG. 7 shows the Michelson light receiving system 4 of a reflective type. The reflection spectrum of a specific sample in a scattering medium is schematically shown. In this case, a reflection spectroscopy sample S is schematically shown in which the sample is placed at a position reflected by the beam splitter BS and the forward scattered light is reflected in the opposite direction behind the scattering medium 20. The scattered light is transmitted through the scattering medium 20 from the opposite direction again, and the transmitted scattered light is sent to the movable mirror M by the beam splitter BS.
The light is combined with the reference light reflected from the light source. In this case as well, the scattering medium 2
This is an effective arrangement when the thickness of the 0 is small and the proportion of directly transmitted components is high.

さて、第8図と第9図は透過型の散乱物体試料20の特
定方向の散乱成分の分光吸収特性を測定するのに、第3
図に代表される高指向性光学系5を用いて、特定方向の
散乱成分のみを抽出するようにしたものであり、第8図
は透過型に、第9図は反射型に構成したものである。ビ
ーム変換器11から適当は径の平行光束に変換されて出
てくる可変波長レーザ10からの光は、第8図の場合は
直接、また、第9図の場合はハーフミラ−HMを介して
、模式的に示した散乱媒体20に当たり、多重散乱と吸
収を受けて前方へ透過し、試料Sからの反射分光特性で
反射する。第8図の場合は、その中の特定方向に散乱さ
れた成分のみが高指向性光学系5により抽出されて検出
器2によりその強さが検出される。したがって、第8図
の場合、可変波長レーザ10の発振波長を掃引し、ビー
ム変換器11と試料20の間にハーフミラ−を配置しく
図示していない)、ハーフミラ−からの反射光を検出す
ることにより、レーザの出力をモニターして透過積分減
光度を求める。また、第9図の場合は、ハーフミラ−H
Mで反射されるレーザ光を検出して(検出器は図示して
いない)、レーザの出力をモニターして透過積分減光度
を求める。
Now, FIGS. 8 and 9 show that the third
The highly directional optical system 5 shown in the figure is used to extract only the scattered components in a specific direction. Figure 8 shows a transmission type configuration, and Figure 9 a reflection type configuration. be. The light from the variable wavelength laser 10 that is converted into a parallel beam of appropriate diameter from the beam converter 11 is transmitted directly in the case of FIG. 8, or via a half mirror HM in the case of FIG. The light hits the schematically illustrated scattering medium 20, undergoes multiple scattering and absorption, is transmitted forward, and is reflected by the reflection spectral characteristics from the sample S. In the case of FIG. 8, only the component scattered in a specific direction is extracted by the highly directional optical system 5, and its intensity is detected by the detector 2. Therefore, in the case of FIG. 8, the oscillation wavelength of the variable wavelength laser 10 is swept, a half mirror is placed between the beam converter 11 and the sample 20 (not shown), and the reflected light from the half mirror is detected. The laser output is monitored and the transmission integral attenuation is determined. In addition, in the case of Fig. 9, half mirror H
The laser light reflected by M is detected (the detector is not shown), and the laser output is monitored to determine the transmission integrated attenuation degree.

なお、第9図の場合は、第5図、第7図と同様に、模式
的に書いた散乱媒質20の背後に前方散乱光を逆の方向
に反射する反射分光試料Sを模式的に示した。散乱光を
再度逆方向から散乱媒質20を透過させ、その透過散乱
光をハーフミラ−HMにより入射光の方向とは異なる方
向に反射させ、特定方向に散乱された成分のみを高指向
性光学系5により抽出するようにする。その他は、第4
図から第7図の場合と同様である。
In addition, in the case of FIG. 9, similarly to FIGS. 5 and 7, a reflection spectroscopy sample S that reflects forward scattered light in the opposite direction is schematically shown behind the schematically drawn scattering medium 20. Ta. The scattered light is transmitted through the scattering medium 20 from the opposite direction again, and the transmitted scattered light is reflected by the half mirror-HM in a direction different from the direction of the incident light, and only the component scattered in a specific direction is passed through the highly directional optical system 5. Extract by Others are the 4th
This is the same as in the case shown in FIGS.

以上は、分光吸収特性を測定する試料が透過性である時
と反射性の場合の装置構成であるが、試料が反射性の場
合、表面反射光が強し1場合、これらの構成をそのため
に容易に変更することができる。ただし、反射試料にお
いては、入射光の正反射成分の強度が極めて高い場合、
正反射成分は反射試料表面近傍の吸収特性に関する情報
を殆ど含んでいないのが通常であるので、この正反射成
分を取り除く構成にしなければならない。第10図と第
11図にこのように構成した装置の例を示す。
The above is the configuration of the apparatus when the sample whose spectral absorption characteristics are to be measured is transmissive and reflective. However, if the sample is reflective or the surface reflected light is strong, these configurations can be easily changed for that purpose. can be changed to . However, in a reflective sample, if the intensity of the specular reflection component of the incident light is extremely high,
Normally, the specular reflection component contains almost no information regarding the absorption characteristics near the surface of the reflective sample, so the structure must be designed to remove this specular reflection component. An example of a device configured in this manner is shown in FIGS. 10 and 11.

第10図の装置は、高指向性光学系5を用いて反射試料
21表面近傍から特定方向に散乱される成分を抽出して
分光吸収特性を測定するものであるが、反射試料21表
面にミラーM4を介して入射する可変波長レーザ10か
らの単色光は、試料面の法線に対しである程度の角度を
なすように設定されており、その正反射成分はミラーM
5を介してビームトラップBTにより取り除くようにし
ている。また、第11図の装置は、ヘテロダイン受光系
3を高指向性検出系として用いて反射試料21表面近傍
から特定方向に散乱される成分を抽出して分光吸収特性
を測定するものであるが、第11図と同様な構成により
、ビームトラップBTにより試料21表面で反射された
正反射成分を取り除くようにしている。
The apparatus shown in FIG. 10 uses a highly directional optical system 5 to extract components scattered in a specific direction from near the surface of the reflective sample 21 and measure spectral absorption characteristics. The monochromatic light from the variable wavelength laser 10 that enters through the mirror M4 is set to form a certain angle with respect to the normal to the sample surface, and its regular reflection component is reflected by the mirror M4.
5 and is removed by a beam trap BT. Further, the apparatus shown in FIG. 11 uses the heterodyne light receiving system 3 as a highly directional detection system to extract components scattered in a specific direction from near the surface of the reflective sample 21 and measure the spectral absorption characteristics. With a configuration similar to that shown in FIG. 11, the specular reflection component reflected on the surface of the sample 21 is removed by the beam trap BT.

次に、具体的に試料のマクロサイズ領域の分光吸収特性
を測定する装置のいくつかの例について簡単に説明する
。第12図は、試料台13上に配置した試料20の透過
分光吸収特性及び反射分光吸収特性を測定できる装置の
概略の構成を示すもので、可変波長レーザ10からの単
色光は切り換え鏡MSにより実線の透過光路と点線の反
射光路に切り換えられる。実線光路を選択すると、ミラ
ーM7を経た光は、共焦点に配置されたカセグレン反射
光学系に3とに4からなるビーム変換器11とにより所
定の径の平行光束に変換され、試料20に入射し、試料
20を透過した特定方向の散乱光は、共焦点に配置され
たカセグレン反射光学系に1とに2及びその焦点に配置
されたピンホールPからなる高指向性光学系5により抽
出されて、ミラーMIO1Mllを経て検出器2により
測定され、可変波長レーザ10の波長を掃引することに
より、試料20の透過成分の分光吸収特性が求まる。切
り換え鏡MSを点線の反射光路に切り換えると、可変波
長レーザ10からの単色光はミラーM9を経てハーフミ
ラ−HMにより下方に反射され、ビーム変換器11の作
用をする高指向性光学系5によりビーム径が縮小され、
試料20に入射する。試料20から完全に後方に散乱さ
れた光だけが高指向性光学系5により抽出され、ハーフ
ミラ−HM、 ミラーMIO1Mllを経て検出器2に
より測定され、可変波長レーザ10の波長を掃引するこ
とにより、試料20の反射成分の分光吸収特性が求まる
。なお、試料20の正反射成分以外の後方散乱成分を抽
出する時には、試料20を傾けて光を入射させるように
すればよい。
Next, some examples of devices that specifically measure the spectral absorption characteristics of a macroscopic region of a sample will be briefly described. FIG. 12 shows a schematic configuration of an apparatus capable of measuring the transmission spectral absorption characteristics and reflection spectral absorption characteristics of the sample 20 placed on the sample stage 13. Monochromatic light from the tunable wavelength laser 10 is transmitted by the switching mirror MS. The transmission optical path is switched to the solid line and the reflected optical path is shown as the dotted line. When the solid optical path is selected, the light passing through the mirror M7 is converted into a parallel light beam of a predetermined diameter by the beam converter 11 consisting of 3 and 4 in the Cassegrain reflective optical system arranged confocal, and is incident on the sample 20. The scattered light in a specific direction that has passed through the sample 20 is extracted by a highly directional optical system 5 consisting of a Cassegrain reflective optical system 1 and 2 placed confocal and a pinhole P placed at its focal point. The light is measured by the detector 2 via the mirror MIO1Mll, and by sweeping the wavelength of the variable wavelength laser 10, the spectral absorption characteristics of the transmitted component of the sample 20 are determined. When the switching mirror MS is switched to the reflection optical path indicated by the dotted line, the monochromatic light from the variable wavelength laser 10 is reflected downward by the half mirror HM via the mirror M9, and is converted into a beam by the highly directional optical system 5 acting as the beam converter 11. diameter is reduced,
incident on the sample 20. Only the light that is completely backward scattered from the sample 20 is extracted by the highly directional optical system 5, passes through the half mirror HM, the mirror MIO1Mll, and is measured by the detector 2. By sweeping the wavelength of the variable wavelength laser 10, The spectral absorption characteristics of the reflected component of the sample 20 are determined. Note that when extracting backscattered components other than the specular reflection component of the sample 20, the sample 20 may be tilted to allow light to be incident thereon.

第13図、第14図の装置は、それぞれ第4図のヘテロ
ゲイン受光系3を用し)だ装置、第6図のフイケルソン
受光系4を用いた装置を縦型に変形しただけのものであ
り、格別の説明は必要なかろう。なお、第14図のもの
において、駆動径14は移動鏡Mを光軸方向に移動させ
るためのものである。
The devices shown in FIGS. 13 and 14 are simply vertical versions of the device using the heterogain light receiving system 3 shown in FIG. 4 and the device using the Feikelson light receiving system 4 shown in FIG. , no special explanation is necessary. In the one shown in FIG. 14, the driving diameter 14 is for moving the movable mirror M in the optical axis direction.

なお、以上の説明においては、可変波長レーザ10は連
続的に発振するものを前提にしていたが、パルス動作を
する可変波長レーザを用いてもよい。
In the above description, it is assumed that the tunable wavelength laser 10 oscillates continuously, but a tunable wavelength laser that operates in pulses may also be used.

特に、レーザ光を連続的に照射すると、その特性が急激
に変化する試料の場合、パルス動作をする可変波長レー
ザを用いることが好ましい。また、検出器2については
、格別説明しなかったが、公知の何れの手段でも用いる
ことができる。また、検出信号の処理方式としても、例
えば入射光をチョッパ等によって強度変調し、検出信号
を位相同期検出することが考えられる。この場合、赤外
光検出の時定数が長いため、同期変調周波数を小さくす
る必要がある。また、光子計数方式(可視光)、電荷蓄
積方式(赤外光)等の同期信号積分検出方式、ヘテロダ
インビート信号検出方式等を用いてもよい。また、周波
数シフターとしては、超音波変調器等の超音波光回折を
用いたものばかりでなく、波長板の組合せ及び回転格子
のほか、結晶の電気光学効果を利用することもできる。
In particular, in the case of a sample whose characteristics change rapidly when continuously irradiated with laser light, it is preferable to use a variable wavelength laser that operates in pulses. Moreover, although the detector 2 was not specifically explained, any known means can be used. Further, as a method of processing the detection signal, for example, intensity modulation of incident light may be performed using a chopper or the like, and phase synchronization detection of the detection signal may be considered. In this case, since the time constant of infrared light detection is long, it is necessary to reduce the synchronous modulation frequency. Furthermore, a synchronous signal integral detection method such as a photon counting method (visible light) or a charge accumulation method (infrared light), a heterodyne beat signal detection method, or the like may be used. Further, as the frequency shifter, not only those using ultrasonic light diffraction such as an ultrasonic modulator, but also a combination of wave plates, a rotating grating, and the electro-optic effect of a crystal can be used.

また、反射鏡を一定速度で移動させるか又は鋸歯状波で
振動させてもよい。
Alternatively, the reflector may be moved at a constant speed or oscillated with a sawtooth wave.

口発明の効果〕 本発明の不透明試料の分光吸収測定方法及び装置におい
ては、散乱性試料に特定方向から指向性の高い可変波長
の光を照射して、特定の方向に散乱された光のみの強度
をヘテロダイン受光系、マイケルソン受光系、高指向性
光学系等の高指向性検出系を用いて検出するので、余分
な方向の散乱光、その他のノイズ光を拾うことなく高精
度で散乱性試料の分光吸収特性を測定することができる
[Effects of the Invention] In the method and apparatus for measuring spectral absorption of an opaque sample according to the present invention, a scattering sample is irradiated with highly directional variable wavelength light from a specific direction, and only the light scattered in a specific direction is measured. Since the intensity is detected using a highly directional detection system such as a heterodyne light receiving system, a Michelson light receiving system, or a highly directional optical system, it is possible to detect scattering with high precision without picking up scattered light in extra directions or other noise light. Spectral absorption characteristics of a sample can be measured.

しかも、対照についての測定が従来法に比べて非常に簡
単になり、測定が極めて容易であり、懸濁液、生体組織
等の散乱が大きな散乱物体までもの特定方向の透過ない
し反射成分の分光吸収を測定するのに適した方法及び装
置である。
Moreover, it is extremely easy to measure the control compared to conventional methods, and the spectral absorption of transmitted or reflected components in a specific direction even for highly scattering objects such as suspensions and biological tissues. This is a method and apparatus suitable for measuring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の不透明試料の分光吸収測定方法及び装
置に用いられる高指向性検出系の1つのヘテロダイン受
光系の構成と作用を説明するための図、第2rXJは他
の高指向性検出系であるマイケルソン受光系の構成と作
用を説明するための図、第3図は他の高指向性検出系で
ある高指向性光学系の代表的なものの構成を示すための
図、第4図、第5図は透過試料に適用する本発明のヘテ
ロゲイン受光系を用いた分光吸収測定装置の実施例の構
成を示す図、第6図、第7図は透過試料に適用する本発
明のマイケルソン受光系を用いた分光吸収測定装置の実
施例の構成を示す図、第8図、第9図は透過試料に適用
する本発明の高指向性光学系を用1 )だ分光吸収測定
装置の実施例の構成を示す図、第10図、第11図は反
射試料に適用する本発明の分光吸収測定装置の実施例の
構成を示す図、第12図から第14図は試料のマクロサ
イズ領域の分光吸収特性を測定する装置のいくつかの具
体例を示すだめの図、第15図から第24図は先に提案
した高指向性光学系の構成を示す図である。 1・・・レーザ、2・・・検出器、3・・・ヘテロダイ
ン受光系、4・・・マイケルソン受光系、5・・・高指
向性光学系、lO・・・可変波長レーザ、11・・・ビ
ーム変換器、13・・・試料台、20・・・散乱媒質、
21・・・反射試料、S・・・試料、BS・・・ビーム
スプリッタ−1HM・・・ノ1−フミラー、M1〜Ml
l・・・ミラー、AO・・・周波数シフター、M・・・
移動鏡、Obl、Ob2・・・対物レンズ、P・・・ピ
ンホール、M3・・・鏡、BT・・・ビームトラップ、
MS・・・切り換え鏝、K1−に4・・・カセグレン反
射光学系 出
Fig. 1 is a diagram for explaining the configuration and operation of a heterodyne light receiving system, one of the high directivity detection systems used in the method and apparatus for spectroscopic absorption measurement of opaque samples of the present invention, and 2nd r Figure 3 is a diagram to explain the configuration and operation of the Michelson light receiving system, which is a system. Figures 5 and 5 are diagrams showing the configuration of an embodiment of a spectroscopic absorption measuring device using a heterogain light receiving system of the present invention applied to a transmission sample, and Figures 6 and 7 are diagrams showing the configuration of an embodiment of a spectroscopic absorption measuring device using a heterogain light receiving system of the present invention applied to a transmission sample. Figures 8 and 9 are diagrams showing the configuration of an embodiment of a spectroscopic absorption measuring device using a light-receiving system. Figures 10 and 11 are diagrams showing the configuration of an embodiment of the spectroscopic absorption measuring device of the present invention applied to a reflective sample, and Figures 12 to 14 are diagrams showing the macro size region of the sample. Figures 15 to 24 are diagrams showing the configuration of the highly directional optical system proposed earlier. DESCRIPTION OF SYMBOLS 1... Laser, 2... Detector, 3... Heterodyne light receiving system, 4... Michelson light receiving system, 5... Highly directional optical system, lO... Variable wavelength laser, 11. ... Beam converter, 13... Sample stage, 20... Scattering medium,
21... Reflection sample, S... Sample, BS... Beam splitter-1HM... No. 1-F mirror, M1 to Ml
l...Mirror, AO...Frequency shifter, M...
Moving mirror, Obl, Ob2...objective lens, P...pinhole, M3...mirror, BT...beam trap,
MS...Switching iron, K1-4...Cassegrain reflective optical system output

Claims (9)

【特許請求の範囲】[Claims] (1)散乱性試料に特定方向から指向性の高い可変波長
の光を照射して、特定の方向に散乱された光のみの強度
を高指向性検出系を用いて検出することにより、散乱性
試料の分光吸収特性を測定することを特徴とする不透明
試料の分光吸収測定方法。
(1) By irradiating a scattering sample with highly directional variable wavelength light from a specific direction and detecting the intensity of only the light scattered in a specific direction using a highly directional detection system, scattering A method for measuring spectral absorption of an opaque sample, characterized by measuring the spectral absorption characteristics of the sample.
(2)前記高指向性検出系により強度を検出する特定の
方向が、試料による透過散乱光を検出する方向であるこ
とを特徴とする請求項1記載の不透明試料の分光吸収測
定方法。
(2) The method for measuring spectral absorption of an opaque sample according to claim 1, wherein the specific direction in which the intensity is detected by the highly directional detection system is a direction in which transmitted and scattered light by the sample is detected.
(3)前記高指向性検出系により強度を検出する特定の
方向が、試料による反射散乱光を検出する方向であるこ
とを特徴とする請求項1記載の不透明試料の分光吸収測
定方法。
(3) The method for measuring spectral absorption of an opaque sample according to claim 1, wherein the specific direction in which the intensity is detected by the highly directional detection system is a direction in which reflected and scattered light by the sample is detected.
(4)波長変更可能な単色光源からの光を2分して、一
方の光路中に入射光の周波数をシフトさせる周波数シフ
ト手段を設け、他方の光路中に散乱性試料を配置し、周
波数シフト手段から射出する指向性の高い光と散乱性試
料から特定方向に出る光とを合成して同方向に射出させ
るビーム合成手段を設け、ビーム合成手段によって合成
された光を電気信号に変換してシフト周波数に等しい交
流成分のみの強度を検出する検出手段を設けたことを特
徴とする不透明試料の分光吸収測定装置。
(4) Split the light from a wavelength-changeable monochromatic light source into two, provide a frequency shift means to shift the frequency of the incident light in one optical path, place a scattering sample in the other optical path, and shift the frequency. A beam combining means is provided to combine highly directional light emitted from the means and light emitted in a specific direction from the scattering sample and emit the same in the same direction, and the combined light by the beam combining means is converted into an electrical signal. 1. A spectroscopic absorption measuring device for an opaque sample, characterized in that it is provided with a detection means for detecting the intensity of only an alternating current component equal to a shift frequency.
(5)波長変更可能な単色光源からの光を2分して、一
方の光路中に光路長を所定速度で変更する光路長変更手
段を設け、他方の光路中に散乱性試料を配置し、光路長
変更手段から射出する指向性の高い光と散乱性試料から
特定方向に出る光とを合成して同方向に射出させるビー
ム合成手段を設け、ビーム合成手段によって合成された
光を電気信号に変換して光路長変更速度に応じた周波数
の交流成分のみの強度を検出する検出手段を設けたこと
を特徴とする不透明試料の分光吸収測定装置。
(5) splitting the light from a wavelength-changeable monochromatic light source into two, providing an optical path length changing means for changing the optical path length at a predetermined speed in one optical path, and placing a scattering sample in the other optical path; A beam combining means is provided to combine the highly directional light emitted from the optical path length changing means and the light emitted in a specific direction from the scattering sample and emit the same in the same direction, and convert the combined light by the beam combining means into an electrical signal. 1. A spectroscopic absorption measuring device for an opaque sample, comprising a detection means for converting and detecting the intensity of only an alternating current component of a frequency corresponding to an optical path length change speed.
(6)波長変更可能な単色光源から出る光の光路中に散
乱性試料を配置し、散乱性試料から特定方向に出る光を
抽出する高指向性光学系を配置し、高指向性光学系によ
り抽出された光の強度を検出する検出手段を設けたこと
を特徴とする不透明試料の分光吸収測定装置。
(6) A scattering sample is placed in the optical path of light emitted from a wavelength-changeable monochromatic light source, and a highly directional optical system is placed to extract light emitted from the scattering sample in a specific direction. 1. A spectroscopic absorption measuring device for an opaque sample, characterized in that it is provided with a detection means for detecting the intensity of extracted light.
(7)波長変更可能な単色光源から出る光の光路中に2
光路切替え手段を設け、一方の光路と他方の光路が同軸
でかつ光の進行方向が反対になるように構成し、同軸に
なった光路中に高指向性光学系を配置し、高指向性光学
系の一方の側に散乱性試料を配置し、高指向性光学系の
他方の側から試料を特定方向に透過した光又は試料によ
り特定方向に反射散乱された光を取り出すように構成し
たことを特徴とする請求項6記載の不透明試料の分光吸
収測定装置。
(7) In the optical path of the light emitted from the wavelength-changeable monochromatic light source,
An optical path switching means is provided, one optical path and the other optical path are coaxial, and the traveling direction of the light is opposite, and a highly directional optical system is placed in the coaxial optical path. A scattering sample is placed on one side of the system, and the system is configured to extract light that has passed through the sample in a specific direction or light that has been reflected and scattered in a specific direction by the sample from the other side of the highly directional optical system. The spectroscopic absorption measuring device for an opaque sample according to claim 6.
(8)照射光束の一部を取り出して、その光束強度を検
出して参照強度とし、高指向性検出系を用いて検出した
光強度を試料光の信号強度として、透過積分減光度を求
めることを特徴とする請求項第1から3、6、7の何れ
か1項記載の不透明試料の分光吸収測定装置。
(8) Taking out a part of the irradiated light flux, detecting the intensity of the light flux and using it as a reference intensity, and using the light intensity detected using a highly directional detection system as the signal intensity of the sample light to calculate the integrated attenuation of the transmitted light. The spectroscopic absorption measuring device for an opaque sample according to any one of claims 1 to 3, 6, and 7.
(9)散乱性試料からの光を遮断して、周波数シフト手
段又は光路長変更手段から射出する指向性の高い光の光
束強度を検出して参照光強度とし、ビーム合成手段によ
って合成された光を電気信号に変換してシフト周波数に
等しい交流成分又は光路長変更速度に応じた周波数の交
流成分を試料からの信号強度とし、これらの強度を用い
て透過積分減光度を求めることを特徴する請求項4又は
5記載の不透明試料の分光吸収測定装置。
(9) The light from the scattering sample is blocked, the luminous flux intensity of the highly directional light emitted from the frequency shift means or the optical path length changing means is detected and used as the reference light intensity, and the light is synthesized by the beam combining means. is converted into an electrical signal, an alternating current component equal to the shift frequency or an alternating current component with a frequency corresponding to the optical path length change speed is used as the signal intensity from the sample, and these intensities are used to determine the transmission integral attenuation degree. Item 5. Spectroscopic absorption measuring device for an opaque sample according to item 4 or 5.
JP2133066A 1990-05-22 1990-05-22 Spectral absorption measuring device for opaque samples Expired - Fee Related JPH0721452B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2133066A JPH0721452B2 (en) 1990-05-22 1990-05-22 Spectral absorption measuring device for opaque samples
DE69121633T DE69121633T2 (en) 1990-05-22 1991-05-21 Method and apparatus for measuring spectral absorption in opaque material and method and apparatus for measuring a distribution of microscopic absorption
EP91304605A EP0458601B1 (en) 1990-05-22 1991-05-21 Method of and apparatus for measuring spectral absorption in opaque specimens and method of and apparatus for measuring microscopic absorption distribution
US07/704,142 US5345306A (en) 1990-05-22 1991-05-22 Method and apparatus for measuring spectral absorption in an opaque specimen and method and apparatus for measuring the microscopic absorption distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133066A JPH0721452B2 (en) 1990-05-22 1990-05-22 Spectral absorption measuring device for opaque samples

Publications (2)

Publication Number Publication Date
JPH0427845A true JPH0427845A (en) 1992-01-30
JPH0721452B2 JPH0721452B2 (en) 1995-03-08

Family

ID=15096041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133066A Expired - Fee Related JPH0721452B2 (en) 1990-05-22 1990-05-22 Spectral absorption measuring device for opaque samples

Country Status (1)

Country Link
JP (1) JPH0721452B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038765A (en) * 2004-07-29 2006-02-09 Hamamatsu Photonics Kk Absorption measurement apparatus
JP2012037344A (en) * 2010-08-06 2012-02-23 Shikoku Res Inst Inc Optical type gas sensor and gas concentration measuring method
US8471193B2 (en) 2009-03-05 2013-06-25 Olympus Corporation Photodetection device for detecting low temporal coherence light, photodetection method, microscope and endoscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243839A (en) * 1987-03-31 1988-10-11 Fujitsu Ltd Instrument for measuring infrared scattering intensity
JPS63274848A (en) * 1987-05-01 1988-11-11 Hitachi Ltd Measuring instrument for local stress distribution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243839A (en) * 1987-03-31 1988-10-11 Fujitsu Ltd Instrument for measuring infrared scattering intensity
JPS63274848A (en) * 1987-05-01 1988-11-11 Hitachi Ltd Measuring instrument for local stress distribution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038765A (en) * 2004-07-29 2006-02-09 Hamamatsu Photonics Kk Absorption measurement apparatus
JP4486433B2 (en) * 2004-07-29 2010-06-23 浜松ホトニクス株式会社 Absorption measuring device
US8471193B2 (en) 2009-03-05 2013-06-25 Olympus Corporation Photodetection device for detecting low temporal coherence light, photodetection method, microscope and endoscope
JP2012037344A (en) * 2010-08-06 2012-02-23 Shikoku Res Inst Inc Optical type gas sensor and gas concentration measuring method

Also Published As

Publication number Publication date
JPH0721452B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US5345306A (en) Method and apparatus for measuring spectral absorption in an opaque specimen and method and apparatus for measuring the microscopic absorption distribution
US7072045B2 (en) High resolution optical coherence tomography with an improved depth range using an axicon lens
JP5134177B2 (en) Systems using light-scattering spectroscopy based on electric fields
JP2004500546A (en) 3D image formation
JP2004518125A (en) Composition analysis
US20100027002A1 (en) High-speed, rugged, time-resolved, raman spectrometer for sensing multiple components of a sample and for diagnostics of pathological skin conditions such as cancer
JPH10510626A (en) Optical techniques for examination of biological tissues
CN108572161A (en) Optical coherence tomography based on partial wave front interferometer
JPS6072542A (en) Light ray ct apparatus
JP2006162485A (en) Optical tomographic imaging system
JP2007240453A (en) Spectroscopic coherence tomography device
WO2016056522A1 (en) Optical response measuring device and optical response measuring method
US9036156B2 (en) System and method for optical coherence tomography
Gautam et al. Non-invasive analysis of stored red blood cells using diffuse resonance Raman spectroscopy
CN106510644A (en) Medical optical coherence tomography two-dimensional forward scanning probe based on fiber optics bundle
JPH04174345A (en) Light wave reflection image measurement device
CN110426372B (en) Elastic modulus imaging detection method for frequency-sweeping Brillouin scatterer
JPH04122248A (en) Optical tomographic image imaging device
JPH0427845A (en) Method and apparatus for measuring spectral absorption of opaque sample
JPH0427844A (en) Method and apparatus for measuring microscopic absorption distribution of opaque sample
Giakos Novel multifusion optical imaging sensing principles
JP3597887B2 (en) Scanning optical tissue inspection system
JP3077703B2 (en) Phase image detection device using heterodyne detection light receiving system
JP2644609B2 (en) Simultaneous detection of amplitude image and phase image using heterodyne detection light receiving system
JP3594878B2 (en) Method and apparatus for measuring cross-sectional image of measurement sample

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees