JPH0721452B2 - Spectral absorption measuring device for opaque samples - Google Patents

Spectral absorption measuring device for opaque samples

Info

Publication number
JPH0721452B2
JPH0721452B2 JP2133066A JP13306690A JPH0721452B2 JP H0721452 B2 JPH0721452 B2 JP H0721452B2 JP 2133066 A JP2133066 A JP 2133066A JP 13306690 A JP13306690 A JP 13306690A JP H0721452 B2 JPH0721452 B2 JP H0721452B2
Authority
JP
Japan
Prior art keywords
light
sample
optical path
frequency
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2133066A
Other languages
Japanese (ja)
Other versions
JPH0427845A (en
Inventor
勉 市村
文男 稲場
Original Assignee
新技術事業団
勉 市村
文男 稲場
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新技術事業団, 勉 市村, 文男 稲場 filed Critical 新技術事業団
Priority to JP2133066A priority Critical patent/JPH0721452B2/en
Priority to EP91304605A priority patent/EP0458601B1/en
Priority to DE69121633T priority patent/DE69121633T2/en
Priority to US07/704,142 priority patent/US5345306A/en
Publication of JPH0427845A publication Critical patent/JPH0427845A/en
Publication of JPH0721452B2 publication Critical patent/JPH0721452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は懸濁液や粉体等の散乱体の分光吸収測定方法及
びそのための装置に関し、特に、試料に対して特定の方
向からビームを当てた時の特定の方向に散乱される光の
分光吸収特性を測定する装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method for measuring spectroscopic absorption of a scatterer such as a suspension or a powder and an apparatus therefor, and particularly, to a beam from a specific direction with respect to a sample. The present invention relates to a device for measuring a spectral absorption characteristic of light scattered in a specific direction when applied.

〔従来の技術〕[Conventional technology]

X線の発見以来、生体(人体)内部を外部より損傷を与
えずに観察する技術(悲観血的、あるいは無侵襲的計測
法)は、生物学、特に医学の分野で強く求められ発達し
てきた。この技術は電磁波として見ると最も波長の短い
ガンマ線やX線と、最も波長の長いラジオ波が使用され
ている。前者はX線CTとして、後者はNMR−CT(Magneti
c Resonance Imaging、MRI)として実用化されている。
Since the discovery of X-rays, a technique for observing the inside of a living body (human body) without external damage (pessimistic blood or non-invasive measurement method) has been strongly demanded and developed in the field of biology, particularly in medicine. . This technology uses gamma rays and X-rays having the shortest wavelengths when viewed as electromagnetic waves, and radio waves having the longest wavelength. The former is X-ray CT and the latter is NMR-CT (Magneti
c Resonance Imaging, MRI) has been put to practical use.

一方、物理や化学の分野で広く用いられている紫外−可
視−近赤外−赤外の領域の分光学を“丸ごと”生体(in
vivo)へ応用する試みは比較的少ない。これは光を用
いた生体計測、特に吸収や発光の過程を利用するものに
おいて、もっとも基本的な“定量性”に関し多くの問題
が解決されずに残されているからである。現在、固体素
子を用いた反射スペクトルの測定装置や高感度TVカメラ
等による計測が試みられているが、再現性や得られた絶
対値に対し信頼性が少ないのはこの理由による。
On the other hand, spectroscopy in the ultraviolet-visible-near-infrared-infrared region, which is widely used in the fields of physics and chemistry, is called "whole body".
There are relatively few attempts to apply it to (vivo). This is because many problems regarding the most basic "quantitativeness" remain unsolved in biometrics using light, particularly those that utilize absorption and luminescence processes. At present, the measurement of the reflection spectrum using a solid-state element and the measurement with a high-sensitivity TV camera are attempted, but this is the reason why the reproducibility and the absolute value obtained are less reliable.

生体組織のような散乱体に光を照射した際、180°向か
い合わせで受光すればある程度直進光を取り出すことが
できるが、今のところ、その空間分解能はあまり良いと
はいえない。
When a scatterer such as a biological tissue is irradiated with light, it can extract straight-ahead light to some extent if it is received at 180 ° facing each other, but at present, its spatial resolution is not so good.

X線と光とでの空間分離能の差は今のところ埋めること
はできない。しかしながら光、特に近赤外光を用いる
と、血液中のヘモグロビンから組織酸素濃度のイメージ
ングができるはずである。これらは他のNMR−CTやX線C
Tと異なった情報を与えてくれるであろう。
The difference in spatial separation between X-rays and light cannot be filled up so far. However, the use of light, especially near infrared light, should allow imaging of tissue oxygen concentration from hemoglobin in blood. These are other NMR-CT and X-ray C
It will give different information than T.

3〜5cmの厚さの組織ならば、われわれは透過してきた
光を検出することができる。このことは“光−レントゲ
ン写真”を診断に使えることを意味する。女性の乳房は
組織が比較的均一であり光が透過しやすく、またその形
状から透過光の検出(厚さ:〜3cm程度)が容易であ
り、古くから乳ガンの診断に、Diaphanography(Lights
canning)という名で用いられてきた。
With 3-5 cm thick tissue, we can detect the transmitted light. This means that "light-radiography" can be used for diagnosis. Women's breasts have relatively uniform tissue and light is easily transmitted, and the transmitted light can be easily detected (thickness: about 3 cm) due to its shape, and Diaphanography (Lights) has long been used to diagnose breast cancer.
canning) has been used.

このような状況の下で、本発明者は、特願平1−62898
号、特願平1−250034号、特願平2−77690号等におい
て、散乱光に混入している平面波を分離して取り出し、
観察するには、平面波のフランフォーファ回折像(エア
リーディスク)の0次スペクトル(エアリーディスクの
第1暗輪内の部分が対応する。)のみを観察するように
すればよく、このようにすることによって散乱成分を殆
ど除くことができることを示した。そして、このような
観察を実現する高指向性光学系の1つとして、第15図の
ように相互に離れた2つのピンホールP1、P2からなる光
学系を提案した。この光学系は、ピンホールP2を通して
0次光を検出器23で検出するものである。また、第16図
に示すように、直線状の細長い中空のガラス繊維35から
なっており、その内壁面には光吸収材、例えばカーボン
等の吸収材35が塗布されている高指向性光学系を提案し
た。さらに、第17図から第24図に示すような、対物レン
ズObとその焦点面に配置した対物レンズObによるフラン
フォーファ回折の0次の回折像のみを通過させるピンホ
ールPとからなる高指向性光学系(第17図)、屈折率分
布レンズGLとその一端の焦点面に配置した同様なピンホ
ールPとからなる高指向性光学系(第18図)、ピンホー
ルPの代わりにそれと同様な作用をする光ファイバーSM
を配置した高指向性光学系(第19図、第20図)、これら
の高指向性光学系のピンホールP又は光ファイバーSMの
出射側に、入射側の対物レンズOb1と同様の対物レンズO
b2を配置した高指向性光学系(第21図、第23図))、入
射側の屈折率分布レンズGL1と同様の屈折率分布レンズG
L2を配置した高指向性光学系(第22図、第24図)等を提
案した。
Under these circumstances, the present inventor has filed a patent application No. 1-62898.
In Japanese Patent Application No. 1-250034 and Japanese Patent Application No. 2-77690, plane waves mixed in scattered light are separated and taken out.
For observation, it is sufficient to observe only the 0th-order spectrum of the plane wave Franforfer diffraction image (Airy disc) (the portion in the first dark ring of the Airy disc corresponds). It was shown that almost all the scattered components can be removed by doing so. Then, as one of the high-directivity optical systems for realizing such observation, an optical system including two pinholes P 1 and P 2 which are separated from each other as shown in FIG. 15 was proposed. This optical system detects the 0th order light by the detector 23 through the pinhole P 2 . Further, as shown in FIG. 16, a highly directional optical system which is composed of a linear elongated hollow glass fiber 35, and the inner wall surface of which is coated with a light absorbing material 35 such as carbon. Proposed. Further, as shown in FIG. 17 to FIG. 24, high directivity composed of an objective lens Ob and a pinhole P for passing only the 0th-order diffraction image of the Franforfer diffraction by the objective lens Ob arranged on the focal plane thereof. Directional optical system (Fig. 17), a highly directional optical system (Fig. 18) consisting of a gradient index lens GL and a similar pinhole P arranged at the focal plane at one end of the same, instead of the pinhole P. Optical fiber SM
High directional optical system (Figs. 19 and 20) in which the objective lens Ob similar to the objective lens Ob1 on the incident side is provided on the exit side of the pinhole P or the optical fiber SM of these high directional optical systems.
Highly directional optical system (Figs. 21 and 23) in which b2 is arranged, and a refractive index distribution lens G similar to the incident side refractive index distribution lens GL1.
We have proposed a highly directional optical system (Figs. 22 and 24) with L2.

ところで、従来、散乱を伴う試料の直進成分と透過散乱
成分をオパールグラスで均等に散乱させて試料の透過積
分減光度を測定するオパールグラス法等の不透明試料の
吸収測定法は知られている(例えば、柴田和雄著「光生
物学シーズ分光測定入門」第62〜82頁(昭51.6.20.,共
立出版(株)発行)参照)。細胞、顆粒、固体粉末など
の粒子懸濁液のような不均一系は、一般に光を吸収かつ
散乱する。したがって、吸収波長特性だけを求めること
は困難となる。そこで、吸収波長特性と近似できる量を
求めて、近似している。すなわち、透過積分減光度を求
めて吸収に置き換えている。この透過積分減光度とは、
吸収と散乱の両者により減衰した光束の入射光束に対す
る比の逆数の対数であり、一般には吸収特性とは一致し
ない。そこで、できるだけ吸収特性に近似できるように
するために、平行透過光束と散乱透過光束を検出器で同
一捕足率で検出すれば、それらの比は散乱の影響が少な
くなる。この方法としてオパールグラス法が実用化され
ている。また、別の方法として、平行透過光束と散乱透
過光束よりなる全透過光束を全部補足することにより散
乱の影響を少なくする方法として、透過型積分球法や光
電面密着法等が実用されている。同一補足率検出と全補
足検出の中間的な方法として、密着散乱併用法も用いら
れる。
By the way, conventionally, there is known an absorption measurement method for an opaque sample such as an opal glass method in which a straight traveling component and a transmission scattering component of a sample accompanied by scattering are evenly scattered by an opal glass to measure the transmission integrated extinction of the sample ( For example, see Kazuo Shibata, "Introduction to Photobiology Seeds Spectroscopy," pages 62-82 (sho 51.6.20., Published by Kyoritsu Shuppan Co., Ltd.). Heterogeneous systems, such as suspensions of particles such as cells, granules, solid powders, generally absorb and scatter light. Therefore, it is difficult to obtain only the absorption wavelength characteristic. Therefore, an amount that can be approximated to the absorption wavelength characteristic is obtained and approximated. That is, the transmission integrated extinction is obtained and replaced with absorption. What is this transmission integral extinction?
It is the logarithm of the reciprocal of the ratio of the light flux attenuated by both absorption and scattering to the incident light flux, and generally does not match the absorption characteristics. Therefore, if the parallel transmitted light beam and the scattered transmitted light beam are detected by the detector with the same catch rate in order to make the absorption characteristics as close to each other as possible, the influence of scattering is reduced in the ratio thereof. The opal glass method has been put into practical use as this method. In addition, as another method, a transmissive integrating sphere method, a photoelectric surface contact method, or the like is put into practical use as a method of reducing the influence of scattering by supplementing the total transmitted light flux including the parallel transmitted light flux and the scattered transmitted light flux. . As a method intermediate between the detection of the same capture rate and the detection of all captures, the method using close contact scattering is also used.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、上記した従来のオパールグラス法は光
散乱能が波長によって変化してしまう欠点がある。透
過積分球は、積分球内の白色反射材料は最良のものとし
て知られるMgOの粉末の場合でも、短波長特に紫外領域
に近くなると反射率が大きく減少し、信頼し得るデータ
が得られない欠点がある。光電面密着法は2つの検出
器を用いるものは、同一の波長感度特性を得ることが難
しい。1つの検出器の場合、試料と対照とを限られた空
間に設置するのが困難になる。密着散乱併用法は、第
三者に比して優れているものの、試料の大きさと検出器
の距離と大きさを適切に選ばれなければならない問題点
がある。
However, the above-mentioned conventional opal glass method has a drawback that the light scattering ability changes depending on the wavelength. The transmission integrating sphere is the best white reflective material in the integrating sphere. Even in the case of MgO powder, the reflectance greatly decreases at short wavelengths, especially in the ultraviolet region, and reliable data cannot be obtained. There is. It is difficult for the photocathode contact method to use two detectors to obtain the same wavelength sensitivity characteristic. With one detector, it is difficult to place the sample and control in a confined space. Although the combined method of close contact scattering is superior to a third party, it has a problem that the size of the sample and the distance and size of the detector must be properly selected.

しかも、従来法の4つの方法に共通した欠点は、透過積
分減光度を測定しても、それが懸濁粒子の吸収波長と近
似できないときがある。すなわち、反射光束が大きくな
ると近似できない。また、試料による散乱空間パターン
が波長により異なる場合、散乱透過光束の波長変化と散
乱反射光束の波長変化が同じでなくなり、近似できなく
なる。
Moreover, a drawback common to the four conventional methods is that even if the transmission integrated extinction is measured, it cannot be approximated to the absorption wavelength of the suspended particles. That is, if the reflected light flux becomes large, it cannot be approximated. Further, when the scattering space pattern by the sample differs depending on the wavelength, the wavelength change of the scattered transmitted light flux and the wavelength change of the scattered reflected light flux are not the same and cannot be approximated.

本発明はこのような状況に鑑みてなされたものであり、
その目的は、懸濁液、生体組織等の散乱物体の特定方向
の透過ないし反射成分の分光吸収特性を測定する装置を
提供することである。
The present invention has been made in view of such a situation,
An object thereof is to provide an apparatus for measuring the spectral absorption characteristics of a transmitted or reflected component in a specific direction of a scattering object such as a suspension or a biological tissue.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成する本発明の不透明試料の分光吸収測定
装置の第1のものは、波長変更可能な単色光源からの光
を2分して、一方の光路中に入射光の周波数をシフトさ
せる周波数シフト手段を設け、他方の光路中に散乱性試
料を配置し、周波数シフト手段から射出する指向性の高
い光と散乱性試料から特定方向に出る光とを合成して同
方向に射出させるビーム合成手段を設け、ビーム合成手
段によって合成された光を電気信号に変換してシフト周
波数に等しい交流成分のみの強度を検出する検出手段を
設けたことを特徴とするものである。
A first embodiment of the spectral absorption measuring device for an opaque sample of the present invention which achieves the above object is a frequency for dividing the light from a wavelength-changeable monochromatic light source into two and shifting the frequency of incident light in one optical path. A beam combining method in which a shifter is provided and a scattering sample is arranged in the other optical path, and light with high directivity emitted from the frequency shifter and light emitted in a specific direction from the scattering sample are combined and emitted in the same direction Means for converting the light combined by the beam combining means into an electric signal and detecting the intensity of only the AC component equal to the shift frequency.

第2の不透明試料の分光吸収測定装置は、波長変更可能
な単色光源からの光を2分して、一方の光路中に光路長
を所定速度で変更する光路長変更手段を設け、他方の光
路中に散乱性試料を配置し、光路長変更手段から射出す
る指向性の高い光と散乱性試料から特定方向に出る光と
を合成して同方向に射出させるビーム合成手段を設け、
ビーム合成手段によって合成された光を電気信号に変換
して光路長変更速度に応じた周波数の交流成分のみの強
度を検出する検出手段を設けたことを特徴とするもので
ある。
A second spectroscopic absorption measuring device for an opaque sample divides light from a wavelength-changeable monochromatic light source into two parts, and provides an optical path length changing means for changing the optical path length at a predetermined speed in one optical path and the other optical path. A scattering sample is arranged inside, and a beam synthesizing means for synthesizing the light with high directivity emitted from the optical path length changing means and the light emitted from the scattering sample in a specific direction to emit in the same direction,
It is characterized in that a detecting means is provided for converting the light combined by the beam combining means into an electric signal and detecting the intensity of only the AC component of the frequency according to the optical path length changing speed.

これらの分光吸収測定装置においては、散乱性試料から
の光を遮断して、周波数シフト手段又は光路長変更手段
から射出する指向性の高い光の光束強度を検出して参照
光強度とし、ビーム合成手段によって合成された光を電
気信号に変換してシフト周波数に等しい交流成分又は光
路長変更速度に応じた周波数の交流成分を試料からの信
号強度とし、これらの強度を用いて透過積分減光度を求
めるようにすることが望ましい。
In these spectroscopic absorption measurement devices, the light from the scattering sample is blocked, and the luminous intensity of the highly directional light emitted from the frequency shift means or the optical path length changing means is detected as the reference light intensity, and the beam combining is performed. The light synthesized by the means is converted into an electric signal, and an AC component equal to the shift frequency or an AC component having a frequency corresponding to the optical path length changing speed is used as the signal intensity from the sample, and the transmission integral attenuation is calculated using these intensities. It is desirable to ask.

〔作用〕[Action]

本発明の不透明試料の分光吸収測定装置によれば、散乱
性試料に特定方向からの指向性の高い可変波長の光を照
射して、特定の方向に散乱された光のみの強度ヘテロダ
イン受光系、マイケルソン受光系を用いて検出するの
で、余分な方向の散乱光、その他のノイズ光を拾うこと
なく高精度で散乱性試料の分光吸収特性を測定すること
ができる。しかも、対照についての測定が従来法に比べ
て非常に簡単になり、測定が極めて容易であり、懸濁
液、生体組織等の散乱物体の特定方向の透過ないし反射
成分の分光吸収を測定するのに適した装置である。
According to the spectral absorption measuring device for an opaque sample of the present invention, the scattering sample is irradiated with light of a variable wavelength with high directivity from a specific direction, and an intensity heterodyne light receiving system of only light scattered in a specific direction, Since the detection is performed using the Michelson light receiving system, it is possible to measure the spectral absorption characteristics of the scattering sample with high accuracy without picking up scattered light in an extra direction and other noise light. Moreover, the measurement of the control is much easier than the conventional method, and the measurement is extremely easy, and the spectral absorption of the transmitted or reflected component in a specific direction of a scattering object such as a suspension or a biological tissue is measured. The device is suitable for.

〔実施例〕〔Example〕

従来、高感度でコヒーレント光を検出する手段としてヘ
テロダイン受光系が知られている。この受光系3は、例
えば第1図に簡単に示したように、レーザ1から出た特
定の周波数ω1の光をビームスプリッターBSにより2分
し、一方の直進光中に試料Sを挿入し、他方の反射光は
ミラーM1、M2を経て上記直進光とハーフミラーHMにより
合成し、その合成光を検出器2により光電変換する。反
射光中に周波数をシフトさせてω1にする超音波光学変
調器等の周波数シフターAOを挿入すると、検出器2から
は周波数ω1とω2の差の観測可能な周波数のビート信号
が表れ、その交流の成分の強さは試料Sの透過率に比例
する。したがって、試料Sを透過した微弱な信号を検知
することができることになる。ところで、このようなヘ
テロダイン受光系3は、上記のような微弱な信号を検知
できるだけでなく、試料Sによって上記反射光(周波数
ω2の光。以下、参照光とも言う。)の方向と異なる方
向へ散乱された成分は、検出器2の検出面上で上記参照
光と重なり合わないので、ビート信号を発生させず、単
に直流成分として検出されるため、このような散乱成分
を容易に取り除き、参照光と同じ方向に進む光成分のみ
を検出することができる高指向性検出系としての性質を
有する。したがって、本発明においては、第1図に示し
たようなヘテロダイン受光系3の上記高指向性検出系と
しての性質を利用する。
Conventionally, a heterodyne light receiving system is known as a means for detecting coherent light with high sensitivity. As shown in FIG. 1 for example, the light receiving system 3 divides the light having a specific frequency ω 1 emitted from the laser 1 into two by a beam splitter BS, and inserts a sample S into one straight light. The other reflected light passes through the mirrors M1 and M2, and is combined with the above-described straight traveling light by the half mirror HM, and the combined light is photoelectrically converted by the detector 2. When a frequency shifter AO such as an ultrasonic optical modulator that shifts the frequency to ω 1 is inserted in the reflected light, a beat signal with an observable frequency, which is the difference between the frequencies ω 1 and ω 2 , appears from the detector 2. , The strength of the AC component is proportional to the transmittance of the sample S. Therefore, a weak signal transmitted through the sample S can be detected. By the way, such a heterodyne light receiving system 3 can detect not only the weak signal as described above, but also a direction different from the direction of the reflected light (light of frequency ω 2 ; hereinafter also referred to as reference light) due to the sample S. Since the component scattered to the detector 2 does not overlap with the reference light on the detection surface of the detector 2, it does not generate a beat signal and is simply detected as a DC component. Therefore, such a scattered component is easily removed, It has a property as a highly directional detection system capable of detecting only a light component traveling in the same direction as the reference light. Therefore, in the present invention, the property of the heterodyne light receiving system 3 as shown in FIG. 1 as the high directivity detection system is utilized.

また、微少な屈折率変化等を検出できる手段としてマイ
ケルソン受光系が良く知られている。この受光系4は、
第2図に示すように、レーザ1から出た光をビームスプ
リッターBSにより2分し、一方のミラーM1、M2を経た反
射光中に試料Sを挿入し、その透過光を後記する直進光
とハーフミラーHMにより合成する。ビームスプリッター
BSを透過した直進光(以下、参照光とも言う。)は、ハ
ーフミラーHMを透過して図示両矢符で示したように移動
される移動鏡Mに当たり、逆方向に反射され、ハーフミ
ラーHMにより試料を透過した光と合成され、その合成光
は検出器2により光電変換される。検出器2からは移動
鏡Mの速度に応じた周波数の干渉信号が重畳した信号が
得られる。その交流成分の強さは試料Sの透過率に比例
し、位相や試料Sの厚さ又は屈折率に依存する。このマ
イケルソン受光系4も、上記したヘテロダイン受光系3
と同様、微少な屈折率変化等を検出できるだけでなく、
試料Sによって上記参照光と異なる方向へ散乱された成
分は、検出器2の検出面上で上記参照光と重なり合わな
いので、干渉信号を発生させず、単に直流成分として検
出されるため、このような散乱成分を容易に取り除きこ
とができ、参照光と同じ方向に進む光成分のみを検出す
ることができる高指向性検出系としての性質を有するた
め、本発明においては、第2図に示したようなマイケル
ソン受光系4のこの高指向性検出系としての性質を利用
する。
The Michelson light receiving system is well known as a means for detecting a slight change in refractive index. This light receiving system 4
As shown in FIG. 2, the light emitted from the laser 1 is divided into two by a beam splitter BS, the sample S is inserted into the reflected light that has passed through one of the mirrors M1 and M2, and the transmitted light is used as a straight-forward light described later. Combined by half mirror HM. Beam splitter
The straight-ahead light (hereinafter also referred to as reference light) that has passed through the BS passes through the half mirror HM and strikes the moving mirror M that is moved as shown by the double-headed arrow in the figure, and is reflected in the opposite direction, and the half mirror HM Is combined with the light transmitted through the sample, and the combined light is photoelectrically converted by the detector 2. From the detector 2, a signal on which an interference signal having a frequency corresponding to the speed of the movable mirror M is superimposed is obtained. The intensity of the AC component is proportional to the transmittance of the sample S, and depends on the phase and the thickness or the refractive index of the sample S. This Michelson light receiving system 4 is also the heterodyne light receiving system 3 described above.
Similar to the above, it can not only detect minute changes in the refractive index,
The component scattered by the sample S in a direction different from that of the reference light does not overlap the reference light on the detection surface of the detector 2 and thus does not generate an interference signal and is simply detected as a DC component. Such a scattered component can be easily removed, and since it has a property as a highly directional detection system capable of detecting only a light component traveling in the same direction as the reference light, it is shown in FIG. 2 in the present invention. The property of the Michelson light receiving system 4 as the highly directional detection system is utilized.

ところで、上記ヘテロダイン受光系3もマイケルソン受
光系4も同じ原理に基づいて試料Sを透過した光ないし
試料Sによって散乱された光の強度を検出するものであ
ると言うことができる。この点を簡単に説明する。合成
される参照光をV2、試料Sを透過した光ないし試料Sに
よって散乱された光(以下、試料光とも言う。)をV1
し、それぞれ次のように表現する。
By the way, it can be said that both the heterodyne light receiving system 3 and the Michelson light receiving system 4 detect the intensity of the light transmitted through the sample S or the light scattered by the sample S based on the same principle. This point will be briefly described. The reference light to be combined is V 2 , and the light transmitted through the sample S or the light scattered by the sample S (hereinafter, also referred to as sample light) is V 1, and they are respectively expressed as follows.

V1=A1exp[−i(ωt+φ)]、 V2=A2exp[−i(ωt+φ)] これらの2つの光波V1、V2を重ね合わせて観測(検出)
すると、その検出信号Sは次のようになる。
V 1 = A 1 exp [−i (ω 1 t + φ 1 )], V 2 = A 2 exp [−i (ω 2 t + φ 2 )] These two light waves V 1 and V 2 are superposed and observed (detected). )
Then, the detection signal S becomes as follows.

S=|V1+V2|2 =V1・V1 *+V2・V2 *+V1・V2 *+V1 *・V2 ところで、 V1・V1 *=A1 2、V2・V2 *=A2 2 であり、 V1・V2 *=A1A2exp[i(ω−ω)t−i(φ
φ)]、 V1 *・V2=A1A2exp[+i(ω−ω)t+i(φ
φ)] V1・V2 *+V1 *・V2=2A1A2cos[ω−ω)t+(φ
φ)] であるので、 S=A1 2+A2 2+2A1A2cos[(ω−ω)t+(φ
φ)] となる。
S = | V 1 + V 2 | 2 = V 1 · V 1 * + V 2 · V 2 * + V 1 · V 2 * + V 1 * · V 2 By the way, V 1 · V 1 * = A 1 2 , V 2 · V 2 * = A 2 2 and V 1 · V 2 * = A 1 A 2 exp [i (ω 1 −ω 2 ) t−i (φ 1
φ 2 )], V 1 * · V 2 = A 1 A 2 exp [+ i (ω 1 −ω 2 ) t + i (φ 1
φ 2 )] V 1 · V 2 * + V 1 * · V 2 = 2A 1 A 2 cos [ω 1 −ω 2 ) t + (φ 1
φ 2 )], S = A 1 2 + A 2 2 + 2A 1 A 2 cos [(ω 1 −ω 2 ) t + (φ 1
φ 2 )].

ところで、ヘテロダイン受光系3においては、 ω=ω−Δω、φ=φと書けるので、 S=A1 2+A2 2+2A1A2cosΔωt となり、検出された信号の交流成分の大きさから、試料
光V1の振幅A1を知ることができる。
By the way, in the heterodyne light receiving system 3, since ω 2 = ω 1 −Δω and φ 1 = φ 2 can be written, S = A 1 2 + A 2 2 + 2A 1 A 2 cos Δωt, and the AC component of the detected signal The amplitude A 1 of the sample light V 1 can be known from the magnitude of.

同様に、マイケルソン受光系4によると、ω=ω
φ=φ+ktと書けるので、検出信号Sは、 S=A1 2+A2 2+2A1A2coskt となり、ヘトロダイン受光系3の場合と同様の信号が得
られる。すなわち、ヘテロダイン受光系3もマイケルソ
ン受光系4も同様に、検出信号の交流成分の大きさか
ら、試料光V1の振幅A1を知ることができるものである。
Similarly, according to the Michelson light receiving system 4, ω 1 = ω 2 ,
Since it can be written that φ 2 = φ 1 + kt, the detection signal S is S = A 1 2 + A 2 2 + 2A 1 A 2 coskt, and the same signal as in the case of the hetrodyne light receiving system 3 is obtained. That is, similarly to the heterodyne light receiving system 3 and the Michelson light receiving system 4, the amplitude A 1 of the sample light V 1 can be known from the magnitude of the AC component of the detection signal.

本発明においては、高指向性検出系として上記したヘテ
ロダイン受光系3及びマイケルソン受光系4を用いる
が、これらの他に、第15図から第24図に例示した高指向
性光学系を用いる。さらに、本発明においては、高指向
性検出系として、このような高指向性光学系の同じもの
を多数本束ねて構成した多光束高指向性光学系も用いる
こともできる。これらの詳細については、前記した特願
平2−77690号参照。これらの高指向性光学系を代表す
るものとして、入射側の対物レンズOb1と、その焦点面
に配置され対物レンズOb1によるフランフォーファ回折
の0次の回折像のみを通過させるピンホールPと、ピン
ホールPに前側焦点が一致するように配置された同様の
対物レンズOb2からなる高指向性光学系5を第3図に示
す。(図の高指向性光学系5は第21図に示した光学系と
同様である。)。ただし、以下の説明において、高指向
性光学系5は第3図のものに限定されるものではない。
In the present invention, the above-mentioned heterodyne light receiving system 3 and Michelson light receiving system 4 are used as the high directional detection system, but in addition to these, the high directional optical system illustrated in FIGS. 15 to 24 is used. Further, in the present invention, as the high directivity detection system, a multi-beam high directivity optical system configured by bundling a plurality of the same high directivity optical systems can also be used. For details of these, see Japanese Patent Application No. 2-77690 mentioned above. As a representative of these high directivity optical systems, an objective lens Ob1 on the incident side, a pinhole P that is arranged on the focal plane of the objective lens Ob1 and passes only the 0th-order diffraction image of the Fraunforfer diffraction by the objective lens Ob1, FIG. 3 shows a highly directional optical system 5 including a similar objective lens Ob2 arranged so that the front focal point coincides with the pinhole P. (The highly directional optical system 5 in the figure is the same as the optical system shown in FIG. 21.). However, in the following description, the high directivity optical system 5 is not limited to that shown in FIG.

さて、本発明における分光吸収測定の対象となる不透明
試料は、まず第1に、完全には入射光を阻止して前方へ
透過させないような試料ではなく、例えば生体試料のよ
うに、試料によって何ら散乱を受けずに直接透過する光
は殆ど存在しないが、試料中の散乱微粒子によって多重
散乱を受け、前方へ散乱された光が試料より出てくるよ
うな試料である。もちろん、直接透過する光が存在する
ような試料についても、後記するように測定対象にでき
る。また、本発明の第2の測定対象は、例えば粉体のよ
うに、入射光を略完全に遮断して後方へのみ反射及び散
乱する試料である。前者の試料を透過試料、後者の試料
を反射試料と呼ぶことにする。
Now, first, the opaque sample that is the target of the spectral absorption measurement in the present invention is not a sample that completely blocks incident light and does not allow it to pass forward, but it does not depend on the sample such as a biological sample. There is almost no light that is directly transmitted without being scattered, but a sample in which light scattered forward due to multiple scattering due to scattering fine particles in the sample emerges from the sample. Of course, a sample in which light that directly transmits exists can also be a measurement target as described later. The second measurement target of the present invention is a sample, such as a powder, which almost completely blocks incident light and reflects and scatters only backward. The former sample is called a transmission sample, and the latter sample is called a reflection sample.

第4図から第9図は、透過試料20の分光吸収特性を測定
する装置の概要を示したものであり、第10図及び第11図
は、反射試料21の分光吸収特性を測定する装置の概要を
示したものである。
4 to 9 show an outline of an apparatus for measuring the spectral absorption characteristic of the transmission sample 20, and FIGS. 10 and 11 show an apparatus for measuring the spectral absorption characteristic of the reflective sample 21. This is an overview.

第4図に示した不透明試料分光吸収測定装置は、第1図
に示したヘテロダイン受光系3を高指向性検出系として
用いて、透過試料20によって前方の特定方向へ散乱され
る光のみを取り出し、試料20による分光吸収特性を測定
しようとするものである。このような測定のために、単
色光源として、広いスペクトル範囲の単色光を連続的に
掃引して出すことができる可変波長レーザ10を用いる。
このレーザ10から出た光束を適当な径の平行光束に変換
するために、ビーム変換器11をレーザ10の前に配置す
る。ビーム変換器11から出た光束は、ビームスプリッタ
ーBSにより2分され、直進光は透過試料20に当たり、そ
の中で多重散乱を受け、前方へ通常等方的に散乱され
る。その散乱光は、透過試料20中の微粒子等により、入
射波長に応じて選択吸収されるため、散乱光強度は試料
20特有の波長依存性を有する。この前方散乱光の中、特
定の方向、第4図の場合は入射光の方向と同一の方向の
光がハーフミラーHMにより参照光と合成される。ビーム
スプリッターBSにより反射された参照光は、上記の合成
前に超音波光学変調器等の周波数シフターAOにより周波
数が僅かに変えられており、試料光と合成して光電変換
すると、参照光と試料光の周波数差に相当する周波数の
交流信号を含む信号が検出器2より出力される。検出器
2より得られる信号の交流成分の大きさは、試料光の振
幅に比例するので、検出器2の出力の交流成分を分離
し、その大きさから、入射波長に応じた相対透過性ない
し吸収特性が得られる。参照光と合成する散乱光の方向
は、必ずしも試料20への入射光と同一方向のものである
必要はない。なお、以上のようにして、レーザ10の波長
を掃引して測定した吸収スペクトルは、レーザ10の波長
を掃引した場合、光強度が一般に変化する。そこで高指
向性検出系を用いる場合、照射光束の一部を取り出し
て、例えば第3図では、レーザ1と試料Sの中間にハー
フミラーを挿入して、出力レーザ光強度を検出する。ヘ
テロダイン検出系を用いる場合、第4図で、試料20の後
方に光遮断素子を挿入して、検出器2でレーザの出力強
度をモニターする。あるいは、第4図のハーフミラーHM
の後方に光強度モニター用検出器を設置して検出しても
よい。(図示していない。)。
The opaque sample spectral absorption measurement apparatus shown in FIG. 4 uses the heterodyne light receiving system 3 shown in FIG. 1 as a highly directional detection system to extract only the light scattered by the transmitted sample 20 in a specific forward direction. It is intended to measure the spectral absorption characteristics of the sample 20. For such measurement, a variable wavelength laser 10 capable of continuously sweeping and emitting monochromatic light in a wide spectrum range is used as a monochromatic light source.
In order to convert the light flux emitted from the laser 10 into a parallel light flux having an appropriate diameter, a beam converter 11 is arranged in front of the laser 10. The light beam emitted from the beam converter 11 is divided into two by the beam splitter BS, and the straight-ahead light strikes the transparent sample 20, undergoes multiple scattering therein, and is normally isotropically scattered forward. The scattered light is selectively absorbed by the fine particles in the transmitted sample 20 according to the incident wavelength.
20 It has a unique wavelength dependence. Of the forward scattered light, the light in a specific direction, in the case of FIG. 4, the same direction as the incident light is combined with the reference light by the half mirror HM. The reference light reflected by the beam splitter BS has its frequency slightly changed by a frequency shifter AO such as an ultrasonic optical modulator before the above combining, and when the light is combined with the sample light and photoelectrically converted, the reference light and the sample A signal including an AC signal having a frequency corresponding to the frequency difference of light is output from the detector 2. Since the magnitude of the AC component of the signal obtained from the detector 2 is proportional to the amplitude of the sample light, the AC component of the output of the detector 2 is separated, and the relative transmissivity or the corresponding transmittance depending on the incident wavelength is determined from the magnitude. Absorption characteristics are obtained. The direction of the scattered light combined with the reference light does not necessarily have to be the same as the direction of the incident light on the sample 20. In the absorption spectrum measured by sweeping the wavelength of the laser 10 as described above, the light intensity generally changes when the wavelength of the laser 10 is swept. Therefore, in the case of using the high directivity detection system, a part of the irradiation light flux is extracted, and for example, in FIG. 3, a half mirror is inserted between the laser 1 and the sample S to detect the output laser light intensity. When the heterodyne detection system is used, a light blocking element is inserted behind the sample 20 in FIG. 4, and the detector 2 monitors the output intensity of the laser. Alternatively, the half mirror HM shown in FIG.
A detector for monitoring the light intensity may be installed in the rear of the position for detection. (Not shown).

さて、第5図は第4図のヘテロダイン受光系3を用いる
ものを変形して、散乱媒質中の内にある特定試料のある
特定方向の反射型分光装置を示したものである。この場
合、ビームスプリッターBSの直後には試料を配置せず、
ハーフミラーHMの向きを変え、ビームスプリッターBSを
透過した光がハーフミラーHMを透過した位置に散乱媒質
20を模式的に示し、散乱媒質20の背後に前方散乱光を逆
の方向に反射する特定試料Sを模式的に図示してあり、
反射光を再度逆方向から散乱媒質20を透過させ、その透
過散乱光をハーフミラーHMで参照光と合成されるように
したものである。散乱媒質20の厚さが薄く、直接透過成
分の割合が高い場合等に有効な構成である。
By the way, FIG. 5 shows a modification of the one using the heterodyne light receiving system 3 of FIG. 4 to show a reflection type spectroscopic device in a specific direction in which a specific sample is present in a scattering medium. In this case, do not place the sample immediately after the beam splitter BS,
The direction of the half mirror HM is changed, and the light transmitted through the beam splitter BS is scattered to a position where it is transmitted through the half mirror HM.
20 schematically shows a specific sample S that reflects the forward scattered light in the opposite direction behind the scattering medium 20,
The reflected light is again transmitted through the scattering medium 20 from the opposite direction, and the transmitted scattered light is combined with the reference light by the half mirror HM. This is an effective configuration when the thickness of the scattering medium 20 is small and the ratio of the direct transmission component is high.

次に、第6図に示した装置は、第2図に示したマイケル
ソン受光系4を適用して透過試料20の分光吸収特性を測
定するものであり、可変波長レーザ10から出た光をビー
ム変換器11により適当な径の平行光束に変換して、ビー
ムスプリッターBSにより2分し、一方のミラーM1、M2を
経た反射光中に透過試料20を挿入し、その散乱透過光を
参照光とハーフミラーHMにより合成する。ビームスプリ
ッターBSを透過した参照光は、ハーフミラーHMを透過し
て図示両矢符で示したように移動される移動鏡Mに当た
り、逆方向に反射され、ハーフミラーHMにより試料光と
合成され、その合成光は検出器2により光電変換され
る。検出器2からは移動鏡Mの速度に応じた周波数の干
渉信号が重畳した信号が得られる。その交流成分の強さ
は透過試料20の散乱光の強さに比例するので、可変波長
レーザ10の波長を掃引してこの交流成分の強度から分光
吸収特性を求めることができる。
Next, the device shown in FIG. 6 measures the spectral absorption characteristics of the transmission sample 20 by applying the Michelson light receiving system 4 shown in FIG. The beam converter 11 converts the light into a parallel light beam having an appropriate diameter, and the beam splitter BS bisects the light beam. The transparent sample 20 is inserted into the reflected light that has passed through one of the mirrors M1 and M2. And the half mirror HM. The reference light that has passed through the beam splitter BS hits the movable mirror M that is transmitted through the half mirror HM and is moved as shown by the double-headed arrow in the figure, is reflected in the opposite direction, and is combined with the sample light by the half mirror HM. The combined light is photoelectrically converted by the detector 2. From the detector 2, a signal on which an interference signal having a frequency corresponding to the speed of the movable mirror M is superimposed is obtained. Since the intensity of the AC component is proportional to the intensity of the scattered light of the transmission sample 20, the wavelength of the variable wavelength laser 10 can be swept to obtain the spectral absorption characteristic from the intensity of the AC component.

第7図は、マイケルソン受光系4を反射型にしたもので
ある。散乱媒質中の内に特定試料の反射分光を模式的に
示した。この場合、ビームスプリッターBSを反射した位
置に試料を配置し、散乱媒質20の背後に前方散乱光を逆
の方向に反射する反射分光試料Sを模式的に示した。散
乱光を再度逆方向から散乱媒質20を透過させ、その透過
散乱光をビームスプリッターBSにより移動鏡Mから反射
してきた参照光と合成させるようにしたものである。こ
の場合も、第5図の場合と同様に、散乱媒質20の厚さが
薄く、直接透過成分の割合が高い場合等に有効な配置で
ある。
FIG. 7 shows the Michelson light receiving system 4 of the reflection type. The reflection spectrum of a specific sample is schematically shown in the scattering medium. In this case, the sample is arranged at a position where the beam splitter BS is reflected, and the reflection spectroscopic sample S that reflects the forward scattered light in the opposite direction is schematically shown behind the scattering medium 20. The scattered light is again transmitted through the scattering medium 20 in the opposite direction, and the transmitted scattered light is combined with the reference light reflected from the movable mirror M by the beam splitter BS. Also in this case, as in the case of FIG. 5, the arrangement is effective when the thickness of the scattering medium 20 is thin and the ratio of the direct transmission component is high.

さて、第8図と第9図は透過型の散乱物体試料20の特定
方向の散乱成分の分光吸収特性を測定するのに、第3図
に代表される高指向性光学系5を用いて、特定方向の散
乱成分のみを抽出するようにしたものであり、第8図は
透過型に、第9図は反射型に構成したものである。ビー
ム変換器11からは適当は径の平行光束に変換されて出て
くる可変波長レーザ10からの光は、第8図の場合は直
接、また、第9図の場合はハーフミラーHMを介して、模
式的に示した散乱媒質20に当たり、多重散乱と吸収を受
けて前方へ透過し、試料Sからの反射分光特性で反射す
る。第8図の場合は、その中の特定方向に散乱された成
分のみが高指向性光学系5により抽出されて検出器2に
よりその強さが検出される。したがって、第8図の場
合、可変波長レーザ10の発振波長を掃引し、ビーム変換
器11と試料20の間にハーフミラーを配置し(図示してい
ない)、ハーフミラーからの反射光を検出することによ
り、レーザの出力をモニターして透過積分減光度を求め
る。また、第9図の場合は、ハーフミラーHMで反射され
るレーザ光を検出して(検出器は図示していない)、レ
ーザの出力をモニターして透過積分減光度を求める。な
お、第9図の場合は、第5図、第7図と同様に、模式的
に書いた散乱媒質20の背後に前方散乱光を逆の方向に反
射する反射分光試料Sを模式的に示した。散乱光を再度
逆方向から散乱媒質20を透過させ、その透過散乱光をハ
ーフミラーHMにより入射光の方向とは異なる方向に反射
させ、特定方向に散乱された成分のみを高指向性光学系
5により抽出するようにする。その他は、第4図から第
7図の場合と同様である。
Now, FIGS. 8 and 9 show the use of the highly directional optical system 5 typified by FIG. 3 to measure the spectral absorption characteristics of the scattering component in a specific direction of the transmission type scattering object sample 20. Only the scattered component in a specific direction is extracted, and FIG. 8 is a transmission type and FIG. 9 is a reflection type. The light from the variable wavelength laser 10 which is emitted from the beam converter 11 after being converted into a parallel light beam having an appropriate diameter is directly transmitted in the case of FIG. 8 and is transmitted through the half mirror HM in the case of FIG. When it hits the scattering medium 20 schematically shown, it is subjected to multiple scattering and absorption, is transmitted forward, and is reflected by the reflection spectral characteristic from the sample S. In the case of FIG. 8, only the component scattered in a specific direction is extracted by the highly directional optical system 5 and its intensity is detected by the detector 2. Therefore, in the case of FIG. 8, the oscillation wavelength of the tunable laser 10 is swept, a half mirror is arranged between the beam converter 11 and the sample 20 (not shown), and the reflected light from the half mirror is detected. Thus, the output of the laser is monitored to obtain the transmission integrated extinction degree. In the case of FIG. 9, the laser light reflected by the half mirror HM is detected (the detector is not shown), the output of the laser is monitored, and the transmission integrated extinction degree is obtained. Note that, in the case of FIG. 9, as in FIGS. 5 and 7, a reflection spectral sample S that reflects forward scattered light in the opposite direction is schematically shown behind the schematically written scattering medium 20. It was The scattered light is again transmitted through the scattering medium 20 from the opposite direction, the transmitted scattered light is reflected by the half mirror HM in a direction different from the direction of the incident light, and only the component scattered in a specific direction is highly directional optical system 5 To extract. Others are the same as in the case of FIGS. 4 to 7.

以上は、分光吸収特性を測定する試料が透過性である時
と反射性の場合の装置構成であるが、試料が反射性の場
合、表面反射光が強い場合、これらの構成をそのために
容易に変更することができる。ただし、反射試料におい
ては、入射光の正反射成分の強度が極めて高い場合、正
反射成分は反射試料表面近傍の吸収特性に関する情報を
殆ど含んでいないのが通常であるので、この正反射成分
を取り除く構成にしなければならない。第10図と第11図
にこのように構成した装置の例を示す。第10図の装置
は、高指向性光学系5を用いて反射試料21表面近傍から
特定方向に散乱される成分を抽出して分光吸収特性を測
定するものであるが、反射試料21表面にミラーM4を介し
て入射する可変波長レーザ10からの単色光は、試料面の
法線に対してある程度の角度をなすように設定されてお
り、その正反射成分はミラーM5を介してビームトラップ
BTにより取り除くようにしている。また、第11図の装置
は、ヘテロダイン受光系3を高指向性検出系として用い
て反射試料21表面近傍から特定方向に散乱される成分を
抽出して分光吸収特性を測定するものであるが、第11図
と同様な構成により、ビームトラップBTにより試料21表
面で反射された正反射成分を取り除くようにしている。
The above is the device configuration when the sample for measuring the spectral absorption characteristics is transmissive and when it is reflective.If the sample is reflective, or if the surface reflected light is strong, these configurations can be easily used for that purpose. Can be changed. However, in a reflection sample, when the intensity of the specular reflection component of incident light is extremely high, the specular reflection component usually contains almost no information about the absorption characteristics near the surface of the reflection sample. It must be removed. FIG. 10 and FIG. 11 show an example of the device configured as described above. The apparatus shown in FIG. 10 measures the spectral absorption characteristics by extracting the components scattered in a specific direction from the vicinity of the surface of the reflective sample 21 using the highly directional optical system 5, and a mirror is provided on the surface of the reflective sample 21. The monochromatic light from the tunable wavelength laser 10 incident via M4 is set so as to form an angle to the normal to the sample surface, and its specular reflection component is beam trapped via the mirror M5.
I try to remove it by BT. Further, the apparatus of FIG. 11 uses the heterodyne light receiving system 3 as a highly directional detection system to extract a component scattered in a specific direction from the vicinity of the surface of the reflective sample 21, and measures the spectral absorption characteristics. With the configuration similar to that of FIG. 11, the specular reflection component reflected on the surface of the sample 21 by the beam trap BT is removed.

次に、具体的に試料のマクロサイズ領域の分光吸収特性
を測定する装置のいくつかの例について簡単に説明す
る。第12図は、試料台13上に配置した試料20の透過分光
吸収特性及び反射分光吸収特性を測定できる装置の概略
の構成を示すもので、可変波長レーザ10からの単色光は
切り換え鏡MSにより実線の透過光路と点線の反射光路に
切り換えられる。実線光路を選択すると、ミラーM7を経
た光は、共焦点に配置されたカセグレン反射光学系K3と
K4からなるビーム変換器11とにより所定の径の平行光束
に変換され、試料20に入射し、試料20を透過した特定方
向の散乱光は、共焦点に配置されたカセグレン反射光学
系K1とK2及びその焦点に配置されたピンホールPからな
る高指向性光学系5により抽出されて、ミラーM10、M11
を経て検出器2により測定され、可変波長レーザ10の波
長を掃引することにより、試料20の透過成分の分光吸収
特性が求まる。切り換え鏡MSを点線の反射光路に切り換
えると、可変波長レーザ10からの単色光はミラーM9を経
てハーフミラーHMにより下方に反射され、ビーム変換器
11の作用をする高指向性光学系5によりビーム径が縮小
され、試料20に入射する。試料20から完全に後方に散乱
された光だけが高指向性光学系5により抽出され、ハー
フミラーHM、ミラーM10、M11を経て検出器2により測定
され、可変波長レーザ10の波長を掃引することにより、
試料20の反射成分の分光吸収特性が求まる。なお、試料
20の正反射成分以外の後方散乱成分を抽出する時には、
試料20を傾けて光を入射させるようにすればよい。
Next, some examples of the apparatus for specifically measuring the spectral absorption characteristics of the sample in the macro size region will be briefly described. FIG. 12 shows a schematic configuration of an apparatus capable of measuring the transmission spectral absorption characteristics and the reflection spectral absorption characteristics of the sample 20 arranged on the sample table 13. Monochromatic light from the variable wavelength laser 10 is switched by the switching mirror MS. The transmission path of the solid line and the reflection path of the dotted line are switched. When the solid optical path is selected, the light that has passed through the mirror M7 and the Cassegrain reflection optical system K3 that is placed confocal
The scattered light in a specific direction, which is converted into a parallel light flux having a predetermined diameter by the beam converter 11 made of K4, is incident on the sample 20, and is transmitted through the sample 20, is a Cassegrain reflection optical system K1 and K2 arranged confocal. And the mirrors M10 and M11 extracted by the highly directional optical system 5 consisting of the pinhole P arranged at the focal point
After that, the wavelength is measured by the detector 2 and the wavelength of the variable wavelength laser 10 is swept to obtain the spectral absorption characteristic of the transmitted component of the sample 20. When the switching mirror MS is switched to the reflection optical path indicated by the dotted line, the monochromatic light from the tunable laser 10 is reflected downward by the half mirror HM via the mirror M9 and the beam converter.
The beam diameter is reduced by the highly directional optical system 5 having the function of 11, and is incident on the sample 20. Only the light completely scattered back from the sample 20 is extracted by the highly directional optical system 5, measured by the detector 2 via the half mirror HM, the mirrors M10 and M11, and the wavelength of the variable wavelength laser 10 is swept. Due to
The spectral absorption characteristics of the reflection component of the sample 20 can be obtained. The sample
When extracting backscattering components other than the 20 specular reflection components,
The sample 20 may be tilted so that light is incident.

第13図、第14図の装置は、それぞれ第4図のヘテロダイ
ン受光系3を用いた装置、第6図のマイケルソン受光系
4を用いた装置を縦型に変形しただけのものであり、格
別の説明は必要なかろう。なお、第14図のものにおい
て、駆動径14は移動鏡Mを光軸方向に移動させるための
ものである。
The apparatus shown in FIGS. 13 and 14 is obtained by only vertically modifying the apparatus using the heterodyne light receiving system 3 shown in FIG. 4 and the apparatus using the Michelson light receiving system 4 shown in FIG. No special explanation may be needed. In FIG. 14, the drive diameter 14 is for moving the movable mirror M in the optical axis direction.

なお、以上の説明においては、可変波長レーザ10は連続
的に発振するものを前提にしていたが、パルス動作をす
る可変波長レーザを用いてもよい。特に、レーザ光を連
続的に照射すると、その特性が急激に変化する試料の場
合、パルス動作をする可変波長レーザを用いることが好
ましい。また、検出器2については、格別説明しなかっ
たが、公知の何れの手段でも用いることができる。ま
た、検出信号の処理方式としても、例えば入射光をチョ
ッパ等によって強度変調し、検出信号を位相同期検出す
ることが考えられる。この場合、赤外光検出の時定数が
長いため、同期変調周波数を小さくする必要がある。ま
た、光子計数方式(可視光)、電荷累積方式(赤外光)
等の同期信号積分検出方式、ヘテロダインビート信号検
出方式等を用いてもよい。また、周波数シフターとして
は、超音波変調器等の超音波光回析を用いたものばかり
でなく、波長板の組合せ及び回転格子のほか、結晶の電
気光学効果を利用することもできる。また、反射鏡を一
定速度で移動させるか又は鋸歯状波で振動させてもよ
い。
In the above description, the variable wavelength laser 10 is based on the assumption that it continuously oscillates, but a variable wavelength laser that performs pulse operation may be used. In particular, in the case of a sample whose characteristics change rapidly when continuously irradiated with laser light, it is preferable to use a variable wavelength laser that performs pulse operation. Further, the detector 2 is not particularly described, but any known means can be used. Also, as a processing method of the detection signal, for example, intensity modulation of incident light by a chopper or the like and phase-locked detection of the detection signal can be considered. In this case, since the time constant of infrared light detection is long, it is necessary to reduce the synchronous modulation frequency. Also, photon counting method (visible light), charge accumulation method (infrared light)
A sync signal integration detection method, a heterodyne beat signal detection method, or the like may be used. Further, as the frequency shifter, not only the one using an ultrasonic light diffraction such as an ultrasonic modulator but also the combination of the wave plate and the rotating grating, and the electro-optic effect of the crystal can be used. Further, the reflecting mirror may be moved at a constant speed or may be vibrated by a sawtooth wave.

〔発明の効果〕〔The invention's effect〕

本発明の不透明試料の分光吸収測定装置においては、散
乱性試料に特定方向から指向性の高い可変波長の光を照
射して、特定の方向に散乱された光のみの強度をヘテロ
ダイン受光系、マイケルソン受光系を用いて検出するの
で、余分な方向の散乱光、その他のノイズ光を拾うこと
なく高精度で散乱性試料の分光吸収特性を測定すること
ができる。しかも、対照についての測定が従来法に比べ
て非常に簡単になり、測定が極めて容易であり、懸濁
液、生体組織等の散乱が大きな散乱物体までもの特定方
向の透過ないし反射成分の分光吸収を測定するのに適し
た装置である。
In the spectroscopic absorption measuring apparatus for an opaque sample of the present invention, the scattering sample is irradiated with light having a variable wavelength with high directivity from a specific direction, and the intensity of only the light scattered in the specific direction is measured by the heterodyne light receiving system, Michael. Since the detection is performed using the Son light receiving system, the spectral absorption characteristics of the scattering sample can be measured with high accuracy without picking up scattered light in an extra direction and other noise light. Moreover, the measurement of the control is much easier than the conventional method, and the measurement is extremely easy.Spectral absorption of the transmitted or reflected component in a specific direction is possible even for scattering objects such as suspensions and biological tissues with large scattering. It is a device suitable for measuring.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の不透明試料の分光吸収測定装置に用い
られる高指向性検出系の1つのヘテロダイン受光系の構
成と作用を説明するための図、第2図は他の高指向性検
出系であるマイケルソン受光系の構成と作用を説明する
ための図、第3図は他の高指向性検出系である高指向性
光学系の代表的なものの構成を示すための図、第4図、
第5図は透過試料に適用する本発明のヘテロダイン受光
系を用いた分光吸収測定装置の実施例の構成を示す図、
第6図、第7図は透過試料に適用する本発明のマイケル
ソン受光系を用いた分光吸収測定装置の実施例の構成を
示す図、第8図、第9図は透過試料に適用する本発明の
高指向性光学系を用いた分光吸収測定装置の実施例の構
成を示す図、第10図、第11図は反射試料に適用する本発
明の分光吸収測定装置の実施例の構成を示す図、第12図
から第14図は試料のマクロサイズ領域の分光吸収特性を
測定する装置のいくつかの具体例を示すための図、第15
図から第24図は先に提案した高指向性光学系の構成を示
す図である。 1……レーザ、2……検出器、3……ヘテロダイン受光
系、4……マイケルソン受光系、5……高指向性光学
系、10……可変波長レーザ、11……ビーム変換器、13…
…試料台、20……散乱媒質、21……反射試料、S……試
料、BS……ビームスプリッター、HM……ハーフミラー、
M1〜M11……ミラー、AO……周波数シフター、M……移
動鏡、Ob1、Ob2……対物レンズ、P……ピンホール、M3
……鏡、BT……ビームトラップ、MS……切り換え鏡、K1
〜K4……カセグレン反射光学系
FIG. 1 is a diagram for explaining the configuration and operation of one heterodyne light receiving system of a high directional detection system used in the spectral absorption measuring apparatus for opaque samples of the present invention, and FIG. 2 is another high directional detection system. FIG. 4 is a diagram for explaining the configuration and operation of the Michelson light receiving system, and FIG. 3 is a diagram for showing the configuration of a typical high directional optical system which is another high directional detection system, and FIG. ,
FIG. 5 is a diagram showing a configuration of an embodiment of a spectral absorption measuring apparatus using a heterodyne light receiving system of the present invention applied to a transmission sample,
6 and 7 are diagrams showing the configuration of an embodiment of a spectral absorption measuring apparatus using the Michelson light receiving system of the present invention applied to a transmission sample, and FIGS. 8 and 9 are books applied to a transmission sample. Diagram showing the configuration of an embodiment of a spectral absorption measuring apparatus using a highly directional optical system of the invention, FIG. 10, FIG. 11 shows the configuration of an embodiment of the spectral absorption measuring apparatus of the present invention applied to a reflective sample FIGS. 12 to 14 are views for showing some specific examples of the apparatus for measuring the spectral absorption characteristics of the sample in the macro size region, and FIG.
24 to 24 are diagrams showing the configuration of the previously proposed highly directional optical system. 1 ... Laser, 2 ... Detector, 3 ... Heterodyne light receiving system, 4 ... Michelson light receiving system, 5 ... High directivity optical system, 10 ... Variable wavelength laser, 11 ... Beam converter, 13 …
… Sample stand, 20 …… Scattering medium, 21 …… Reflective sample, S …… Sample, BS …… Beam splitter, HM …… Half mirror,
M1 to M11 …… Mirror, AO …… Frequency shifter, M …… Movable mirror, Ob1, Ob2 …… Objective lens, P …… Pinhole, M3
…… Mirror, BT …… Beam trap, MS …… Switching mirror, K1
~ K4 …… Cassegrain reflective optical system

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−274848(JP,A) 特開 昭63−243839(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-274848 (JP, A) JP-A-63-243839 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】波長変更可能な単色光源からの光を2分し
て、一方の光路中に入射光の周波数をシフトさせる周波
数シフト手段を設け、他方の光路中に散乱性試料を配置
し、周波数シフト手段から射出する指向性の高い光と散
乱性試料から特定方向に出る光とを合成して同方向に射
出させるビーム合成手段を設け、ビーム合成手段によっ
て合成された光を電気信号に変換してシフト周波数に等
しい交流成分のみの強度を検出する検出手段を設けたこ
とを特徴とする不透明試料の分光吸収測定装置。
1. A frequency shift means for dividing the light from a wavelength-changeable monochromatic light source into two and shifting the frequency of incident light in one optical path, and disposing a scattering sample in the other optical path, A beam synthesizing means for synthesizing the light with high directivity emitted from the frequency shift means and the light emitted in a specific direction from the scattering sample and emitting in the same direction is provided, and the light synthesized by the beam synthesizing means is converted into an electric signal. Then, a spectral absorption measuring device for an opaque sample is provided with a detecting means for detecting the intensity of only the AC component equal to the shift frequency.
【請求項2】波長変更可能な単色光源からの光を2分し
て、一方の光路中に光路長を所定速度で変更する光路長
変更手段を設け、他方の光路中に散乱性試料を配置し、
光路長変更手段から射出する指向性の高い光と散乱性試
料から特定方向に出る光とを合成して同方向に射出させ
るビーム合成手段を設け、ビーム合成手段によって合成
された光を電気信号に変換して光路長変更速度に応じた
周波数の交流成分のみの強度を検出する検出手段を設け
たことを特徴とする不透明試料の分光吸収測定装置。
2. An optical path length changing means for dividing the light from a wavelength-changeable monochromatic light source into two and changing the optical path length at a predetermined speed in one optical path, and disposing a scattering sample in the other optical path. Then
A beam synthesizing means for synthesizing the light having a high directivity emitted from the optical path length changing means and the light emitted from the scattering sample in a specific direction and emitting in the same direction is provided, and the light synthesized by the beam synthesizing means is converted into an electric signal. A spectroscopic absorption measuring apparatus for an opaque sample, which is provided with a detecting means for converting and detecting the intensity of only an alternating-current component having a frequency corresponding to the optical path length changing speed.
【請求項3】散乱性試料からの光を遮断して、周波数シ
フト手段又は光路長変更手段から射出する指向性の高い
光の光束強度を検出して参照光強度とし、ビーム合成手
段によって合成された光を電気信号に変換してシフト周
波数に等しい交流成分又は光路長変更速度に応じた周波
数の交流成分を試料からの信号強度とし、これらの強度
を用いて透過積分減光度を求めることを特徴する請求項
1又は2記載の不透明試料の分光吸収測定装置。
3. The light from the scattering sample is blocked, the luminous flux intensity of the highly directional light emitted from the frequency shift means or the optical path length changing means is detected as the reference light intensity, and is synthesized by the beam synthesizing means. The converted light is converted into an electric signal, and the AC component equal to the shift frequency or the AC component of the frequency according to the optical path length changing speed is used as the signal intensity from the sample, and the transmitted integrated extinction is obtained using these intensities. The spectral absorption measuring device for an opaque sample according to claim 1 or 2.
JP2133066A 1990-05-22 1990-05-22 Spectral absorption measuring device for opaque samples Expired - Fee Related JPH0721452B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2133066A JPH0721452B2 (en) 1990-05-22 1990-05-22 Spectral absorption measuring device for opaque samples
EP91304605A EP0458601B1 (en) 1990-05-22 1991-05-21 Method of and apparatus for measuring spectral absorption in opaque specimens and method of and apparatus for measuring microscopic absorption distribution
DE69121633T DE69121633T2 (en) 1990-05-22 1991-05-21 Method and apparatus for measuring spectral absorption in opaque material and method and apparatus for measuring a distribution of microscopic absorption
US07/704,142 US5345306A (en) 1990-05-22 1991-05-22 Method and apparatus for measuring spectral absorption in an opaque specimen and method and apparatus for measuring the microscopic absorption distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133066A JPH0721452B2 (en) 1990-05-22 1990-05-22 Spectral absorption measuring device for opaque samples

Publications (2)

Publication Number Publication Date
JPH0427845A JPH0427845A (en) 1992-01-30
JPH0721452B2 true JPH0721452B2 (en) 1995-03-08

Family

ID=15096041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133066A Expired - Fee Related JPH0721452B2 (en) 1990-05-22 1990-05-22 Spectral absorption measuring device for opaque samples

Country Status (1)

Country Link
JP (1) JPH0721452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100745A1 (en) 2009-03-05 2010-09-10 オリンパス株式会社 Photodetector device and photodetection method, and microscope and endoscope

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486433B2 (en) * 2004-07-29 2010-06-23 浜松ホトニクス株式会社 Absorption measuring device
JP5667809B2 (en) * 2010-08-06 2015-02-12 株式会社四国総合研究所 Optical gas sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243839A (en) * 1987-03-31 1988-10-11 Fujitsu Ltd Instrument for measuring infrared scattering intensity
JPH0718797B2 (en) * 1987-05-01 1995-03-06 株式会社日立製作所 Local stress distribution measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100745A1 (en) 2009-03-05 2010-09-10 オリンパス株式会社 Photodetector device and photodetection method, and microscope and endoscope

Also Published As

Publication number Publication date
JPH0427845A (en) 1992-01-30

Similar Documents

Publication Publication Date Title
EP0458601B1 (en) Method of and apparatus for measuring spectral absorption in opaque specimens and method of and apparatus for measuring microscopic absorption distribution
US4948974A (en) High resolution imaging apparatus and method for approximating scattering effects
US7515265B2 (en) Imaging systems and methods to improve backscattering imaging using circular polarization memory
US5369496A (en) Noninvasive method and apparatus for characterizing biological materials
JP3745775B2 (en) Optical techniques for biological tissue examination.
US7072045B2 (en) High resolution optical coherence tomography with an improved depth range using an axicon lens
CA1161120A (en) Method and apparatus for detecting the presence of caries in teeth using visible luminescence
JP2004518125A (en) Composition analysis
US4829184A (en) Reflective, transmissive high resolution imaging apparatus
JP2002538423A (en) Method and apparatus for terahertz imaging
JP2004500546A (en) 3D image formation
CA2349285A1 (en) Method and apparatus for providing high contrast imaging
JPS61180129A (en) Device for analyzing previously determined characteristic ofbody, method of testing body and device for analyzing selected characteristic of specimen
WO2000043750A2 (en) Imaging of tissue using polarized light
EP1472517A1 (en) Spectroscopic diagnostic methods and system
CN108572161A (en) Optical coherence tomography based on partial wave front interferometer
JPS6072542A (en) Light ray ct apparatus
US20130342848A1 (en) System and Method for Optical Coherence Tomography
JPH04122248A (en) Optical tomographic image imaging device
JPH0721452B2 (en) Spectral absorption measuring device for opaque samples
JPH0721451B2 (en) Microscopic absorption distribution measuring device for opaque samples
JPH10246697A (en) Optical inspection method and device
JP3597887B2 (en) Scanning optical tissue inspection system
JP2890309B2 (en) Form and function imaging device
JP3077703B2 (en) Phase image detection device using heterodyne detection light receiving system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees