JP3594878B2 - Method and apparatus for measuring cross-sectional image of measurement sample - Google Patents

Method and apparatus for measuring cross-sectional image of measurement sample Download PDF

Info

Publication number
JP3594878B2
JP3594878B2 JP2000162054A JP2000162054A JP3594878B2 JP 3594878 B2 JP3594878 B2 JP 3594878B2 JP 2000162054 A JP2000162054 A JP 2000162054A JP 2000162054 A JP2000162054 A JP 2000162054A JP 3594878 B2 JP3594878 B2 JP 3594878B2
Authority
JP
Japan
Prior art keywords
light
optical axis
measurement
measurement sample
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000162054A
Other languages
Japanese (ja)
Other versions
JP2001343321A (en
Inventor
学 佐藤
直弘 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000162054A priority Critical patent/JP3594878B2/en
Publication of JP2001343321A publication Critical patent/JP2001343321A/en
Application granted granted Critical
Publication of JP3594878B2 publication Critical patent/JP3594878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、測定試料の断面画像測定方法及びそのための装置に係り、特にヘテロダイン検出法を用いた空間干渉信号処理による断面画像測定に関するものである。
【0002】
【従来の技術】
従来、このような分野の技術としては以下に開示されるようなものがあった。
【0003】
既知の空間干渉を用いた断層画像測定方法は、干渉強度パターンのエンベローブ形状測定から試料内での反射点の同定を行い、断層画像を測定するようにしている。つまり、干渉強度パターンのエンベローブの形状測定より、反射点の同定をしており、エンベローブの幅が空間分解能となっていた。
【0004】
【発明が解決しようとする課題】
上記したように、従来は、干渉強度パターンのエンベローブの形状測定より、反射点の同定をしており、エンベローブの幅が空間分解能となっており、分解能が低いといった問題があった。
【0005】
つまり、従来の光波コヒーレンストモグラフィー(OCT)では、コヒーレンス長が空間分解能の限界であった。
【0006】
本発明は、上記問題点を除去し、光軸方向の空間分解能を向上させ、高感度化・高空間分解能化を図ることができる測定試料の断面画像測定方法及びそのための装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記の目的を達成するために、
〔1〕光軸方向の後方散乱光強度プロファイルの測定と光軸に対する横方向走査とを交互に行うことによる測定試料の断面画像測定方法において、ヘテロダイン検出方式を用いて空間干渉強度分布測定を行い、前記空間干渉強度値をN乗し、その半値全幅をほぼ1/√Nに狭くし、光軸方向の空間分解能をほぼ√N倍に向上させることを特徴とする。
【0008】
〔2〕上記〔1〕記載の測定試料の断面画像測定方法において、前記空間干渉強度値を4乗とし、光軸方向空間分解能を4.7μmとすることを特徴とする。
【0009】
〔3〕光軸方向の後方散乱光強度プロファイルの測定と光軸に対する横方向走査とを交互に行うことによる測定試料の断面画像測定装置において、光源と、この光源からの光波がビームスプリッター及び対物レンズを通って照射される測定試料と、この測定試料からの後方散乱光である信号光が前記対物レンズ、前記ビームスプリッター及びバイプリズムを通って入射するとともに、参照光が前記ビームスプリッター、ヘテロダイン検出のための位相変調器を通過後、ミラー及び前記バイプリズムを介して入射し、前記信号光と参照光のなす角2θにより、空間干渉強度パターンを生ぜしめる1次元アレイ光検出装置と、前記位相変調器の変調周波数をfとして、前記空間干渉強度パターンを時間的に周波数fで変化させるとともに、ビート振幅の1次元分布として記憶させるメモリを有する信号処理装置と、前記空間干渉強度値をN乗し、その半値全幅をほぼ1/√Nに狭くし、光軸方向の空間分解能をほぼ1/√Nに向上させる手段とを具備することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0011】
図1は本発明の実施例を示すヘテロダイン検出法を用いた空間干渉信号処理による断面画像測定装置の模式図である。
【0012】
この図において、1は光源、2はレンズ、3はビームスプリッター(BS)、4は対物レンズ(OBJ)、5は測定試料(S)、6は位相変調器(PM)、7は第1のミラー(M1)、8は第2のミラー(M2)、9はバイプリズム(BP)、10は1次元アレイ光検出装置(AD)、11は走査装置(SS)、12は検波+フィルタ装置(RF)、13は信号処理装置(PC)である。
【0013】
以下、本発明の基本原理を図1に基づいて説明する。
【0014】
光源1からの光波は、ビームスプリッター(BS)3、対物レンズ(OBJ)4を通って、測定試料5に照射される。測定試料5からの後方散乱光である信号光21は、再度、対物レンズ(OBJ)4、ビームスプリッター(BS)3、バイプリズム(BP)9を通って1次元アレイ光検出装置(AD)10へ入射する。
【0015】
一方、参照光22は、ビームスプリッター(BS)3、ヘテロダイン検出のための位相変調器(PM)6を通過後、第1のミラー(M1)7、第2のミラー(M2)8、バイプリズム(BP)9を介して1次元アレイ光検出装置(AD)10に入射する。
【0016】
そこで、信号光21と参照光22のなす角2θにより、1次元アレイ光検出装置(AD)10上に空間干渉強度パターンが生ずる。位相変調器(PM)6の変調周波数をfとすると、強度パターンは時間的に周波数fで変化する。1次元アレイ光検出装置(AD)10は、光検出器が1次元上にM個並んだアレイ状光検出器である。走査装置(SS)11は、まず1チャンネル目の光検出器に接続する。その際、光検出器からの周波数fのヘテロダインビート信号を検波+フィルタ装置(RF)12を介して信号処理装置(PC)13へ入力・記憶されてから、走査装置(SS)11は、次の光検出器に接続を行い、順次繰り返すことにより各チャンネルごとに全ての光検出器を接続し、1次元の空間干渉強度パターンをビート振幅の1次元分布として信号処理装置(PC)13のメモリ上に実現する。
【0017】
例えば、参照光路と等しい光路となるサンプル内の基準点a点とΔZ離れたb点とによる空間干渉パターンは、後述の式(1)〜(3)で示され、図2(a)に示すように直流成分を有する2つの波束となる。
【0018】
なお、この図2(a)において、l=4l λ/πΔλ、
2x=l/2sinθ、x=Δz/sinθ、λ′=λ/2sinθである。
【0019】
【数1】

Figure 0003594878
【0020】
【数2】
Figure 0003594878
【0021】
【数3】
Figure 0003594878
【0022】
ただし、
:参照光強度、ISa:a点からの後方散乱光強度、ISb:b点からの後方散乱光強度、ω=2πc/λ:光の角周波数、δ=πcΔλ/√(2l )λ:スペクトル拡がりパラメータ、φ:位相変調の変調指数、f:位相変調周波数、Δz:基準点a点からΔZ離れたb点までの距離、x:1次元アレイ光検出装置上中心位置からの距離である。
【0023】
ここで、λ′、2x、xはそれぞれ、干渉の周期、波束の幅、基準点と任意の散乱点との距離による波束のシフトに対応する。
【0024】
検波+フィルタ装置(RF)12を介して測定されるヘテロダインビート信号の振幅分布は、図2(b)に示すように、バックグラウンドが除去されたエンベローブであり、サンプル内からのコヒーレントな散乱光信号のみを表している。この時の波束の幅は、2xであり、空間分解能は、コヒーレント長の半分である。
【0025】
この振幅分布情報が、信号処理装置(PC)13のメモリに記憶されているため、この強度信号値をN乗する。N乗した際の強度分布は、図2(c)に示すようになり、半値全幅がほぼ1/√Nに狭くなり、これは光軸方向の空間分解能がほぼ√N倍向上したことになる。
【0026】
以上の方法により、光軸方向の後方散乱光強度プロファイルの測定と光軸に対する横方向走査とを交互に行うことにより、断層画像を測定することができる。
【0027】
具体例としては、光源波長:0.8μm、スペクトル幅:30nm、アレイ検出器ピッチ:25μm、アレイ長:25.6mmとする。この時、コヒーレンス長は18.8μmとなり、光軸方向の空間分解能は、9.4μmとなる。サンプリング定理から干渉パターンの周期は50μmとなるので、信号光と参照光とのなす各2θは、1.8°となる。この時、サンプル内の測定範囲は、410μmで、4乗の信号処理を仮定すると、光軸方向空間分解能は、4.7μmとなる。
【0028】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0029】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0030】
(A)測定試料の断面画像測定にあたり、空間干渉強度分布測定にヘテロダイン検出方式を用いて高感度かつダイナミックレンジを実現し、N乗の信号処理により、ほぼ√N倍の空間分解能の向上を図ることができる。
【0031】
(B)高い空間分解能を有する断層画像計測が可能になり、医学分野では新しい臨床診断が期待される。
【図面の簡単な説明】
【図1】本発明の実施例を示すヘテロダイン検出法を用いた空間干渉信号処理による断面画像測定装置の模式図である。
【図2】本発明の実施例を示すヘテロダイン検出法を用いた空間干渉信号処理による断面画像測定装置による波束を示す図である。
【符号の説明】
1 光源
2 レンズ
3 ビームスプリッター(BS)
4 対物レンズ(OBJ)
5 測定試料(S)
6 位相変調器(PM)
7 第1のミラー(M1)
8 第2のミラー(M2)
9 バイプリズム(BP)
10 1次元アレイ光検出装置(AD)
11 走査装置(SS)
12 検波+フィルタ装置(RF)
13 信号処理装置(PC)
21 信号光
22 参照光[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a cross-sectional image of a measurement sample and an apparatus therefor, and more particularly to a cross-sectional image measurement by spatial interference signal processing using a heterodyne detection method.
[0002]
[Prior art]
Conventionally, there have been techniques disclosed in the following as techniques in such a field.
[0003]
In the tomographic image measurement method using the known spatial interference, a reflection point in the sample is identified from the measurement of the envelope shape of the interference intensity pattern, and the tomographic image is measured. That is, the reflection point is identified by measuring the shape of the envelope of the interference intensity pattern, and the width of the envelope is the spatial resolution.
[0004]
[Problems to be solved by the invention]
As described above, conventionally, the reflection point is identified by measuring the shape of the envelope of the interference intensity pattern, and there is a problem that the width of the envelope has a spatial resolution and the resolution is low.
[0005]
That is, in the conventional lightwave coherence tomography (OCT), the coherence length is the limit of the spatial resolution.
[0006]
An object of the present invention is to provide a method and a device for measuring a cross-sectional image of a measurement sample, which can eliminate the above problems, improve the spatial resolution in the optical axis direction, and achieve high sensitivity and high spatial resolution. Aim.
[0007]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
[1] In a cross-sectional image measurement method of a measurement sample by alternately performing measurement of a backscattered light intensity profile in an optical axis direction and scanning in a lateral direction with respect to an optical axis, a spatial interference intensity distribution measurement is performed using a heterodyne detection method. The spatial interference intensity value is raised to the Nth power, the full width at half maximum is reduced to approximately 1 / √N, and the spatial resolution in the optical axis direction is improved to approximately √N times.
[0008]
[2] The method for measuring a cross-sectional image of a measurement sample according to [1], wherein the spatial interference intensity value is a fourth power, and the spatial resolution in the optical axis direction is 4.7 μm.
[0009]
[3] In an apparatus for measuring a cross-sectional image of a measurement sample by alternately performing measurement of a backscattered light intensity profile in the optical axis direction and scanning in the lateral direction with respect to the optical axis, a light source, a light wave from the light source, a beam splitter and an objective A measurement sample irradiated through a lens, and signal light that is backscattered light from the measurement sample enters through the objective lens, the beam splitter, and the biprism, and a reference light is emitted from the beam splitter, heterodyne detection. After passing through the phase modulator for the first and second mirrors, the light enters through the mirror and the biprism, and generates a spatial interference intensity pattern based on an angle 2θ between the signal light and the reference light. Assuming that the modulation frequency of the modulator is f, the spatial interference intensity pattern is temporally changed at the frequency f, and the beat A signal processing device having a memory for storing the width as a one-dimensional distribution, and raising the spatial interference intensity value to the Nth power, reducing the full width at half maximum to approximately 1 / √N, and increasing the spatial resolution in the optical axis direction to approximately 1 / √N. And means for increasing the value to N.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 is a schematic view of a cross-sectional image measuring apparatus using spatial interference signal processing using a heterodyne detection method according to an embodiment of the present invention.
[0012]
In this figure, 1 is a light source, 2 is a lens, 3 is a beam splitter (BS), 4 is an objective lens (OBJ), 5 is a measurement sample (S), 6 is a phase modulator (PM), and 7 is a first modulator. Mirror (M1), 8 is second mirror (M2), 9 is biprism (BP), 10 is one-dimensional array photodetector (AD), 11 is scanning device (SS), 12 is detection + filter device ( RF) and 13 are signal processing devices (PCs).
[0013]
Hereinafter, the basic principle of the present invention will be described with reference to FIG.
[0014]
The light wave from the light source 1 passes through the beam splitter (BS) 3 and the objective lens (OBJ) 4 and irradiates the measurement sample 5. The signal light 21, which is the backscattered light from the measurement sample 5, passes through the objective lens (OBJ) 4, the beam splitter (BS) 3, and the biprism (BP) 9 again, and the one-dimensional array light detection device (AD) 10. Incident on.
[0015]
On the other hand, the reference light 22 passes through a beam splitter (BS) 3 and a phase modulator (PM) 6 for heterodyne detection, and then a first mirror (M1) 7, a second mirror (M2) 8, and a biprism. The light enters a one-dimensional array photodetector (AD) 10 via (BP) 9.
[0016]
Accordingly, a spatial interference intensity pattern is generated on the one-dimensional array photodetector (AD) 10 by the angle 2θ formed by the signal light 21 and the reference light 22. Assuming that the modulation frequency of the phase modulator (PM) 6 is f, the intensity pattern temporally changes at the frequency f. The one-dimensional array photodetector (AD) 10 is an array photodetector in which M photodetectors are arranged one-dimensionally. The scanning device (SS) 11 is first connected to the photodetector of the first channel. At that time, after the heterodyne beat signal of the frequency f from the photodetector is input and stored in the signal processing device (PC) 13 through the detection + filter device (RF) 12, the scanning device (SS) 11 , And sequentially repeats to connect all the photodetectors for each channel, and converts the one-dimensional spatial interference intensity pattern into a one-dimensional distribution of beat amplitudes in the memory of the signal processing device (PC) 13. Realize on top.
[0017]
For example, a spatial interference pattern by a reference point a in a sample having an optical path equal to the reference optical path and a point b separated by ΔZ is represented by the following equations (1) to (3), and is shown in FIG. Thus, there are two wave packets having a DC component.
[0018]
In FIG. 2 (a), l C = 4l n 2 λ 2 / πΔλ,
2x 0 = l C / 2 sin θ, x S = Δz / sin θ, and λ ′ = λ / 2 sin θ.
[0019]
(Equation 1)
Figure 0003594878
[0020]
(Equation 2)
Figure 0003594878
[0021]
(Equation 3)
Figure 0003594878
[0022]
However,
I R : reference light intensity, I Sa : backscattered light intensity from point a, I Sb : backscattered light intensity from point b, ω 0 = 2πc / λ: angular frequency of light, δ = πcΔλ / √ (2l n 2 ) λ 2 : spectrum spreading parameter, φ 0 : modulation index of phase modulation, f: phase modulation frequency, Δz: distance from reference point a to point b away from reference point a, x: on one-dimensional array photodetector This is the distance from the center position.
[0023]
Here, λ ', 2x 0, x S , respectively, the period of the interference, the width of the wave packet, corresponding to the shift of the wave packet due to the distance between the reference point and an arbitrary scattering point.
[0024]
As shown in FIG. 2B, the amplitude distribution of the heterodyne beat signal measured via the detection + filter device (RF) 12 is an envelope from which the background has been removed, and the coherent scattered light from inside the sample. Only signals are shown. At this time, the width of the wave packet is 2 × 0 , and the spatial resolution is half the coherent length.
[0025]
Since this amplitude distribution information is stored in the memory of the signal processing device (PC) 13, this intensity signal value is raised to the Nth power. The intensity distribution when raised to the Nth power is as shown in FIG. 2C, and the full width at half maximum is reduced to approximately 1 / ほ ぼ N, which means that the spatial resolution in the optical axis direction has been improved by approximately √N times. .
[0026]
By the above method, the tomographic image can be measured by alternately performing the measurement of the backscattered light intensity profile in the optical axis direction and the lateral scanning with respect to the optical axis.
[0027]
As a specific example, the light source wavelength is 0.8 μm, the spectral width is 30 nm, the array detector pitch is 25 μm, and the array length is 25.6 mm. At this time, the coherence length is 18.8 μm, and the spatial resolution in the optical axis direction is 9.4 μm. Since the period of the interference pattern is 50 μm from the sampling theorem, each 2θ formed by the signal light and the reference light is 1.8 °. At this time, the measurement range in the sample is 410 μm, and assuming fourth-order signal processing, the spatial resolution in the optical axis direction is 4.7 μm.
[0028]
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0029]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
[0030]
(A) In measuring a cross-sectional image of a measurement sample, a heterodyne detection method is used for spatial interference intensity distribution measurement to achieve high sensitivity and a dynamic range, and an N-th power signal processing is used to improve the spatial resolution by approximately ΔN times. be able to.
[0031]
(B) It becomes possible to measure tomographic images with high spatial resolution, and new clinical diagnosis is expected in the medical field.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a cross-sectional image measurement apparatus using spatial interference signal processing using a heterodyne detection method according to an embodiment of the present invention.
FIG. 2 is a diagram showing a wave packet by a cross-sectional image measuring apparatus by spatial interference signal processing using a heterodyne detection method according to an embodiment of the present invention.
[Explanation of symbols]
1 light source 2 lens 3 beam splitter (BS)
4 Objective lens (OBJ)
5 Measurement sample (S)
6 phase modulator (PM)
7 First mirror (M1)
8 Second mirror (M2)
9 Biprism (BP)
10 One-dimensional array photodetector (AD)
11 Scanning device (SS)
12 Detection + filter device (RF)
13. Signal processing device (PC)
21 signal light 22 reference light

Claims (3)

光軸方向の後方散乱光強度プロファイルの測定と光軸に対する横方向走査とを交互に行うことによる測定試料の断面画像測定方法において、
(a)ヘテロダイン検出方式を用いて空間干渉強度分布測定を行い、
(b)前記空間干渉強度値をN乗し、その半値全幅をほぼ1/√Nに狭くし、光軸方向の空間分解能を向上させることを特徴とする測定試料の断面画像測定方法。
In the method for measuring the cross-sectional image of the measurement sample by alternately performing the measurement of the backscattered light intensity profile in the optical axis direction and the lateral scanning with respect to the optical axis,
(A) Performing spatial interference intensity distribution measurement using a heterodyne detection method,
(B) A method for measuring a cross-sectional image of a measurement sample, wherein the spatial interference intensity value is raised to the Nth power, and the full width at half maximum is reduced to approximately 1 / √N, thereby improving the spatial resolution in the optical axis direction.
請求項1記載の測定試料の断面画像測定方法において、前記空間干渉強度値を4乗とし、光軸方向空間分解能を4.7μmとすることを特徴とする測定試料の断面画像測定方法。2. The method according to claim 1, wherein the spatial interference intensity value is a fourth power and the spatial resolution in the optical axis direction is 4.7 [mu] m. 光軸方向の後方散乱光強度プロファイルの測定と光軸に対する横方向走査とを交互に行うことによる測定試料の断面画像測定装置において、
(a)光源と、
(b)該光源からの光波がビームスプリッター及び対物レンズを通って照射される測定試料と、
(c)該測定試料からの後方散乱光である信号光が前記対物レンズ、前記ビームスプリッター及びバイプリズムを通って入射するとともに、参照光が前記ビームスプリッター、ヘテロダイン検出のための位相変調器を通過後、ミラー及び前記バイプリズムを介して入射し、前記信号光と参照光のなす角2θにより、空間干渉強度パターンを生ぜしめる1次元アレイ光検出装置と、
(d)前記位相変調器の変調周波数をfとして、前記空間干渉強度パターンを時間的に周波数fで変化させるとともに、ビート振幅の1次元分布として記憶させるメモリを有する信号処理装置と、
(e)前記空間干渉強度値をN乗し、その半値全幅をほぼ1/√Nに狭くし、光軸方向の空間分解能を向上させる手段とを具備することを特徴とする測定試料の断面画像測定装置。
In the cross-sectional image measurement apparatus of the measurement sample by alternately performing the measurement of the backscattered light intensity profile in the optical axis direction and the lateral scanning with respect to the optical axis,
(A) a light source;
(B) a measurement sample irradiated with a light wave from the light source through a beam splitter and an objective lens;
(C) signal light, which is backscattered light from the measurement sample, enters through the objective lens, the beam splitter, and the biprism, and reference light passes through the beam splitter and a phase modulator for heterodyne detection. After that, a one-dimensional array light detection device that enters through a mirror and the biprism and generates a spatial interference intensity pattern by an angle 2θ between the signal light and the reference light,
(D) a signal processing device having a memory for changing the spatial interference intensity pattern over time with the frequency f, where f is the modulation frequency of the phase modulator, and for storing a one-dimensional distribution of beat amplitudes;
(E) means for raising the spatial interference intensity value to the Nth power, narrowing the full width at half maximum thereof to approximately 1 / √N, and improving spatial resolution in the optical axis direction. measuring device.
JP2000162054A 2000-05-31 2000-05-31 Method and apparatus for measuring cross-sectional image of measurement sample Expired - Fee Related JP3594878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162054A JP3594878B2 (en) 2000-05-31 2000-05-31 Method and apparatus for measuring cross-sectional image of measurement sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162054A JP3594878B2 (en) 2000-05-31 2000-05-31 Method and apparatus for measuring cross-sectional image of measurement sample

Publications (2)

Publication Number Publication Date
JP2001343321A JP2001343321A (en) 2001-12-14
JP3594878B2 true JP3594878B2 (en) 2004-12-02

Family

ID=18665994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162054A Expired - Fee Related JP3594878B2 (en) 2000-05-31 2000-05-31 Method and apparatus for measuring cross-sectional image of measurement sample

Country Status (1)

Country Link
JP (1) JP3594878B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1623085A (en) * 2002-01-24 2005-06-01 通用医疗公司 Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
CN107388980B (en) * 2017-08-31 2019-10-29 中南大学 A kind of slur is as monocular vision DEFORMATION MONITORING SYSTEM and method
CN110498171B (en) * 2019-07-16 2021-05-04 苏州吉成智能科技有限公司 Automatic error correction method for medicine library with manipulator and electronic device

Also Published As

Publication number Publication date
JP2001343321A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
JP5519152B2 (en) Device for acquiring information about anatomical samples using optical microscopy
JP4344829B2 (en) Polarized light receiving image measuring device
US7643152B2 (en) Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7643153B2 (en) Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
JP2005516187A (en) Apparatus and method for ranging with parallel detection of spectral bands and noise reduction of low coherence interferometry (LCI) and optical coherence tomography (OCT) signals
JP5411216B2 (en) Method and apparatus for performing optical imaging using frequency domain interferometry
JP2005249704A (en) Tomographic apparatus
JP2005114473A (en) Light detection method and biological light-measuring instrument
JP4907279B2 (en) Optical tomographic imaging system
JP2009008393A (en) Optical image measuring device
JP2008086414A (en) Optical tomographic imaging apparatus
JP2007101263A (en) Optical tomographic imaging device
JPH10332329A (en) Optical frequency sweeping type tomoimage measuring method and its device
JP3245135B2 (en) Optical measurement device
WO2013118541A1 (en) Tomographic image measurement device
US8937724B2 (en) Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
JP3619113B2 (en) Angular dispersive optical spatial coherence tomographic imaging system
JP2012502262A (en) Method and apparatus for imaging translucent materials
JP2005351839A (en) Tomographic imaging equipment
JP2008089349A (en) Optical tomographic imaging system
JP3594878B2 (en) Method and apparatus for measuring cross-sectional image of measurement sample
JP2010164574A (en) Multiplexing spectrum interference optical coherence tomography
JPH11506839A (en) Device for localizing objects in turbid media
JP2018072111A (en) Optical image measurement device and method for measuring optical image
JP3681608B2 (en) Spectroscopic sectional image measuring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees