JP2001343321A - Method for measuring cross sectional image of measuring sample and device therefor - Google Patents

Method for measuring cross sectional image of measuring sample and device therefor

Info

Publication number
JP2001343321A
JP2001343321A JP2000162054A JP2000162054A JP2001343321A JP 2001343321 A JP2001343321 A JP 2001343321A JP 2000162054 A JP2000162054 A JP 2000162054A JP 2000162054 A JP2000162054 A JP 2000162054A JP 2001343321 A JP2001343321 A JP 2001343321A
Authority
JP
Japan
Prior art keywords
light
optical axis
measuring
spatial
sectional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000162054A
Other languages
Japanese (ja)
Other versions
JP3594878B2 (en
Inventor
Manabu Sato
学 佐藤
Naohiro Tanno
直弘 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000162054A priority Critical patent/JP3594878B2/en
Publication of JP2001343321A publication Critical patent/JP2001343321A/en
Application granted granted Critical
Publication of JP3594878B2 publication Critical patent/JP3594878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the spatial resolution in the direction of optical axis to achieve high sensitivity and high spatial resolution when measuring the cross sectional image of a measuring sample. SOLUTION: This device for measuring the cross sectional image of a measuring sample is provided with a light source 1, the measuring sample 5 irradiated with light waves from the light source 1 coming through a beam splitter 3 and an objective lens 4, a one-dimensional array light detector 10 and a signal processor 13. Signal light 21 which is back scattering light from the sample 5 enters the detector 10 through the objective lens 4, the beam splitter 3 and a biprism 9 and reference beam 22 enters the detector 10 through mirrors 7, 8 and the biprism 9 after passing through the beam splitter 3 and a phase modulator 6 for heterodyne detection to generate a spatial interference intensity pattern by an angle 2θ formed by the signal light 21 and the reference beam 22. The processor 13 changes the spatial interference intensity pattern with modulation frequency (f) of the phase modulator 6 with respect to time and has a memory for storing the spatial interference intensity pattern as one-dimensional distribution of beam amplitude. A space interference intensity value is raised to the N-th power, and whole amplitude of its half value is narrowed to substantially N-1/2 to improve the spatial resolution in the direction of optical axis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定試料の断面画
像測定方法及びそのための装置に係り、特にヘテロダイ
ン検出法を用いた空間干渉信号処理による断面画像測定
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a cross-sectional image of a measurement sample and a device therefor, and more particularly to a cross-sectional image measurement by spatial interference signal processing using a heterodyne detection method.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては以
下に開示されるようなものがあった。
2. Description of the Related Art Conventionally, there have been the following techniques disclosed in such fields.

【0003】既知の空間干渉を用いた断層画像測定方法
は、干渉強度パターンのエンベローブ形状測定から試料
内での反射点の同定を行い、断層画像を測定するように
している。つまり、干渉強度パターンのエンベローブの
形状測定より、反射点の同定をしており、エンベローブ
の幅が空間分解能となっていた。
In a tomographic image measuring method using known spatial interference, a reflection point in a sample is identified from the envelope shape measurement of the interference intensity pattern, and a tomographic image is measured. That is, the reflection point is identified by measuring the shape of the envelope of the interference intensity pattern, and the width of the envelope is the spatial resolution.

【0004】[0004]

【発明が解決しようとする課題】上記したように、従来
は、干渉強度パターンのエンベローブの形状測定より、
反射点の同定をしており、エンベローブの幅が空間分解
能となっており、分解能が低いといった問題があった。
As described above, conventionally, from the measurement of the shape of the envelope of the interference intensity pattern,
There is a problem that the reflection point is identified, the width of the envelope is the spatial resolution, and the resolution is low.

【0005】つまり、従来の光波コヒーレンストモグラ
フィー(OCT)では、コヒーレンス長が空間分解能の
限界であった。
That is, in the conventional optical coherence tomography (OCT), the coherence length is the limit of the spatial resolution.

【0006】本発明は、上記問題点を除去し、光軸方向
の空間分解能を向上させ、高感度化・高空間分解能化を
図ることができる測定試料の断面画像測定方法及びその
ための装置を提供することを目的とする。
The present invention provides a method and apparatus for measuring a cross-sectional image of a measurement sample, which can eliminate the above-mentioned problems, improve the spatial resolution in the optical axis direction, and achieve high sensitivity and high spatial resolution. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するために、 〔1〕光軸方向の後方散乱光強度プロファイルの測定と
光軸に対する横方向走査とを交互に行うことによる測定
試料の断面画像測定方法において、ヘテロダイン検出方
式を用いて空間干渉強度分布測定を行い、前記空間干渉
強度値をN乗し、その半値全幅をほぼ1/√Nに狭く
し、光軸方向の空間分解能をほぼ√N倍に向上させるこ
とを特徴とする。
In order to achieve the above object, the present invention provides: [1] by alternately performing measurement of the backscattered light intensity profile in the optical axis direction and scanning in the lateral direction with respect to the optical axis. In the method for measuring the cross-sectional image of the measurement sample, the spatial interference intensity distribution is measured using a heterodyne detection method, the spatial interference intensity value is raised to the Nth power, the full width at half maximum is reduced to approximately 1 / √N, and the optical axis direction is reduced. It is characterized in that the spatial resolution is improved by approximately N times.

【0008】〔2〕上記〔1〕記載の測定試料の断面画
像測定方法において、前記空間干渉強度値を4乗とし、
光軸方向空間分解能を4.7μmとすることを特徴とす
る。
[2] In the method for measuring a cross-sectional image of a measurement sample according to the above [1], the spatial interference intensity value is set to the fourth power,
The spatial resolution in the optical axis direction is 4.7 μm.

【0009】〔3〕光軸方向の後方散乱光強度プロファ
イルの測定と光軸に対する横方向走査とを交互に行うこ
とによる測定試料の断面画像測定装置において、光源
と、この光源からの光波がビームスプリッター及び対物
レンズを通って照射される測定試料と、この測定試料か
らの後方散乱光である信号光が前記対物レンズ、前記ビ
ームスプリッター及びバイプリズムを通って入射すると
ともに、参照光が前記ビームスプリッター、ヘテロダイ
ン検出のための位相変調器を通過後、ミラー及び前記バ
イプリズムを介して入射し、前記信号光と参照光のなす
角2θにより、空間干渉強度パターンを生ぜしめる1次
元アレイ光検出装置と、前記位相変調器の変調周波数を
fとして、前記空間干渉強度パターンを時間的に周波数
fで変化させるとともに、ビート振幅の1次元分布とし
て記憶させるメモリを有する信号処理装置と、前記空間
干渉強度値をN乗し、その半値全幅をほぼ1/√Nに狭
くし、光軸方向の空間分解能をほぼ1/√Nに向上させ
る手段とを具備することを特徴とする。
[3] In an apparatus for measuring the cross-sectional image of a measurement sample by alternately performing measurement of the backscattered light intensity profile in the optical axis direction and scanning in the lateral direction with respect to the optical axis, a light source and a light wave from the light source A measurement sample irradiated through the splitter and the objective lens, and signal light that is backscattered light from the measurement sample enters through the objective lens, the beam splitter and the biprism, and the reference light is transmitted through the beam splitter. A one-dimensional array light detecting device that, after passing through a phase modulator for heterodyne detection, enters through a mirror and the biprism and generates a spatial interference intensity pattern by an angle 2θ between the signal light and the reference light; When the modulation frequency of the phase modulator is f and the spatial interference intensity pattern is temporally changed at the frequency f, A signal processing device having a memory for storing a one-dimensional distribution of beat amplitudes, and the spatial interference intensity value raised to the Nth power, the full width at half maximum thereof is reduced to approximately 1 / √N, and the spatial resolution in the optical axis direction is substantially reduced. Means for increasing the ratio to 1 / √N.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】図1は本発明の実施例を示すヘテロダイン
検出法を用いた空間干渉信号処理による断面画像測定装
置の模式図である。
FIG. 1 is a schematic view of a cross-sectional image measuring apparatus using spatial interference signal processing using a heterodyne detection method according to an embodiment of the present invention.

【0012】この図において、1は光源、2はレンズ、
3はビームスプリッター(BS)、4は対物レンズ(O
BJ)、5は測定試料(S)、6は位相変調器(P
M)、7は第1のミラー(M1)、8は第2のミラー
(M2)、9はバイプリズム(BP)、10は1次元ア
レイ光検出装置(AD)、11は走査装置(SS)、1
2は検波+フィルタ装置(RF)、13は信号処理装置
(PC)である。
In this figure, 1 is a light source, 2 is a lens,
3 is a beam splitter (BS), 4 is an objective lens (O
BJ), 5 is a measurement sample (S), 6 is a phase modulator (P
M), 7 is a first mirror (M1), 8 is a second mirror (M2), 9 is a biprism (BP), 10 is a one-dimensional array photodetector (AD), 11 is a scanning device (SS). , 1
Reference numeral 2 denotes a detection + filter device (RF), and reference numeral 13 denotes a signal processing device (PC).

【0013】以下、本発明の基本原理を図1に基づいて
説明する。
The basic principle of the present invention will be described below with reference to FIG.

【0014】光源1からの光波は、ビームスプリッター
(BS)3、対物レンズ(OBJ)4を通って、測定試
料5に照射される。測定試料5からの後方散乱光である
信号光21は、再度、対物レンズ(OBJ)4、ビーム
スプリッター(BS)3、バイプリズム(BP)9を通
って1次元アレイ光検出装置(AD)10へ入射する。
A light wave from the light source 1 passes through a beam splitter (BS) 3 and an objective lens (OBJ) 4 and irradiates a measurement sample 5. The signal light 21, which is the backscattered light from the measurement sample 5, passes through the objective lens (OBJ) 4, the beam splitter (BS) 3, and the biprism (BP) 9 again, and the one-dimensional array light detection device (AD) 10. Incident on.

【0015】一方、参照光22は、ビームスプリッター
(BS)3、ヘテロダイン検出のための位相変調器(P
M)6を通過後、第1のミラー(M1)7、第2のミラ
ー(M2)8、バイプリズム(BP)9を介して1次元
アレイ光検出装置(AD)10に入射する。
On the other hand, the reference beam 22 is supplied to a beam splitter (BS) 3 and a phase modulator (PDP) for heterodyne detection.
After passing through M) 6, the light enters a one-dimensional array photodetector (AD) 10 via a first mirror (M1) 7, a second mirror (M2) 8, and a biprism (BP) 9.

【0016】そこで、信号光21と参照光22のなす角
2θにより、1次元アレイ光検出装置(AD)10上に
空間干渉強度パターンが生ずる。位相変調器(PM)6
の変調周波数をfとすると、強度パターンは時間的に周
波数fで変化する。1次元アレイ光検出装置(AD)1
0は、光検出器が1次元上にM個並んだアレイ状光検出
器である。走査装置(SS)11は、まず1チャンネル
目の光検出器に接続する。その際、光検出器からの周波
数fのヘテロダインビート信号を検波+フィルタ装置
(RF)12を介して信号処理装置(PC)13へ入力
・記憶されてから、走査装置(SS)11は、次の光検
出器に接続を行い、順次繰り返すことにより各チャンネ
ルごとに全ての光検出器を接続し、1次元の空間干渉強
度パターンをビート振幅の1次元分布として信号処理装
置(PC)13のメモリ上に実現する。
Then, a spatial interference intensity pattern is generated on the one-dimensional array photodetector (AD) 10 by the angle 2θ between the signal light 21 and the reference light 22. Phase modulator (PM) 6
If the modulation frequency of f is f, the intensity pattern temporally changes at the frequency f. One-dimensional array photodetector (AD) 1
Numeral 0 denotes an array of photodetectors in which M photodetectors are arranged one-dimensionally. The scanning device (SS) 11 is first connected to the photodetector of the first channel. At this time, after the heterodyne beat signal of the frequency f from the photodetector is input and stored in the signal processing device (PC) 13 via the detection + filter device (RF) 12, the scanning device (SS) 11 , And all the photodetectors are connected for each channel by repeating in order, and the one-dimensional spatial interference intensity pattern is stored as a one-dimensional distribution of the beat amplitude in the memory of the signal processing device (PC) 13. Realize on top.

【0017】例えば、参照光路と等しい光路となるサン
プル内の基準点a点とΔZ離れたb点とによる空間干渉
パターンは、後述の式(1)〜(3)で示され、図2
(a)に示すように直流成分を有する2つの波束とな
る。
For example, a spatial interference pattern by a reference point a in a sample having an optical path equal to the reference optical path and a point b separated by ΔZ is represented by the following equations (1) to (3), and is shown in FIG.
As shown in (a), there are two wave packets having a DC component.

【0018】なお、この図2(a)において、lC =4
n 2 λ2 /πΔλ、2x0 =lC /2sinθ、xS
=Δz/sinθ、λ′=λ/2sinθである。
In FIG. 2A, l C = 4
l n 2 λ 2 / πΔλ, 2x 0 = l C / 2sin θ, x S
= Δz / sin θ and λ ′ = λ / 2 sin θ.

【0019】[0019]

【数1】 (Equation 1)

【0020】[0020]

【数2】 (Equation 2)

【0021】[0021]

【数3】 (Equation 3)

【0022】ただし、IR :参照光強度、ISa:a点か
らの後方散乱光強度、ISb:b点からの後方散乱光強
度、ω0 =2πc/λ:光の角周波数、δ=πcΔλ/
√(2ln 2 )λ2 :スペクトル拡がりパラメータ、φ
0 :位相変調の変調指数、f:位相変調周波数、Δz:
基準点a点からΔZ離れたb点までの距離、x:1次元
アレイ光検出装置上中心位置からの距離である。
Where I R : reference light intensity, I Sa : backscattered light intensity from point a, I Sb : backscattered light intensity from point b, ω 0 = 2πc / λ: angular frequency of light, δ = πcΔλ /
√ (2l n 2) λ 2 : spectrum spread parameters, φ
0 : modulation index of phase modulation, f: phase modulation frequency, Δz:
X is the distance from the reference point a to point b, which is ΔZ away from the reference point, and x is the distance from the center position on the one-dimensional array photodetector.

【0023】ここで、λ′、2x0 、xS はそれぞれ、
干渉の周期、波束の幅、基準点と任意の散乱点との距離
による波束のシフトに対応する。
Here, λ ′, 2x 0 and x S are respectively
It corresponds to the shift of the wave packet due to the period of the interference, the width of the wave packet, and the distance between the reference point and an arbitrary scattering point.

【0024】検波+フィルタ装置(RF)12を介して
測定されるヘテロダインビート信号の振幅分布は、図2
(b)に示すように、バックグラウンドが除去されたエ
ンベローブであり、サンプル内からのコヒーレントな散
乱光信号のみを表している。この時の波束の幅は、2x
0 であり、空間分解能は、コヒーレント長の半分であ
る。
The amplitude distribution of the heterodyne beat signal measured via the detection + filter device (RF) 12 is shown in FIG.
As shown in (b), this is an envelope from which the background has been removed, and represents only a coherent scattered light signal from within the sample. The width of the wave packet at this time is 2x
0 and the spatial resolution is half the coherent length.

【0025】この振幅分布情報が、信号処理装置(P
C)13のメモリに記憶されているため、この強度信号
値をN乗する。N乗した際の強度分布は、図2(c)に
示すようになり、半値全幅がほぼ1/√Nに狭くなり、
これは光軸方向の空間分解能がほぼ√N倍向上したこと
になる。
This amplitude distribution information is stored in a signal processor (P
C) Since the intensity signal value is stored in the memory 13, the intensity signal value is raised to the Nth power. The intensity distribution when raised to the Nth power is as shown in FIG. 2C, and the full width at half maximum is reduced to approximately 1 / √N.
This means that the spatial resolution in the optical axis direction has been improved by approximately ΔN times.

【0026】以上の方法により、光軸方向の後方散乱光
強度プロファイルの測定と光軸に対する横方向走査とを
交互に行うことにより、断層画像を測定することができ
る。
According to the above-described method, the tomographic image can be measured by alternately performing the measurement of the backscattered light intensity profile in the optical axis direction and the horizontal scanning with respect to the optical axis.

【0027】具体例としては、光源波長:0.8μm、
スペクトル幅:30nm、アレイ検出器ピッチ:25μ
m、アレイ長:25.6mmとする。この時、コヒーレ
ンス長は18.8μmとなり、光軸方向の空間分解能
は、9.4μmとなる。サンプリング定理から干渉パタ
ーンの周期は50μmとなるので、信号光と参照光との
なす各2θは、1.8°となる。この時、サンプル内の
測定範囲は、410μmで、4乗の信号処理を仮定する
と、光軸方向空間分解能は、4.7μmとなる。
As a specific example, a light source wavelength: 0.8 μm,
Spectral width: 30 nm, array detector pitch: 25 μ
m, array length: 25.6 mm. At this time, the coherence length is 18.8 μm, and the spatial resolution in the optical axis direction is 9.4 μm. Since the period of the interference pattern is 50 μm from the sampling theorem, each 2θ formed by the signal light and the reference light is 1.8 °. At this time, the measurement range in the sample is 410 μm, and assuming fourth-order signal processing, the spatial resolution in the optical axis direction is 4.7 μm.

【0028】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0029】[0029]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described above, according to the present invention, the following effects can be obtained.

【0030】(A)測定試料の断面画像測定にあたり、
空間干渉強度分布測定にヘテロダイン検出方式を用いて
高感度かつダイナミックレンジを実現し、N乗の信号処
理により、ほぼ√N倍の空間分解能の向上を図ることが
できる。
(A) In measuring a cross-sectional image of a measurement sample,
High sensitivity and a dynamic range are realized by using a heterodyne detection method for the spatial interference intensity distribution measurement, and the spatial resolution can be improved by approximately ΔN times by N-th signal processing.

【0031】(B)高い空間分解能を有する断層画像計
測が可能になり、医学分野では新しい臨床診断が期待さ
れる。
(B) It becomes possible to measure tomographic images with high spatial resolution, and new clinical diagnosis is expected in the medical field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示すヘテロダイン検出法を用
いた空間干渉信号処理による断面画像測定装置の模式図
である。
FIG. 1 is a schematic diagram of a cross-sectional image measurement apparatus using spatial interference signal processing using a heterodyne detection method, showing an embodiment of the present invention.

【図2】本発明の実施例を示すヘテロダイン検出法を用
いた空間干渉信号処理による断面画像測定装置による波
束を示す図である。
FIG. 2 is a diagram showing a wave packet by a cross-sectional image measuring apparatus by spatial interference signal processing using a heterodyne detection method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 レンズ 3 ビームスプリッター(BS) 4 対物レンズ(OBJ) 5 測定試料(S) 6 位相変調器(PM) 7 第1のミラー(M1) 8 第2のミラー(M2) 9 バイプリズム(BP) 10 1次元アレイ光検出装置(AD) 11 走査装置(SS) 12 検波+フィルタ装置(RF) 13 信号処理装置(PC) 21 信号光 22 参照光 Reference Signs List 1 light source 2 lens 3 beam splitter (BS) 4 objective lens (OBJ) 5 sample to be measured (S) 6 phase modulator (PM) 7 first mirror (M1) 8 second mirror (M2) 9 biprism (BP) 10) One-dimensional array photodetector (AD) 11 Scanner (SS) 12 Detector + Filter (RF) 13 Signal processor (PC) 21 Signal light 22 Reference light

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA54 BB05 DD03 FF42 FF51 GG01 JJ02 JJ25 LL12 LL46 LL47 MM16 NN08 QQ17 QQ28 2G059 AA05 EE02 EE09 FF01 GG09 JJ11 JJ13 JJ22 JJ30 KK04 MM01 MM02 MM04 NN01 PP10 ──────────────────────────────────────────────────続 き Continuation of the front page F term (reference) 2F065 AA54 BB05 DD03 FF42 FF51 GG01 JJ02 JJ25 LL12 LL46 LL47 MM16 NN08 QQ17 QQ28 2G059 AA05 EE02 EE09 FF01 GG09 JJ11 JJ13 JJ22 JJ30 NN01 KK04 MM04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光軸方向の後方散乱光強度プロファイル
の測定と光軸に対する横方向走査とを交互に行うことに
よる測定試料の断面画像測定方法において、(a)ヘテ
ロダイン検出方式を用いて空間干渉強度分布測定を行
い、(b)前記空間干渉強度値をN乗し、その半値全幅
をほぼ1/√Nに狭くし、光軸方向の空間分解能を向上
させることを特徴とする測定試料の断面画像測定方法。
1. A method for measuring a cross-sectional image of a measurement sample by alternately performing measurement of a backscattered light intensity profile in an optical axis direction and scanning in a lateral direction with respect to the optical axis, wherein: (a) spatial interference using a heterodyne detection method; (B) cross-section of the measurement sample, wherein (b) the spatial interference intensity value is raised to the Nth power and the full width at half maximum is reduced to approximately 1 / √N to improve the spatial resolution in the optical axis direction. Image measurement method.
【請求項2】 請求項1記載の測定試料の断面画像測定
方法において、前記空間干渉強度値を4乗とし、光軸方
向空間分解能を4.7μmとすることを特徴とする測定
試料の断面画像測定方法。
2. A cross-sectional image of a measurement sample according to claim 1, wherein the spatial interference intensity value is a fourth power and the spatial resolution in the optical axis direction is 4.7 μm. Measuring method.
【請求項3】 光軸方向の後方散乱光強度プロファイル
の測定と光軸に対する横方向走査とを交互に行うことに
よる測定試料の断面画像測定装置において、(a)光源
と、(b)該光源からの光波がビームスプリッター及び
対物レンズを通って照射される測定試料と、(c)該測
定試料からの後方散乱光である信号光が前記対物レン
ズ、前記ビームスプリッター及びバイプリズムを通って
入射するとともに、参照光が前記ビームスプリッター、
ヘテロダイン検出のための位相変調器を通過後、ミラー
及び前記バイプリズムを介して入射し、前記信号光と参
照光のなす角2θにより、空間干渉強度パターンを生ぜ
しめる1次元アレイ光検出装置と、(d)前記位相変調
器の変調周波数をfとして、前記空間干渉強度パターン
を時間的に周波数fで変化させるとともに、ビート振幅
の1次元分布として記憶させるメモリを有する信号処理
装置と、(e)前記空間干渉強度値をN乗し、その半値
全幅をほぼ1/√Nに狭くし、光軸方向の空間分解能を
向上させる手段とを具備することを特徴とする測定試料
の断面画像測定装置。
3. An apparatus for measuring a cross-sectional image of a measurement sample by alternately performing measurement of a backscattered light intensity profile in an optical axis direction and scanning in a lateral direction with respect to the optical axis, wherein: (a) a light source; (C) signal light, which is backscattered light from the measurement sample, is incident through the objective lens, the beam splitter, and the biprism. Together, the reference light is the beam splitter,
After passing through a phase modulator for heterodyne detection, is incident through a mirror and the biprism, and by an angle 2θ between the signal light and the reference light, a one-dimensional array light detection device that generates a spatial interference intensity pattern, (D) a signal processing device having a memory for changing the spatial interference intensity pattern over time with the frequency f, where f is the modulation frequency of the phase modulator, and for storing a one-dimensional distribution of beat amplitudes; A means for raising the spatial interference value to the Nth power, reducing the full width at half maximum thereof to approximately 1 / √N, and improving the spatial resolution in the optical axis direction.
JP2000162054A 2000-05-31 2000-05-31 Method and apparatus for measuring cross-sectional image of measurement sample Expired - Fee Related JP3594878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162054A JP3594878B2 (en) 2000-05-31 2000-05-31 Method and apparatus for measuring cross-sectional image of measurement sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162054A JP3594878B2 (en) 2000-05-31 2000-05-31 Method and apparatus for measuring cross-sectional image of measurement sample

Publications (2)

Publication Number Publication Date
JP2001343321A true JP2001343321A (en) 2001-12-14
JP3594878B2 JP3594878B2 (en) 2004-12-02

Family

ID=18665994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162054A Expired - Fee Related JP3594878B2 (en) 2000-05-31 2000-05-31 Method and apparatus for measuring cross-sectional image of measurement sample

Country Status (1)

Country Link
JP (1) JP3594878B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005516187A (en) * 2002-01-24 2005-06-02 ザ ジェネラル ホスピタル コーポレーション Apparatus and method for ranging with parallel detection of spectral bands and noise reduction of low coherence interferometry (LCI) and optical coherence tomography (OCT) signals
CN107388980A (en) * 2017-08-31 2017-11-24 中南大学 A kind of slur is as monocular vision DEFORMATION MONITORING SYSTEM and method
CN110498171A (en) * 2019-07-16 2019-11-26 苏州吉成智能科技有限公司 The automatic error correction method and electronic equipment of drug storage with manipulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005516187A (en) * 2002-01-24 2005-06-02 ザ ジェネラル ホスピタル コーポレーション Apparatus and method for ranging with parallel detection of spectral bands and noise reduction of low coherence interferometry (LCI) and optical coherence tomography (OCT) signals
CN107388980A (en) * 2017-08-31 2017-11-24 中南大学 A kind of slur is as monocular vision DEFORMATION MONITORING SYSTEM and method
CN107388980B (en) * 2017-08-31 2019-10-29 中南大学 A kind of slur is as monocular vision DEFORMATION MONITORING SYSTEM and method
CN110498171A (en) * 2019-07-16 2019-11-26 苏州吉成智能科技有限公司 The automatic error correction method and electronic equipment of drug storage with manipulator

Also Published As

Publication number Publication date
JP3594878B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US11319357B2 (en) Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
JP4020434B2 (en) Apparatus and method for selective optical measurement
JP4344829B2 (en) Polarized light receiving image measuring device
US7643153B2 (en) Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7903257B2 (en) Apparatus and method for ranging and noise reduction of low coherence interferometry (LCI) and optical coherence tomography (OCT) signals by parallel detection of spectral bands
JP3107927B2 (en) Apparatus and method for measuring optical information of scattering medium
JP2005516187A (en) Apparatus and method for ranging with parallel detection of spectral bands and noise reduction of low coherence interferometry (LCI) and optical coherence tomography (OCT) signals
US20090015842A1 (en) Phase Sensitive Fourier Domain Optical Coherence Tomography
JP3332802B2 (en) Optical frequency sweep type tomographic image measurement system
JP2005114473A (en) Light detection method and biological light-measuring instrument
JP2005249704A (en) Tomographic apparatus
JP2000197635A (en) Method and system for detecting characteristic inside one lump of tissue
JP2009008393A (en) Optical image measuring device
JP5557397B2 (en) Method and apparatus for imaging translucent materials
WO2013118541A1 (en) Tomographic image measurement device
US6124930A (en) Method and arrangement for transverse optical coherence tomography
JP3619113B2 (en) Angular dispersive optical spatial coherence tomographic imaging system
JP2005351839A (en) Tomographic imaging equipment
US20130166239A1 (en) Method for generating information signal
JPH11506839A (en) Device for localizing objects in turbid media
JP3681608B2 (en) Spectroscopic sectional image measuring device
JP3594878B2 (en) Method and apparatus for measuring cross-sectional image of measurement sample
JP2018072111A (en) Optical image measurement device and method for measuring optical image
JPH10246697A (en) Optical inspection method and device
JP2890309B2 (en) Form and function imaging device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees