JPS6263904A - Production of optical waveguide - Google Patents
Production of optical waveguideInfo
- Publication number
- JPS6263904A JPS6263904A JP60204715A JP20471585A JPS6263904A JP S6263904 A JPS6263904 A JP S6263904A JP 60204715 A JP60204715 A JP 60204715A JP 20471585 A JP20471585 A JP 20471585A JP S6263904 A JPS6263904 A JP S6263904A
- Authority
- JP
- Japan
- Prior art keywords
- ion exchange
- optical waveguide
- thickness
- mask
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/134—Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
- G02B6/1345—Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
27、−
産業上の利用分野
本発明はコヒーレント光を利用する光情報処理分野、あ
るいは光応用計測制御分野に使用する先導波路の製造方
法に関するものである。Detailed Description of the Invention 27. - Industrial Application Field The present invention relates to a method for manufacturing a guiding waveguide used in the field of optical information processing using coherent light or the field of optical measurement and control.
従来の技術
L IN b O3などの強誘電体基板をイオン交換溶
液である安息香酸などの酸中で熱処理を行うことにより
作製されるイオン交換光導波路は基板℃に対する屈折率
差が大きく各種デバイスを構成する上で非常に重要であ
る〔ジェー・エル・シャツケル、シー・イー・ライス及
びジ□−−ジェーφベセルカ1プロトンイクスチゴンジ
フォーハイーインデソクスウェイプガイドインL I
N b O3”アブライドフィジクスレター、41巻、
7号607−608頁(1982) (J、L、Iac
kel、C,E、Rice and LJVeselk
a 、 ” Proton exchange for
high−indexwaveguides in
LiNbO3” 、 Appl 、 Phya 、 L
et t 。Conventional technology Ion-exchange optical waveguides, which are manufactured by heat-treating a ferroelectric substrate such as LIN b O3 in an acid such as benzoic acid, which is an ion-exchange solution, have a large refractive index difference with respect to the substrate °C, making it suitable for various devices. It is very important to configure
N b O3” Abride Physics Letter, Volume 41,
No. 7, pp. 607-608 (1982) (J, L, Iac
kel, C, E, Rice and LJVeselk
a, ” Proton exchange for
high-index waveguides in
LiNbO3”, Appl, Phya, L
et t.
VOl、41 、NO,7、PP、607−608(1
982))参照〕。VOl, 41, NO, 7, PP, 607-608 (1
982)))].
このイオン交換法により作製された三次元光導波路は横
方向散乱のため伝搬損失が大きく、このた3、、;
め逆リッジ形にして伝搬損失を低減する必要がある。第
2図に三次元光導波路と逆リッジ形光導波路の厚みに対
する伝搬損失の比較を示す。20は三次元光導波路の特
性、21は逆リッジ形光導波路の特性である。逆リッジ
形光導波路は横方向に対する閉じ込めか弱く伝搬損失も
三次元光導波路に比べ極端に少なくなる。The three-dimensional optical waveguide fabricated by this ion exchange method has a large propagation loss due to lateral scattering, and for this reason, it is necessary to reduce the propagation loss by using an inverted ridge shape. FIG. 2 shows a comparison of propagation loss with respect to thickness for a three-dimensional optical waveguide and an inverted ridge type optical waveguide. 20 is the characteristic of the three-dimensional optical waveguide, and 21 is the characteristic of the inverted ridge type optical waveguide. The inverted ridge type optical waveguide has weak confinement in the lateral direction and has extremely low propagation loss compared to a three-dimensional optical waveguide.
第3図に従来の逆IJ 、ジ形光導波路の製造方法を示
す。同図aで1は強誘電体基板であるL i NbO3
基板、2′はイオン交換の際保護マスクとなるAfi膜
、3はフォトプロセスにより形成された窓、4aは第1
のイオン交換により形成された高屈折率層である。次に
同図すのようにAf!、膜2をエツチングで除去する。FIG. 3 shows a conventional method for manufacturing an inverted IJ, diagonal optical waveguide. In the figure a, 1 is a ferroelectric substrate L i NbO3
The substrate, 2' is an Afi film that serves as a protective mask during ion exchange, 3 is a window formed by a photo process, and 4a is a first
This is a high refractive index layer formed by ion exchange. Next, as shown in the same figure, Af! , the film 2 is removed by etching.
次に割れ防止のためイオン交換処理温度とLiNb○3
基板1の温度を同温度にするためのベーキングを行い、
安息香酸中230℃で第2のイオン交換を行う。このよ
うにして同図Cのように窓3直下の高屈折率層4aの厚
みdlが12膜2直下の高屈折率層4bの厚みd2より
大きい逆リッジ形光導波路が形成される。Next, to prevent cracking, the ion exchange treatment temperature and LiNb○3
Baking is performed to bring the temperature of the substrate 1 to the same temperature,
A second ion exchange is carried out in benzoic acid at 230°C. In this way, an inverted ridge-shaped optical waveguide is formed, as shown in FIG. 3C, in which the thickness dl of the high refractive index layer 4a immediately below the window 3 is greater than the thickness d2 of the high refractive index layer 4b immediately below the 12 film 2.
発明が解決しようとする問題点
上記のようにイオン交換を一度に分けて行い逆リッジ形
光導波路を製造する方法では途中でベーキングが入るた
めに光導波路のJITl折率お」:び光導波路厚みが変
化17、設削とケ士異な−〕た光導波路が作製されると
いう問題かぁ−)/(。捷だAR膜除去工程において硝
酸などの酸を使用するため光導波路表面に対する化学損
傷による伝搬損失の増加が問題となっていた。Problems to be Solved by the Invention As described above, in the method of fabricating an inverted ridge type optical waveguide by performing ion exchange in one batch, baking occurs in the middle, which reduces the JIT refractive index of the optical waveguide and the thickness of the optical waveguide. 17, the problem is that an optical waveguide is fabricated that is different from the fabrication process.)/(.Due to the use of acids such as nitric acid in the AR film removal process, chemical damage to the optical waveguide surface may cause propagation. Increased losses were a problem.
問題点を解決するだめの手段
本発明の光導波路の製造方法は上記問題点を解決するた
め、強誘電体基板J二に、その一部に窓が開けられ、し
かもイオン交換溶液によりエツチング可能なマスクを形
成する二[程と前記イオン交換中でイオン交換を行い前
記窓面下に厚みdl である高屈折率層、前記マスク直
下には厚みd2である高屈折率層を形成し、なおかつ前
記厚みdl が前記厚みd2より犬であるIJ ノジ形
光導波路を形成する工程とを含むものである。Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing an optical waveguide of the present invention uses a method in which a window is opened in a part of the ferroelectric substrate J2 and can be etched with an ion exchange solution. In the second step of forming a mask, ion exchange is performed during the ion exchange to form a high refractive index layer with a thickness of dl under the window surface, a high refractive index layer with a thickness of d2 directly under the mask, and The method includes a step of forming an IJ nozzle-shaped optical waveguide whose thickness dl is smaller than the thickness d2.
作 用
6 /・−)
本発明は上記手段により一度のイオン交換で逆リッジ形
光導波路を形成でき、ベーキングおよびマスク除去の工
程を省き光導波路の形状変化および化学損傷を避けるこ
とができる。Effect 6 /.-) According to the present invention, a reverse ridge type optical waveguide can be formed by one-time ion exchange by the above-mentioned means, and the steps of baking and mask removal can be omitted, thereby avoiding changes in the shape of the optical waveguide and chemical damage.
実施例
本発明の光導波路の製造方法の第1の実施例を第1図に
示す。同図dで1は強誘電体基板であるL I N b
O3基板、10はCVDおよびフォトプロセスにより
パターニングされた幅2μmの窓3を持つマスク、具体
的には厚み450人のSio2膜である。このL i
N b O3基板1を230℃に加熱されたイオン交換
溶液であるリン酸中でイオン交換を行う。同図すは6分
後のL iN b O3基板1を示したもので窓3の直
下でLi とHのイオン交換が起り高屈折率部4aが形
成される。この際、5102膜10はリン酸によりエツ
チングされ160人の厚みとなっている。S i02膜
10のエツチングレートは60八/minである。7分
30秒後にはSiO2膜10は完全にエツチングされ、
イオン交換に対するマスクとしての効果を失いこのマス
ク6 ペーヮ
直下もイオン交換される。同図Cけ10分後リン酸中よ
り引き出したL I N b 03基板1の断面を示し
たものであり、窓3直下の形成された高屈折率層4a(
7)厚みdlは0.51im 、 S i O2膜1
o直下に形成された高屈折率層4bの厚みd2は026
μmであった。He−Nθレーザ光を端面より入射させ
た揚台He−Neレーザ光は高屈折率層4bの部分にし
み出しながら高屈折率層4aの部分を伝搬しその伝搬損
失は0.8 dB 7cm であ−3た。このように
本発明によると、マスク除去工程を必要としないため化
学損傷を受けず伝搬損失の低減が図れる。またリン酸を
用いることによりL I N b O3基板1にリン酸
が与える化学損傷は極めて少いためまり伝搬損失が減少
する。またS z 02膜2は膜質を変えることにより
エツチングレートを変化させるこLができ任意のリッジ
比(d2/d1)の光導波路が形成できる。Embodiment A first embodiment of the method for manufacturing an optical waveguide according to the present invention is shown in FIG. In the figure d, 1 is a ferroelectric substrate L I N b
The O3 substrate 10 is a mask having a window 3 with a width of 2 μm patterned by CVD and a photo process, specifically, an Sio2 film with a thickness of 450 mm. This L i
Ion exchange is performed on the N b O3 substrate 1 in phosphoric acid, which is an ion exchange solution, heated to 230°C. The figure shows the LiN b O3 substrate 1 after 6 minutes, where ion exchange of Li and H occurs directly under the window 3, forming a high refractive index region 4a. At this time, the 5102 film 10 is etched with phosphoric acid to a thickness of 160 mm. The etching rate of the Si02 film 10 is 608/min. After 7 minutes and 30 seconds, the SiO2 film 10 is completely etched.
It loses its effectiveness as a mask for ion exchange, and ions are exchanged directly under this mask. Figure C shows a cross section of the L I N b 03 substrate 1 pulled out of the phosphoric acid solution after 10 minutes, showing the high refractive index layer 4a (
7) Thickness dl is 0.51im, SiO2 film 1
The thickness d2 of the high refractive index layer 4b formed directly under o is 0.26
It was μm. The platform He-Ne laser beam, which is made by entering the He-Nθ laser beam from the end surface, propagates through the high refractive index layer 4a while seeping into the high refractive index layer 4b, and its propagation loss is 0.8 dB 7 cm. Ah-3. As described above, according to the present invention, there is no need for a mask removal process, so that chemical damage is not caused and propagation loss can be reduced. Further, by using phosphoric acid, the chemical damage caused by the phosphoric acid to the L I N b O3 substrate 1 is extremely small, resulting in a reduction in propagation loss. Furthermore, the etching rate of the S z 02 film 2 can be changed by changing the film quality, and an optical waveguide with an arbitrary ridge ratio (d2/d1) can be formed.
本発明の先導波路の製造方法の第2の実施例について以
下説明を行う。本例でd、1000A の厚みのAfi
膜をL r N b O3土にパターニングしこは7
x−/
く酸中でイオン交換を行った。220℃、20分熱処理
を行うことにより実施例1と同様の課程で厚み0.45
μmの逆リッジ形光導波路が形成された。伝搬損失は1
.5 dB 76m であった。A second embodiment of the method for manufacturing a guiding waveguide according to the present invention will be described below. In this example, d, Afi with a thickness of 1000A
Patterning the film on L r N b O3 soil 7
x-/ Ion exchange was performed in chlorotic acid. By performing heat treatment at 220°C for 20 minutes, the thickness was reduced to 0.45 in the same process as in Example 1.
A .mu.m inverted ridge type optical waveguide was formed. The propagation loss is 1
.. It was 5 dB 76m.
なお実施例では強誘電体基板としてLiNbO3基板を
使用したがLINbxT −0(O≦X”(I K)
3
≦1)などイオン交換導波路形成可能な基板であれば良
い。また酸としてリン酸、こはく酸を使用したが安息香
酸、ホウ酸などこれに限ることはない。寸だマスクとし
て酸化膜であるS IO2、A Itを使用したが5t
3N4.Cr、Tiなどイオン交換溶液中でエツチング
可能であればこれに限ることはない0
発明の効果
本発明の光導波路の製造方法によればイオン交換溶液中
でのマスクのエツチングにより、イオン交換層の厚みに
差を設けることで逆リッジ光導波路を一度のイオン交換
処理により製造できる。これによりベーキングによる光
導波路の形状変化およびマスク除去の際の光学損傷を防
止し、さらに工程の大幅な短縮が可能となる。In the example, a LiNbO3 substrate was used as the ferroelectric substrate, but LINbxT −0(O≦X”(I K)
Any substrate capable of forming an ion exchange waveguide such as 3≦1) may be used. In addition, although phosphoric acid and succinic acid were used as acids, the present invention is not limited to benzoic acid and boric acid. I used the oxide film SIO2 and AIt as a mask, but it was 5t.
3N4. The present invention is not limited to the above, as long as it can be etched in an ion exchange solution such as Cr, Ti, etc. Effects of the Invention According to the method for manufacturing an optical waveguide of the present invention, the ion exchange layer can be etched by etching a mask in an ion exchange solution. By providing a difference in thickness, a reverse ridge optical waveguide can be manufactured by a single ion exchange treatment. This prevents changes in the shape of the optical waveguide due to baking and optical damage during mask removal, and furthermore, it is possible to significantly shorten the process.
第1図は本発明の光導波路の製造方法の一実施例を示す
工程図、第2図は三次元光導波路と逆リッジ形光導波路
との伝搬損失を比較して示す特性図、第3図は従来の逆
リッジ形光導波路の製造方法を示す工程図である。
1・・・・・L I N b Os基板、3・・・・・
・窓、4・・・・・・高屈折率層、1o・・・・・・マ
スク0
代理人の氏名 弁理士 中 尾 敏 男 ほか1名/
−−−LiNbO3基板
3−一一忽
10−m−マスク
(の)
(b)
CC,)
第2図
厚、L+(、u−m)Fig. 1 is a process diagram showing an example of the method for manufacturing an optical waveguide of the present invention, Fig. 2 is a characteristic diagram showing a comparison of propagation loss between a three-dimensional optical waveguide and an inverted ridge type optical waveguide, and Fig. 3 1 is a process diagram showing a conventional method for manufacturing an inverted ridge type optical waveguide. 1...L I N b Os substrate, 3...
・Window, 4...High refractive index layer, 1o...Mask 0 Name of agent Patent attorney Satoshi Nakao and 1 other person/
---LiNbO3 substrate 3-11-10-m-mask (b) CC,) Fig. 2 Thickness, L+(, um)
Claims (4)
つイオン交換溶液によりエッチング可能なマスクを形成
する工程と、前記イオン交換溶液中でイオン交換を行い
前記窓直下に厚みd_1である高屈折率層を、前記マス
ク直下には厚みd_2である高屈折率層を形成し、前記
厚みd_1が前記厚みd_2より大である逆リッジ形光
導波路を形成する工程とを含んでなる光導波路の製造方
法。(1) A step of forming a mask on a ferroelectric substrate in which a window is partially opened and which can be etched with an ion exchange solution, and ion exchange is performed in the ion exchange solution so that a thickness of d_1 is formed directly under the window. forming a high refractive index layer having a thickness of d_2 directly under the mask, and forming an inverted ridge-shaped optical waveguide in which the thickness d_1 is greater than the thickness d_2. A method for manufacturing an optical waveguide.
_X_)O_3(0≦x≦1)を用いてなる特許請求の
範囲第(1)項記載の光導波路の製造方法。(2) LiNbxTa_(_1_-
_X_)O_3 (0≦x≦1), the method for manufacturing an optical waveguide according to claim (1).
求の範囲第(1)項記載の光導波路の製造方法。(3) A method for manufacturing an optical waveguide according to claim (1), which uses phosphoric acid as the ion exchange solution.
第(1)項記載の光導波路の製造方法。(4) A method for manufacturing an optical waveguide according to claim (1), which uses an oxide film as a mask.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60204715A JP2590807B2 (en) | 1985-09-17 | 1985-09-17 | Manufacturing method of optical waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60204715A JP2590807B2 (en) | 1985-09-17 | 1985-09-17 | Manufacturing method of optical waveguide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6263904A true JPS6263904A (en) | 1987-03-20 |
JP2590807B2 JP2590807B2 (en) | 1997-03-12 |
Family
ID=16495107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60204715A Expired - Lifetime JP2590807B2 (en) | 1985-09-17 | 1985-09-17 | Manufacturing method of optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2590807B2 (en) |
-
1985
- 1985-09-17 JP JP60204715A patent/JP2590807B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2590807B2 (en) | 1997-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04234005A (en) | Manufacture of lightguide tube by ion exchange method | |
US4711514A (en) | Product of and process for forming tapered waveguides | |
US6650819B1 (en) | Methods for forming separately optimized waveguide structures in optical materials | |
JPS6263904A (en) | Production of optical waveguide | |
JP3898585B2 (en) | Method for manufacturing member with optical waveguide | |
JPH0313907A (en) | Production of substrate type optical waveguide | |
JPH0774843B2 (en) | Optical element manufacturing method | |
JPS5960405A (en) | Optical waveguide and its manufacture | |
JPS6263903A (en) | Production of optical waveguide | |
JPS63303308A (en) | Production of light guide | |
JPS6053904A (en) | Ridge type light guide | |
JPH03191332A (en) | Production of optical waveguide and optical wavelength converting element | |
JPH06174908A (en) | Production of waveguide type diffraction grating | |
JPS62293206A (en) | Formation of optical element | |
JPS62293203A (en) | Manufacture of tapered optical waveguide | |
JPS63158505A (en) | Preparation of tapered optical waveguide | |
JPS63158506A (en) | Production of optical element | |
JPH02236505A (en) | Incident tapered optical waveguide and wavelength converting element and manufacture of incident tapered optical waveguide | |
JP3006217B2 (en) | Optical wavelength conversion element and method of manufacturing the same | |
JPH0643412A (en) | Production of optical control device | |
JPH07159637A (en) | Production of ridge type optical waveguide | |
JPS63175808A (en) | Production of optical waveguide | |
JPH07270634A (en) | Manufacture of optical waveguide and optical waveguide substrate | |
JPS58211106A (en) | Formation of waveguide | |
JPH08160238A (en) | Production of optical waveguide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |