JPS6263617A - Manufacture of fe-co soft magnetic material - Google Patents

Manufacture of fe-co soft magnetic material

Info

Publication number
JPS6263617A
JPS6263617A JP18657585A JP18657585A JPS6263617A JP S6263617 A JPS6263617 A JP S6263617A JP 18657585 A JP18657585 A JP 18657585A JP 18657585 A JP18657585 A JP 18657585A JP S6263617 A JPS6263617 A JP S6263617A
Authority
JP
Japan
Prior art keywords
sintered
soft magnetic
heat treatment
sintering
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18657585A
Other languages
Japanese (ja)
Other versions
JPH0323606B2 (en
Inventor
Wataru Yamagishi
山岸 亙
Kaoru Hashimoto
薫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18657585A priority Critical patent/JPS6263617A/en
Publication of JPS6263617A publication Critical patent/JPS6263617A/en
Publication of JPH0323606B2 publication Critical patent/JPH0323606B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture soft magnetic material superior in magnetic property, by reheating Fe-Co sintered alloy to a specified temp., then rapidly cooling it to apply heat treatment. CONSTITUTION:Electrolytic iron fines of <=200 mesh, <=400 mesh Co fines and atomized powder of Fe-50% Co alloy are mixed to 1 Fe/Co atomic ratio substantially. Stearic acid as lubricant is added by 0.75wt% to the mixed powder, mixed therewith and compacted to the desired shape, then heated to 400 deg.C to remove zinc stearate as lubricant. This is heated to 750-850 deg.C and previously sintered in hydrogen atmosphere, then compacted again, and sintered in 1,300-1,400 deg.C hydrogen atmosphere furnace. Sintered material is cooled to room temp., then reheated to 750-900 deg.C, held for 1hr, then rapidly cooled. Fe-Co soft magnetic sintered material having superior magnetic characteristic such as high flux density, low coercive force, high permeability and 90-96% relative density is obtd.

Description

【発明の詳細な説明】 〔概 要〕 Fe−Co焼結材料を焼結後急冷を伴なう熱処理するこ
とによって、保磁力、磁束密度および透磁率等の軟質磁
気特性を改良する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] Soft magnetic properties such as coercive force, magnetic flux density, and magnetic permeability are improved by heat-treating a Fe--Co sintered material with rapid cooling after sintering.

〔産業上の利用分野〕[Industrial application field]

本発明は軟質磁性材料に関するものであり、さらに詳し
く述べるならばFe−Co系焼結軟質磁性材料の製造方
法に関するものである。
The present invention relates to a soft magnetic material, and more specifically, to a method for manufacturing a Fe--Co based sintered soft magnetic material.

〔従来の技術〕[Conventional technology]

従来軟質磁性材料として、鉄、ケイ素鋼、パーマロイ、
センダスト、パーメンジュールなどが広く実用されてい
る。これらの中で最も高い(51重密度を示すものはパ
ーメンジュールであるが、その溶製材は冷間加工性が乏
しいという欠点があった。
Conventional soft magnetic materials include iron, silicon steel, permalloy,
Sendust, permendur, etc. are widely used. Among these, permendur exhibits the highest density (51), but its ingot material has the disadvantage of poor cold workability.

そこで、バナジウムを2%添加することにより冷間加工
性を改善した2■−バー、メンジュールが知られている
が、その加工性は未だ十分とは言えない。粉末冶金法は
難加工性材料を成形加工する有力な一つの製造方法であ
るが、Fe−Co系合金を粉末冶金法で製造すると溶製
材に匹敵するほどの軟質磁気特性が得られていなかった
。これを解決するために種々の添加物の効果も調べられ
ているが、軟質磁気的性質を根本的に解決するに至って
いない。
Therefore, 2■-bar and Mendur are known, which have improved cold workability by adding 2% vanadium, but their workability is still not sufficient. Powder metallurgy is an effective manufacturing method for molding difficult-to-process materials, but when Fe-Co alloys are manufactured using powder metallurgy, soft magnetic properties comparable to those of molten materials cannot be obtained. . In order to solve this problem, the effects of various additives have been investigated, but the soft magnetic properties have not been fundamentally solved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、Fe−Co系軟質磁性合金を焼結する際にその相
対密度を高めることにより軟質磁気的性質を改善するこ
とは試みられていた。だが、鉄のコバルトへの拡散係数
がコバルトの鉄への拡散係数より大であるために、鉄相
にカーゲンドールポイドが発生すること、および高温焼
結時におけるFe−Co合金の結晶構造(FCC相)に
起因して焼結時の拡散が遅くなることの二つの理由によ
って焼結体の密度向上には限界があった。さらに、添加
元素によっても焼結体の密度は根本的には改善されてお
らなかった。
Conventionally, attempts have been made to improve the soft magnetic properties of Fe--Co based soft magnetic alloys by increasing their relative density during sintering. However, because the diffusion coefficient of iron to cobalt is larger than that of cobalt to iron, Kagendall poids occur in the iron phase, and the crystal structure of Fe-Co alloys during high-temperature sintering ( There was a limit to the density improvement of the sintered body due to two reasons: slow diffusion during sintering due to the FCC phase). Furthermore, the density of the sintered body was not fundamentally improved by the addition of elements.

本発明は実用性のある磁気的性質を有するFe−Co系
焼結軟磁性材料を提供する方法を見出すことを目的とす
る。
The object of the present invention is to find a method for providing a Fe--Co based sintered soft magnetic material having practical magnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、Fe−Co系合金を焼結し7た後に、急冷を
伴なう熱処理を行なうことによってFe −Co焼結軟
質磁性材料の磁気的性質を改良するものである。
The present invention improves the magnetic properties of a Fe--Co sintered soft magnetic material by performing heat treatment involving rapid cooling after sintering an Fe--Co alloy.

本発明において、焼結とは通常の粉末混合1.圧粉およ
び焼成を経る粉末冶金法の一連の工程を指す。この焼結
法における各工程の条件には特に制限がないが、相対密
度90〜96%を得る通常の、すなわちHIP等の特殊
な方法によらない、焼結法によって得られた焼結体にも
本発明方法を適用することができる。本発明において、
焼結後とは通常の焼結体としての密度、均一組成が得ら
れた後を意味している。かかる焼結体が得られた後にこ
れに再び熱的処理を加え軟質磁気的性質を改善すること
が本発明の特徴である。通常焼結は高温加熱後室温まで
冷却することにより終了するので、室温から所定温度ま
で再加熱することにより熱処理を行なう。この場合、焼
結体の供給を受けたユーザーが熱処理しても所期の効果
が得られるのは当然であり、熱処理の時期は問わない。
In the present invention, sintering refers to ordinary powder mixing 1. Refers to a series of steps in powder metallurgy that involve compaction and sintering. There are no particular restrictions on the conditions for each step in this sintering method, but the sintered body obtained by a normal sintering method that achieves a relative density of 90 to 96%, that is, not using a special method such as HIP. The method of the present invention can also be applied. In the present invention,
"After sintering" means after the density and uniform composition of a normal sintered body have been obtained. A feature of the present invention is that after such a sintered body is obtained, it is subjected to heat treatment again to improve its soft magnetic properties. Normally, sintering is completed by heating to a high temperature and then cooling to room temperature, so heat treatment is performed by reheating from room temperature to a predetermined temperature. In this case, it is natural that the desired effect can be obtained even if the user who receives the sintered body performs heat treatment, and the timing of the heat treatment does not matter.

また、焼結後所定熱処理温度まで冷却した後直ちに熱処
理を行なってもよい。本発明において熱処理で急冷を行
なうのは磁気的性質改良のために急冷が一つの条件にな
っているからである。急冷としては、炉冷より実質的に
冷却速度が速い油冷、空冷、水冷、扇冷、気体ジェット
冷却、低温浴中への浸せきなど各種方法あるいはこれら
の混合併用方法を採用することができる。ところで本発
明における熱処理の作用は後述のようにFe−Co規則
格子を解除するところにあるとするのが有力であるため
、熱処理における急冷は規則格子生成温度範囲にて行な
うことが必要と考えられる。焼結Fe −Co合金の規
則格子生成温度を明確に定めることは出来ないが、高温
域を急冷することが安全である。規則格子生成の危険性
が低い低温域および高々温域での急冷は必須ではない。
Alternatively, heat treatment may be performed immediately after cooling to a predetermined heat treatment temperature after sintering. The reason why quenching is performed during heat treatment in the present invention is that quenching is one of the conditions for improving magnetic properties. For rapid cooling, various methods such as oil cooling, air cooling, water cooling, fan cooling, gas jet cooling, and immersion in a low-temperature bath, which have a substantially faster cooling rate than furnace cooling, or a combination of these methods can be employed. By the way, since it is likely that the effect of the heat treatment in the present invention is to release the Fe-Co ordered lattice as described below, it is considered necessary to perform the rapid cooling in the heat treatment within the temperature range for forming an ordered lattice. . Although it is not possible to clearly determine the temperature at which the sintered Fe-Co alloy forms an ordered lattice, it is safe to rapidly cool the high temperature range. Rapid cooling in a low temperature range or a high temperature range where the risk of forming an ordered lattice is low is not essential.

本発明者等は熱的処理温度と磁性改善の関係を調べたと
ころが750〜900℃にて十分な効果を認めた。
The present inventors investigated the relationship between thermal treatment temperature and magnetic improvement and found that a sufficient effect was observed at 750 to 900°C.

本発明のFe−Co焼結軟質磁性材料の組成は公知のも
のであってよく、Fe:Co原子比=l:1、残部不純
物であるFe−Co合金も本発明によりすぐれた軟質磁
性材料として改質される。
The composition of the Fe-Co sintered soft magnetic material of the present invention may be a known one, and the Fe:Co atomic ratio = 1:1 and the Fe-Co alloy, which is the remaining impurity, can also be used as an excellent soft magnetic material according to the present invention. modified.

〔作 用〕[For production]

Fe Co規則格子は飽和磁束密度は高いが透磁率は低
い。一般のFe−Co磁性材料ではこのようなFe−C
o規則格子の性質が利用されている。
The FeCo ordered lattice has a high saturation magnetic flux density but a low magnetic permeability. In general Fe-Co magnetic materials, such Fe-C
o The properties of a regular lattice are utilized.

本発明における急冷を伴なう熱処理は、規則化を解除し
、透磁率を高めるとともに保磁力を低下させる作用を有
すると考えられる。加えて、急冷を伴なう熱処理によっ
て磁束密度84にも高められる。
It is thought that the heat treatment accompanied by rapid cooling in the present invention has the effect of canceling regularization, increasing magnetic permeability, and lowering coercive force. In addition, the magnetic flux density can be increased to 84 by heat treatment accompanied by rapid cooling.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

〔実施例〕〔Example〕

実施例1 原料粉として、 200meshの電解Fe粉、400
メソシユの還元Co粉およびアトマイズFe、 −50
%Co合金粉を用意し、Fe/Co=1となるように原
料粉を混合し、さらに潤滑剤として0.75譬量%のス
テアリン酸亜鉛を加えて混合した。これらの混合粉を3
92MPa (4t / ct& )の成形圧力でφ4
5鶴×φ35■■X7ni(t)の形状に圧粉成形した
。その後、400℃において圧粉体より前述の潤滑剤を
除去してから、750−850℃において1時間、水素
雰囲気にて予備焼結し、さらに588 MPa(6t/
c+J)の圧力で再圧縮成形した。焼結は、ブツシャ型
水素雰囲気炉にて1300〜1400℃にて1時間行な
った。この後、管状雰囲気炉により、水素雰囲気にて8
00〜900℃で1時間保持してから油冷で急冷した。
Example 1 As raw material powder, 200mesh electrolytic Fe powder, 400mesh
Mesoyu reduced Co powder and atomized Fe, -50
%Co alloy powder was prepared, raw material powder was mixed so that Fe/Co=1, and 0.75% of zinc stearate was added as a lubricant and mixed. 3 of these mixed powders
φ4 at a molding pressure of 92MPa (4t/ct&)
It was compacted into a shape of 5 cranes x φ35 x 7 ni (t). Thereafter, the aforementioned lubricant was removed from the green compact at 400°C, and pre-sintering was carried out at 750-850°C for 1 hour in a hydrogen atmosphere, followed by further sintering at 588 MPa (6t/
Re-compression molding was performed at a pressure of c+J). Sintering was performed at 1300 to 1400° C. for 1 hour in a Busha type hydrogen atmosphere furnace. After this, in a tubular atmosphere furnace, 8 hours were heated in a hydrogen atmosphere.
The temperature was maintained at 00 to 900°C for 1 hour, and then rapidly cooled with oil.

〔磁気的性質〕得られた焼結合金に励磁コイルおよびサ
ーチコイルを共に42ターン巻き、最大印加磁場4KA
/m (500e)にて直流自記磁束計によりBHヒス
テリシス曲線を描いて磁束密度(134K)。
[Magnetic properties] Both an excitation coil and a search coil are wound with 42 turns around the obtained sintered alloy, and the maximum applied magnetic field is 4KA.
/m (500e), draw a BH hysteresis curve with a DC self-recording magnetometer, and calculate the magnetic flux density (134K).

保磁力(Hc)および最大透磁率(μm)を求めた。Coercive force (Hc) and maximum magnetic permeability (μm) were determined.

この結果を示す第1図から明らかなように、焼結後の熱
処理により、軟質磁性材料として好ましい磁気的性質(
高磁束密度、低保持力、高透磁率)を向上することがで
きた。
As is clear from Figure 1, which shows these results, the post-sintering heat treatment results in favorable magnetic properties as a soft magnetic material (
We were able to improve the properties (high magnetic flux density, low coercive force, high magnetic permeability).

〔相対比重〕焼結体の相対比重は90〜96%であった
[Relative specific gravity] The relative specific gravity of the sintered body was 90 to 96%.

比較例1 実施例Iにおける熱処理後の油冷を炉冷に変え〔発明の
効果〕 本発明によれば焼結後に熱処理を行なうだけで実用性の
ある磁気的性質を有するFe−Co合金を得ることがで
きる。
Comparative Example 1 Oil cooling after heat treatment in Example I was changed to furnace cooling [Effects of the invention] According to the present invention, a Fe-Co alloy having practical magnetic properties can be obtained by simply performing heat treatment after sintering. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は磁気的性質に及ぼす熱処理の影響
を示すグラフであって、前者は実施例1、後者は比較例
1の結果を示す。
1 and 2 are graphs showing the influence of heat treatment on magnetic properties, the former showing the results of Example 1 and the latter showing the results of Comparative Example 1.

Claims (1)

【特許請求の範囲】 1、Fe−Co合金を焼結した後に急冷を伴う熱処理を
行なうことを特徴とするFe−Co軟質磁性材料の製造
方法。 2、前記Fe−Co軟質磁性材料がFe/Co原子比が
実質的に1であることを特徴とする特許請求の範囲第1
項記載の製造方法。 3、前記熱処理を焼結温度より低い温度で行なうことを
特徴とする特許請求の範囲第1項または第2項記載の方
法。 4、熱処理温度が750〜900℃であることを特徴と
する特許請求の範囲第3項記載の方法。 5、前記Fe−Co軟質磁性材料のFe、Co以外は不
純物である特許請求の範囲第2項記載の方法。 6、前記焼結を相対密度90〜96%の焼結体を得る焼
結法により製造する特許請求の範囲第1項から第5項ま
での何れか1項に記載の方法。
[Claims] 1. A method for producing a Fe-Co soft magnetic material, which comprises performing a heat treatment involving rapid cooling after sintering the Fe-Co alloy. 2. Claim 1, wherein the Fe-Co soft magnetic material has an Fe/Co atomic ratio of substantially 1.
Manufacturing method described in section. 3. The method according to claim 1 or 2, wherein the heat treatment is performed at a temperature lower than the sintering temperature. 4. The method according to claim 3, wherein the heat treatment temperature is 750 to 900°C. 5. The method according to claim 2, wherein components other than Fe and Co in the Fe--Co soft magnetic material are impurities. 6. The method according to any one of claims 1 to 5, wherein the sintering is performed by a sintering method that obtains a sintered body with a relative density of 90 to 96%.
JP18657585A 1985-08-27 1985-08-27 Manufacture of fe-co soft magnetic material Granted JPS6263617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18657585A JPS6263617A (en) 1985-08-27 1985-08-27 Manufacture of fe-co soft magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18657585A JPS6263617A (en) 1985-08-27 1985-08-27 Manufacture of fe-co soft magnetic material

Publications (2)

Publication Number Publication Date
JPS6263617A true JPS6263617A (en) 1987-03-20
JPH0323606B2 JPH0323606B2 (en) 1991-03-29

Family

ID=16190937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18657585A Granted JPS6263617A (en) 1985-08-27 1985-08-27 Manufacture of fe-co soft magnetic material

Country Status (1)

Country Link
JP (1) JPS6263617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125835A (en) * 1988-11-04 1990-05-14 Sumitomo Metal Mining Co Ltd Manufacture of fe-co alloy soft magnetic material sintered body
CN112170834A (en) * 2019-07-02 2021-01-05 宁波盛事达磁业有限公司 Process and device for improving magnetic property of powder alnico magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498613A (en) * 1972-04-10 1974-01-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498613A (en) * 1972-04-10 1974-01-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125835A (en) * 1988-11-04 1990-05-14 Sumitomo Metal Mining Co Ltd Manufacture of fe-co alloy soft magnetic material sintered body
CN112170834A (en) * 2019-07-02 2021-01-05 宁波盛事达磁业有限公司 Process and device for improving magnetic property of powder alnico magnet

Also Published As

Publication number Publication date
JPH0323606B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
JP5288226B2 (en) Magnetic alloys, amorphous alloy ribbons, and magnetic parts
US3954519A (en) Iron-chromium-cobalt spinodal decomposition-type magnetic alloy comprising niobium and/or tantalum
CN110387500B (en) High-magnetic-induction high-frequency iron-based nanocrystalline magnetically soft alloy and preparation method thereof
JP6929005B2 (en) Ultra-low cobalt iron-cobalt magnetic alloy
CN107532267A (en) Nanocrystal magnetic alloy and its heat treatment method
CN102304669A (en) Iron-based nanocrystalline soft magnetic alloy with high saturation magnetic induction and low cost
EP3243206A1 (en) Magnetic core based on a nanocrystalline magnetic alloy background
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JPS63304603A (en) Green compact of fe soft-magnetic alloy and manufacture thereof
JP3983207B2 (en) Method for producing Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
EP0049141B1 (en) Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
JPS625972B2 (en)
US2666724A (en) Process of preparing iron powder of improved electromagnetic properties
JPS6263617A (en) Manufacture of fe-co soft magnetic material
CN112962024B (en) Finemet-like Fe-based nanocrystalline magnetically soft alloy and preparation method thereof
Kumari et al. Investigations on phase formation and magnetic properties of promisingCo35Cr5Fe10Ni30Ti20 high entropy alloysynthesized through radio frequency induction melting
JP2009293132A (en) Soft magnetic thin band, magnetic core, magnetic component and method for producing soft magnetic thin band
RU2791679C1 (en) Amorphous magnetic alloy based on the iron-silicon system
JPS6254041A (en) Manufacture of sintered iron-cobalt alloy
JPS61208807A (en) Permanent magnet
KR100710613B1 (en) Fe-BASED NANO CRYSTALLINE ALLOY AND METHOD FOR MANUFACTURING THE SAME
JPH03271346A (en) Soft magnetic alloy
JP3003225B2 (en) Method for producing sintered body of Fe-based soft magnetic material containing B
JPS60224728A (en) Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees