JPS6262464B2 - - Google Patents

Info

Publication number
JPS6262464B2
JPS6262464B2 JP53146237A JP14623778A JPS6262464B2 JP S6262464 B2 JPS6262464 B2 JP S6262464B2 JP 53146237 A JP53146237 A JP 53146237A JP 14623778 A JP14623778 A JP 14623778A JP S6262464 B2 JPS6262464 B2 JP S6262464B2
Authority
JP
Japan
Prior art keywords
etching
insulating layer
photoresist
layer
isolation insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53146237A
Other languages
Japanese (ja)
Other versions
JPS5572052A (en
Inventor
Akira Tabata
Junosuke Kawabe
Chuichi Takada
Ryoji Abe
Yoshinobu Monma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14623778A priority Critical patent/JPS5572052A/en
Publication of JPS5572052A publication Critical patent/JPS5572052A/en
Publication of JPS6262464B2 publication Critical patent/JPS6262464B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体素子間分離絶縁層の新規な形成
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for forming an isolation insulating layer between semiconductor elements.

従来、半導体素子を用いた集積回路において素
子間分離絶縁を行なう一技法として、VIP形式が
知られている。該VIP形式は素子間分離を絶縁体
によつて行なつているので、PN接合による分離
と異なり、例えばベース領域を直接分離層に接触
させることができるなどの利点があり、半導体素
子を小面積に形成することが可能で、高集積化・
高速度化せしめるのに有効である。
Conventionally, the VIP format has been known as a technique for separating and insulating elements in integrated circuits using semiconductor elements. The VIP format uses an insulator to isolate elements, so unlike isolation using a PN junction, it has the advantage that, for example, the base region can be brought into direct contact with the isolation layer, allowing semiconductor elements to be formed in a small area. It is possible to form
This is effective for increasing speed.

しかしながら、該VIP形式による半導体装置表
面が(100)結晶面に限定されており、(100)結
晶面が他の結晶面よりアルカリ性エツチング液を
用いた場合にエツチング速度が特に早いために
VIP形式を採用することが出来るもので、この様
な性質は結晶面の原子数と関係があり拡散工程に
おいても影響が現はれ、VIP形式が採用できる
(100)結晶面を有する半導体装置は、他の結晶面
を有する半導体装置より拡散速度が速くなる。そ
のため、最初の如く、シヤロウ・ジヤンクシヨン
(浅い拡散層)が多く使用されると拡散工程の制
御は難しく、例えばエミツタ・ベース間短絡が発
生し易い欠点が生ずる。
However, the surface of a semiconductor device using the VIP format is limited to the (100) crystal plane, and the etching speed of the (100) crystal plane is particularly faster when using an alkaline etching solution than other crystal planes.
This type of property is related to the number of atoms on the crystal plane, and it also affects the diffusion process.Semiconductor devices with (100) crystal planes that can adopt the VIP format are , the diffusion rate is faster than in semiconductor devices having other crystal planes. Therefore, if a large number of shallow junctions (shallow diffusion layers) are used as in the first example, it is difficult to control the diffusion process, resulting in the disadvantage that, for example, emitter-base short circuits are likely to occur.

本発明はこのような問題が起り難い結晶面、即
ち拡散の制御が容易な任意の結晶面例えば
(111)結晶面を有する半導体基板にVIP形式に類
似の分離絶縁層を形成せしめることを目的とし、
半導体基板上に被着されたフオトレジスト表面に
素子間分離絶縁層の形成用のパターンを露光する
前又は後に、クロルベンゼン液を浸透させ、フオ
トレジストを現像して素子間分離絶縁層の形成領
域を除去して逆テーパ状の周辺を持つフオトレジ
ストパターンを形成し、次いで反応性スパツタエ
ツチングを行なつて、半導体基板内に側面がテー
パー形状を有するエツチング溝に形成せしめ、し
かる後に該エツチング溝の内部に絶縁体を埋没せ
しめてなる工程を含むことを特徴とするものであ
る。
The purpose of the present invention is to form an isolation insulating layer similar to the VIP type on a semiconductor substrate having a crystal plane where such problems are unlikely to occur, that is, an arbitrary crystal plane where diffusion can be easily controlled, such as a (111) crystal plane. ,
Before or after exposing the surface of the photoresist deposited on the semiconductor substrate to form a pattern for forming the element isolation insulating layer, a chlorobenzene solution is infiltrated and the photoresist is developed to form the area for forming the element isolation insulating layer. is removed to form a photoresist pattern with a reverse tapered periphery, followed by reactive sputter etching to form an etched groove with tapered sides in the semiconductor substrate; The method is characterized in that it includes a step of burying an insulator inside the insulator.

以下、本発明をよりよく理解するために一実施
例を工程順の断面図を用いて説明する。
Hereinafter, in order to better understand the present invention, one embodiment will be described using cross-sectional views in the order of steps.

第1図に示す如く、シリコン基板1上の異なる
導電形のエピタキシヤル層2、表面に酸化シリコ
ン膜3を生成し、その上面に窒化シリコン膜4を
被着せしめ、更にその上面にポジテイブ型フオト
レジスト5を塗布する。
As shown in FIG. 1, a silicon oxide film 3 is formed on the surface of an epitaxial layer 2 of a different conductivity type on a silicon substrate 1, a silicon nitride film 4 is deposited on the upper surface, and a positive type photo film is further deposited on the upper surface. Apply resist 5.

次いで第2図に示す如く、フオトレジスト5に
公知のフオトリソグラフイ技術を用いてレジスト
パターン6を形成せしめるが、露光工程前又は後
にクロルベンゼン溶液に浸漬して現像すると該レ
ジストパターン6の周縁は断面が逆テーパー状に
形成される。これはクロルベンゼン液の浸透した
レジストの部分が現像工程で溶解速度が遅いため
に生ずるものである。
Next, as shown in FIG. 2, a resist pattern 6 is formed on the photoresist 5 using a known photolithography technique, but when it is immersed in a chlorobenzene solution and developed before or after the exposure process, the periphery of the resist pattern 6 is The cross section is formed in a reverse tapered shape. This occurs because the portion of the resist penetrated by the chlorobenzene solution has a slow dissolution rate during the development process.

次に第3図に示す如く窒化シリコン膜4、酸化
シリコン膜3、エピタキシヤル層2及びシリコン
基板1をエツチングしてエツチング溝7を形成す
る。エツチング方法として四塩化炭素(CCl4)ガ
スなどを用いた反応性スパツタエツチングを使用
するとエツチングの初期ではレジスト開孔部直下
のシリコン基板がレジスト上部開孔幅にエツチン
グされる。
Next, as shown in FIG. 3, the silicon nitride film 4, the silicon oxide film 3, the epitaxial layer 2, and the silicon substrate 1 are etched to form an etching groove 7. When reactive sputter etching using carbon tetrachloride (CCl 4 ) gas or the like is used as an etching method, in the initial stage of etching, the silicon substrate immediately below the resist opening is etched to the width of the opening above the resist.

エツチングを継続するに従い、レジストも灰化
される為、レジスト上部開孔幅は広がつていき、
シリコン基板は深くエツチングされると共に横方
向のエツチングも進む。この反応性スパツタエツ
チングは結晶面に依存せず図の如きテーパー形状
の断面となる。反応性スパツタエツチングは精度
良くエツチングする方法で、前記の逆テーパー形
状のレジストパターン6のためにエツチング溝7
の底面は直接スパツタされて深い溝となり、側面
はテーパー形状となる。
As etching continues, the resist is also ashed, so the width of the opening at the top of the resist increases.
As the silicon substrate is etched deeply, etching also progresses in the lateral direction. This reactive sputter etching does not depend on the crystal plane and results in a tapered cross section as shown in the figure. Reactive sputter etching is a method of etching with high precision, and is used to form etching grooves 7 for the above-mentioned reverse tapered resist pattern 6.
The bottom surface is directly sputtered to form a deep groove, and the side surface is tapered.

次に第4図に示す如く、レジストパターン6を
除去せる後に、酸素気流中で熱処理してエツチン
グ溝7内面に酸化シリコン膜3′を生成せしめ
る。
Next, as shown in FIG. 4, after the resist pattern 6 is removed, a silicon oxide film 3' is formed on the inner surface of the etching groove 7 by heat treatment in an oxygen stream.

次に第5図に示す如く、CVD法により多結晶
シリコン層8を蒸着せしめて、該エツチング溝7
を埋没させ、次いでポリツシングしてエツチング
溝外の窒化シリコン膜4上に被着した多結晶シリ
コン層を研麿除去する。
Next, as shown in FIG. 5, a polycrystalline silicon layer 8 is deposited by the CVD method to form the etched grooves 7.
Then, by polishing, the polycrystalline silicon layer deposited on the silicon nitride film 4 outside the etching groove is removed.

次に第6図に示す如く、再度酸素気流中で熱処
理してエツチング溝の多結晶シリコン層表面に酸
化シリコンン膜3″を生成せしめる。そして最後
に表面を保護していた窒化シリコン膜4をエツチ
ングして除去すると、酸化シリコン膜3′及び
3″に包含された分離絶縁層が仕上げられる。
Next, as shown in FIG. 6, heat treatment is performed again in an oxygen stream to form a silicon oxide film 3'' on the surface of the polycrystalline silicon layer in the etched groove.Finally, the silicon nitride film 4 protecting the surface is removed. When removed by etching, the isolation insulating layer included in the silicon oxide films 3' and 3'' is finished.

この様にして分離絶縁層を形成せしめると、該
絶縁層の表面はなだらかな平面をもつ酸化シリコ
ン膜に蔽われるが、フオトレジストをクロルベン
ゼン液に犢漬せずに従来のようなレジストパター
ンの周縁とせしめ、反応性スパツタエツチングを
行なうと、エツチング溝7の側面は垂直となり、
多結晶シリコン層8を蒸着した場合には未埋没の
部分が生じ、研麿して仕上げると第7図に示す如
く、エツチング溝中央に割れ10が現われて表面
が平担とはならない。そのために上面に配線層を
形成せしめると断線などの事故を生ずる恐れがあ
る。
When the isolation insulating layer is formed in this way, the surface of the insulating layer is covered with a silicon oxide film with a gentle plane. When reactive sputter etching is performed on the peripheral edge, the sides of the etched groove 7 become vertical.
When the polycrystalline silicon layer 8 is deposited, there are unburied portions, and when it is polished and finished, a crack 10 appears at the center of the etched groove, as shown in FIG. 7, and the surface is not flat. Therefore, if a wiring layer is formed on the upper surface, there is a risk of accidents such as disconnection.

従つて本発明による如く、レジストパターンの
周縁を逆テーパーにせしめ且つ反応性スパツタエ
ツチングすることが不可欠であり、かような製造
方法を用いることにより半導体基板表面が
(100)結晶面に限定されることなく、すべての結
晶面の半導体基板に断線事故のない絶縁体による
分離層を形成できる。
Therefore, as in the present invention, it is essential to make the periphery of the resist pattern inversely tapered and to perform reactive sputter etching.By using such a manufacturing method, the semiconductor substrate surface is limited to the (100) crystal plane. It is possible to form a separation layer made of an insulator without disconnection accidents on the semiconductor substrate on all crystal planes.

以上の様に本発明は任意の結晶面を選択して、
半導体素子を小さな占有面積でシヤロウ・ジヤン
クシヨンに形成することができるので、高速化し
た集積回路を高密度に集積することが可能で、し
かも信頼性の良い集積回路を得ることが出来るも
のである。
As described above, the present invention selects an arbitrary crystal plane and
Since semiconductor elements can be formed in a shallow junction in a small occupied area, it is possible to integrate high-speed integrated circuits at high density, and moreover, it is possible to obtain integrated circuits with high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は本発明の実施例の工程順
断面図で、第7図は本発明の一理由を説明するた
めの断面図である。 1……シリコン基板、2……エピタキシヤル
層、3,3′,3″,……酸化シリコン膜、5……
フオトレジスト、6……レジストパターン、7…
…エツチング溝、8……多結晶シリコン層。
1 to 6 are cross-sectional views in the order of steps of an embodiment of the present invention, and FIG. 7 is a cross-sectional view for explaining one reason for the present invention. DESCRIPTION OF SYMBOLS 1...Silicon substrate, 2...Epitaxial layer, 3, 3', 3'',...Silicon oxide film, 5...
Photoresist, 6...Resist pattern, 7...
...Etched groove, 8...Polycrystalline silicon layer.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に被着されたフオトレジスト表
面に、素子間分離絶縁層の形成用のパターンを露
光する前又は後に、クロルベンゼン液を浸透させ
該フオトレジストを現像して素子間分離絶縁層の
形成層の形成領域を除去して逆テーパ形状の周辺
をもつフオトレジストパターンを形成し、次いで
反応性スパツタエツチングを行つて、半導体基板
内に側面がテーパ形状を有するエツチング溝に形
成せしめ、しかる後に該エツチグ溝の内部に絶縁
体を埋没せしめて前記分離絶縁層を形成する工程
を含むことを特徴とする半導体装置の製造方法。
1 Before or after exposing the surface of the photoresist deposited on the semiconductor substrate to form a pattern for forming the element isolation insulating layer, a chlorobenzene solution is infiltrated and the photoresist is developed to form the element isolation insulating layer. A photoresist pattern having an inverted tapered periphery is formed by removing the formation region of the formation layer, and then reactive sputter etching is performed to form an etched groove with tapered sides in the semiconductor substrate, and then A method of manufacturing a semiconductor device, comprising the step of later burying an insulator inside the etching groove to form the separation insulating layer.
JP14623778A 1978-11-27 1978-11-27 Preparation of semiconductor device Granted JPS5572052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14623778A JPS5572052A (en) 1978-11-27 1978-11-27 Preparation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14623778A JPS5572052A (en) 1978-11-27 1978-11-27 Preparation of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5572052A JPS5572052A (en) 1980-05-30
JPS6262464B2 true JPS6262464B2 (en) 1987-12-26

Family

ID=15403195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14623778A Granted JPS5572052A (en) 1978-11-27 1978-11-27 Preparation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5572052A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160050A (en) * 1980-05-14 1981-12-09 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS5896751A (en) * 1981-12-03 1983-06-08 Seiko Epson Corp Semiconductor device
JPS58101066U (en) * 1981-12-29 1983-07-09 日産ディーゼル工業株式会社 Thermostat device for engine cooling water passage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158071A (en) * 1974-11-18 1976-05-21 Nichiden Varian Kk SUPATSUTAETSUCHINGUHO
JPS5383585A (en) * 1976-12-27 1978-07-24 Raytheon Co Semiconductor structure and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158071A (en) * 1974-11-18 1976-05-21 Nichiden Varian Kk SUPATSUTAETSUCHINGUHO
JPS5383585A (en) * 1976-12-27 1978-07-24 Raytheon Co Semiconductor structure and method of producing same

Also Published As

Publication number Publication date
JPS5572052A (en) 1980-05-30

Similar Documents

Publication Publication Date Title
CA1159966A (en) Process of forming recessed dielectric regions in a monocrystalline silicon substrate
JPH0548617B2 (en)
JPS58210634A (en) Preparation of semiconductor device
JPH0648707B2 (en) Semiconductor structure and manufacturing method thereof
US5437763A (en) Method for formation of contact vias in integrated circuits
US4389294A (en) Method for avoiding residue on a vertical walled mesa
JPS631753B2 (en)
US4775644A (en) Zero bird-beak oxide isolation scheme for integrated circuits
JPS6262464B2 (en)
JPH05849B2 (en)
JPS6029219B2 (en) Manufacturing method of semiconductor integrated circuit
KR100225955B1 (en) Method of forming an element isolation film in a semiconductor device
JPH0396249A (en) Manufacture of semiconductor device
KR100286901B1 (en) Shallow Trench Manufacturing Method for Isolation of Semiconductor Devices
KR100204418B1 (en) Method for forming an element isolation in a semiconductor device
EP0146613A1 (en) Process for fabricating semiconductor structures.
JPH0119255B2 (en)
JPH0258778B2 (en)
KR100416813B1 (en) Field Oxide Formation Method of Semiconductor Device
JPS595644A (en) Manufacture of semiconductor device
JPH0481329B2 (en)
JPH0152900B2 (en)
JPS61112343A (en) Manufacture of semiconductor device
JPS58169929A (en) Manufacture of semiconductor device
JPS595668A (en) Manufacture of semiconductor device