JPS626155A - Carburization measuring probe - Google Patents

Carburization measuring probe

Info

Publication number
JPS626155A
JPS626155A JP14597385A JP14597385A JPS626155A JP S626155 A JPS626155 A JP S626155A JP 14597385 A JP14597385 A JP 14597385A JP 14597385 A JP14597385 A JP 14597385A JP S626155 A JPS626155 A JP S626155A
Authority
JP
Japan
Prior art keywords
hall element
carburized
magnetic
carburized part
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14597385A
Other languages
Japanese (ja)
Other versions
JPH0344664B2 (en
Inventor
Makoto Takahashi
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14597385A priority Critical patent/JPS626155A/en
Publication of JPS626155A publication Critical patent/JPS626155A/en
Publication of JPH0344664B2 publication Critical patent/JPH0344664B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure not only depth of a carburized part but also the carburized part having an expanse by providing a Hall element in the direction running roughly along a line of magnetic force of the side of a material to be inspected of a magnet, and the direction in which a magnetic flux density decreases at the time when the carburized part has approached, respectively. CONSTITUTION:In case a carburized part 16 having an expanse in the inside of a tube 15, when a probe 10 approaches, a magnetic field of a magnet 12 is influenced by a high magnetic permeability of the carburized part 16 and attracted strongly, and an inclination is generated in a line of magnetic force passing through a Hall element 13. Therefore, an output waveform of the Hall element 13 goes to one which has raised an electromotive voltage in both end parts of the carburized part 16. On the other hand, when the line of magnetic force is attracted strongly by the carburized part 16, a magnetic flux density of the line of magnetic force passing through a Hall element 14 decreases, therefore, when the electromotive voltage of the Hall element 14 shows a value of a prescribed level or below, it is decided that the carburized part 16 having an expanse exists in its position, and also an area of its carburized part 16 can be decided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石油化学工業におけるエチレン製造用クラッ
キングチューブ内面に発生する浸炭部を外表面から非破
壊的に計測する際等に用いる浸炭計測用プルーブに関す
るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is used for carburization measurement, which is used when non-destructively measuring carburized parts generated on the inner surface of cracking tubes for ethylene production in the petrochemical industry from the outer surface. It concerns probes.

(従来の技術) 原料ナフサを高温・高圧下に熱分解してエチレン等を回
収するための反応管であるエチレン製造用クランキング
チューブとしては、637M  HK40(0,4χC
−25χCr−20χNi)、HP45 (0,45χ
C−25χCr−35χNl)%又はIP改良材(IP
材にMO% W 、Nb等を単独若しくは複合添加した
もの)等が使用されている。
(Prior art) As a cranking tube for ethylene production, which is a reaction tube for recovering ethylene etc. by thermally decomposing raw material naphtha under high temperature and high pressure, 637M HK40 (0.4χC
-25χCr-20χNi), HP45 (0,45χ
C-25χCr-35χNl)% or IP improved material (IP
Materials in which MO% W, Nb, etc. are added singly or in combination) are used.

クランキングチューブは、長期間使用されるうちに、チ
ェーブ内面に反応に伴って生成される炭素が付着し、こ
の付着炭素が高温下において金属内部に拡散して浸炭が
発生する。浸炭により浸入した炭素は、Cr炭化物を形
成し、浸炭が加速された状態ではCr炭化物が粗大とな
り、低温域(約800℃以下)で著しい延性低下を招く
。またチューブの浸炭部の熱膨張係数は、非浸炭部のそ
れより小さいので、急激な加熱・冷却を行なうと、引張
・圧縮応力の発生と、前記低温域での延性低下とが重畳
して、チューブに破壊が生ずることがあった。
When a cranking tube is used for a long period of time, carbon generated as a result of a reaction adheres to the inner surface of the tube, and this adhered carbon diffuses into the metal at high temperatures, causing carburization. Carbon infiltrated by carburization forms Cr carbide, and when carburization is accelerated, the Cr carbide becomes coarse, resulting in a significant decrease in ductility in a low temperature range (approximately 800° C. or lower). Furthermore, since the coefficient of thermal expansion of the carburized portion of the tube is smaller than that of the non-carburized portion, rapid heating and cooling will result in the generation of tensile and compressive stress and a decrease in ductility in the low-temperature range. Tube breakage could occur.

従って、チューブの破壊を未然に防止し、安全で円滑な
操業を維持するには、浸炭検査を定期的に実施し、浸炭
の有無、及びその進行状況を適確に把握することが必要
である。
Therefore, in order to prevent tube destruction and maintain safe and smooth operations, it is necessary to conduct carburization inspections periodically to accurately understand the presence or absence of carburization and its progress. .

浸炭深さを非破壊的に測定する方法としては、浸炭部の
組成変化、即ちCrの欠乏と、Fe及びNiの相対的増
量に伴なう磁気特性の変化を利用した各種の磁気測定法
が知られている。例えば、電磁誘導によりチューブの浸
炭深さを判定する方法、ホール効果を応用したガウスメ
ータを用いる方法等がある。
As a non-destructive method for measuring the carburization depth, there are various magnetic measurement methods that utilize changes in the composition of the carburized part, that is, changes in magnetic properties due to Cr deficiency and relative increases in Fe and Ni. Are known. For example, there is a method of determining the carburization depth of the tube by electromagnetic induction, a method of using a Gauss meter that applies the Hall effect, etc.

ガウスメータを用いる測定方法は、第8図に示すように
ガウスメータ本体lに接続されたホール素子2を内蔵す
るプルーブ3を、被検材であるチューブ4の外表面にあ
てがい、その内面に浸炭部5が存在すると、浸炭部5の
残留磁気の磁力線がホール素子2を横切ることにより生
じるホール起電圧を検出して、浸炭部5の深さを測定す
るようにしたものである。しかしながら、浸炭部の残留
磁束密度はあまりにも小さく、(HP材で2〜3ガウス
程度)地磁気よりわずかに大きい程度では浸炭深さを正
確に測定するにはいたらない。
As shown in FIG. 8, the measurement method using a Gaussmeter is to apply a probe 3 containing a Hall element 2 connected to a Gaussmeter main body l to the outer surface of a tube 4, which is a material to be tested, and to form a carburized portion 5 on the inner surface. If there is, the depth of the carburized part 5 is measured by detecting the Hall electromotive force generated when the lines of magnetic force of the residual magnetism of the carburized part 5 cross the Hall element 2. However, the residual magnetic flux density of the carburized part is too small (about 2 to 3 Gauss for HP material), and it is not possible to accurately measure the carburized depth if it is slightly larger than the earth's magnetism.

一方、電磁誘導法により得られる浸炭深さ測定結果と、
破壊検査による実測結果とを対比すると、HK40材チ
ューブについては比較的良い対応か得られるものの、H
P材や■P改良材のチューブでは、測定値のバラツキが
大きく、信頼性に乏しかった。
On the other hand, the carburization depth measurement results obtained by electromagnetic induction method,
Comparing the results with actual measurement results from destructive testing, although relatively good results are obtained for the HK40 material tube,
Tubes made of P material and ■P improved material had large variations in measured values and poor reliability.

これは、HP材やHP改良材のチューブ4では、その外
表面に生成した脱炭層(その深さはチューブの使用温度
、使用磁気に依存し、高温、長時間となる程、深さが増
す)6に脱炭と共に脱Crが生じ、その部分の透磁率が
高くなることによるものである。即ち、これらのチュー
ブにあっては、高温下で長時間使用されると、チューブ
内面に浸炭が生じていなくても、外表面に生じた脱炭層
(層深さ約50〜500μm)によりその深さが大きい
場合に高い指示値を示すのでこの指示値部分を浸炭発生
と見誤るためである。
This is because tube 4 of HP material or HP improved material has a decarburized layer formed on its outer surface (the depth of which depends on the temperature at which the tube is used and the magnetism used; the higher the temperature and the longer the time, the deeper it becomes). ) 6, decarburization and Cr removal occur, and the magnetic permeability of that portion increases. In other words, when these tubes are used at high temperatures for long periods of time, even if the inner surface of the tube is not carburized, the depth of the decarburized layer (approximately 50 to 500 μm deep) formed on the outer surface increases. This is because when the value is large, a high indicated value is indicated, and this indicated value is mistaken for carburization.

このためチューブ4の浸炭部5の有無及び深さを測定す
る際には、チューブ4の外表面の脱炭層6を予めグライ
ンダ等で研削除去した上で再測定し、評価しなければな
らないと云うのが実情である。従って、測定個所が僅か
である場合はともかく、多数の個所を測定しようとすれ
ば、多大の時間を費やさなければならず、実用性の点で
問題が多い。
Therefore, when measuring the presence or absence and depth of the carburized portion 5 of the tube 4, it is necessary to first remove the decarburized layer 6 on the outer surface of the tube 4 with a grinder, etc., and then remeasure and evaluate. That is the reality. Therefore, even if the number of locations to be measured is small, if a large number of locations are to be measured, a large amount of time must be spent, which poses many problems in terms of practicality.

そこで、出願人は、脱炭層6をグラインダ処理すること
なく簡易かつ迅速に測定できる技術を既に提案した。即
ち、これは、第9図に示すように、永久磁石7と、この
磁石7のN極とS極との中間部の磁場内に、磁石7と路
行となるように配置されたホール素子8とを備えたプル
ーブ9を使用するもであって、プルーブ9が浸炭部5に
接近すれば、磁石7の磁場が浸炭部5による影響を受け
て、その磁力線が点線で示すようにホール素子8を斜め
に゛横切ることを利用し、その時に発生する起電圧でチ
ューブ4内面の浸炭部5を判断するようにしたものであ
る。
Therefore, the applicant has already proposed a technique that allows simple and quick measurement of the decarburized layer 6 without grinding it. That is, as shown in FIG. 9, this is a permanent magnet 7 and a Hall element arranged in a magnetic field at an intermediate portion between the N pole and the S pole of this magnet 7 so as to be in line with the magnet 7. 8 is used, and when the probe 9 approaches the carburized part 5, the magnetic field of the magnet 7 is influenced by the carburized part 5, and the lines of magnetic force are influenced by the Hall element as shown by the dotted line. The carburized portion 5 on the inner surface of the tube 4 is determined based on the electromotive force generated at that time.

従って、チューブ4の外表面に脱炭層6が部分的に存在
するならば、その脱炭層6の影響により磁石7の磁束分
布に変化が生じるが、脱炭層6はチューブ4の外表面の
全域にわたって存在するため、それによって磁石7の磁
場が変化し、磁力線がホール素子8を斜めに横切るよう
なことはない。
Therefore, if the decarburized layer 6 is partially present on the outer surface of the tube 4, the magnetic flux distribution of the magnet 7 will change due to the influence of the decarburized layer 6, but the decarburized layer 6 is spread over the entire outer surface of the tube 4. Since it exists, the magnetic field of the magnet 7 changes, and the lines of magnetic force do not cross the Hall element 8 diagonally.

つまり、浸炭部5がない限り、ホール素子8を通る磁力
線は、ホール素子8と平行なままであり、ホール素子8
に起電圧を生じることはなく、従って、脱炭層6を浸炭
部5と誤認することはない。
In other words, as long as there is no carburized part 5, the lines of magnetic force passing through the Hall element 8 remain parallel to the Hall element 8, and the lines of magnetic force passing through the Hall element 8 remain parallel to the Hall element 8.
Therefore, the decarburized layer 6 will not be mistaken for the carburized portion 5.

(発明が解決しようとする問題点) しかしながら、このような構成のプルーブ9を使用する
場合、浸炭部5が広がりを持っている部分の中央におい
ては、ホール素子8を通る磁力線は、ホール素子8と平
行になり、出力の起電圧が零となるため、その判断がで
きなくなる問題がある。つまり、浸炭部5の両端部では
磁力線がホール素子8に対して斜め方向に横切るため、
ホール素子8の起電圧の出力波形は、第10図に示すよ
うになる。しかし、これは第11図に示すように局部的
な浸炭部5が2個所ある場合の出力波形と同じであり、
従って、広がりのある浸炭部5がある場合と局部的な2
箇所の浸炭部5がある場合との区別をすることができな
かった。
(Problem to be Solved by the Invention) However, when using the probe 9 having such a configuration, at the center of the part where the carburized part 5 has a wide spread, the lines of magnetic force passing through the Hall element 8 Since the voltage becomes parallel to the output voltage and the electromotive voltage of the output becomes zero, there is a problem that it becomes impossible to make a determination. In other words, at both ends of the carburized part 5, the lines of magnetic force cross diagonally with respect to the Hall element 8, so
The output waveform of the electromotive force of the Hall element 8 is as shown in FIG. However, this is the same as the output waveform when there are two locally carburized parts 5 as shown in FIG.
Therefore, there is a case where there is a carburized part 5 that spreads, and a case where there is a carburized part 5 that is localized.
It was not possible to distinguish between the case where there was a carburized portion 5 at a location.

本発明は、このような問題点に鑑み、浸炭部の深さと範
囲を判断し得る新規な浸炭計測用プルーブを提案するも
のである。
In view of these problems, the present invention proposes a novel probe for measuring carburization that can determine the depth and range of a carburized portion.

(問題点を解決するための手段) 本発明は、前述のような問題点を解決するための具体的
手段として、磁石と、該磁石の磁場内に配置されたホー
ル素子とを備え、被検材内部の浸炭部による磁力線の変
化によって該浸炭部を計測するようにした浸炭計測用プ
ルーブにおいて、磁石の被検材側でかつ一対の磁極間の
中央部側に、磁力線の方向と略沿うように第1ホール素
子を設けると共に、浸炭部の近接時に磁束密度が減少す
るように第2ホール素子を設けたものである。
(Means for Solving the Problems) As a specific means for solving the above-mentioned problems, the present invention includes a magnet and a Hall element disposed within the magnetic field of the magnet. In a carburized measurement probe that measures carburized parts by changes in magnetic lines of force caused by the carburized parts inside the material, a probe is placed on the side of the material to be inspected of the magnet and on the side of the center between a pair of magnetic poles so as to be approximately along the direction of the lines of magnetic force. A first Hall element is provided at the same time as a second Hall element is provided so that the magnetic flux density decreases when the carburized portion approaches.

(作 用) チューブ15の浸炭部16の計測に際して、第1ホール
素子13が浸炭部16に近接すると、磁石12の磁力線
が第1ホール素子13に対して斜めに横切り、その出力
として浸炭部16の深さに相関する起電圧が発生する。
(Function) When the first Hall element 13 approaches the carburized part 16 when measuring the carburized part 16 of the tube 15, the lines of magnetic force of the magnet 12 cross diagonally with respect to the first Hall element 13, and as its output, the carburized part 16 An electromotive force is generated that correlates to the depth of the

また浸炭部16が広がりを有する場合には、その両端部
で第1ホール素子13が出力を発生する。一方、第2ホ
ール素子14を通る磁力線の磁束密度は、浸炭部16が
あれば減少するので、その起電圧も小となる。従って、
これらホール素子13、14の出力より、浸炭部16の
深さのみならず、面積をも判断できる。
Further, when the carburized portion 16 has a spread, the first Hall element 13 generates an output at both ends thereof. On the other hand, the magnetic flux density of the lines of magnetic force passing through the second Hall element 14 is reduced if the carburized portion 16 is present, so the electromotive force thereof is also reduced. Therefore,
From the outputs of these Hall elements 13 and 14, not only the depth but also the area of the carburized portion 16 can be determined.

(実施例) 以下、図示の実施例について本発明を詳述すると、第1
図に示すように、この浸炭計測用プルーブ10は、保護
容器ll内に永久磁石12と第1ホール素子13と第2
ホール素子14とを設けて成る。磁石12は棒状であり
、この磁石12のクラッキングチューブ(被検材)15
側において、その磁極N−3間の略中央部に位置するよ
うに2個のホール素子13゜14が設けられている。ホ
ール素子13.14は偏平な板状であって、板厚方向の
磁界に対して直角方向に電流を流した時に、その磁界及
び電流に対して直角方向に起電圧が生ずるようになって
いる。
(Example) Hereinafter, the present invention will be described in detail with reference to the illustrated example.
As shown in the figure, this carburization measurement probe 10 includes a permanent magnet 12, a first Hall element 13, and a second Hall element 13 in a protective container 11.
A Hall element 14 is provided. The magnet 12 is rod-shaped, and the cracking tube (test material) 15 of this magnet 12
On the side, two Hall elements 13 and 14 are provided so as to be located approximately in the center between the magnetic poles N-3. The Hall elements 13 and 14 have a flat plate shape, and when a current is passed in a direction perpendicular to a magnetic field in the thickness direction of the plate, an electromotive force is generated in a direction perpendicular to the magnetic field and current. .

第1ホール素子13は磁石12と平行であって、通常時
に磁石12の磁力線と略沿うように設けられている。第
2ホール素子14は第1ホール素子13と略直角方向に
配置されており、通常時に磁石12の磁力線が第2ホー
ル素子14を直角に横切り、かつ浸炭部16の近接時に
磁束密度が減少するようになっている。保護容器11は
非磁性材料によって構成されている。
The first Hall element 13 is provided parallel to the magnet 12 and substantially along the lines of magnetic force of the magnet 12 during normal operation. The second Hall element 14 is arranged substantially perpendicularly to the first Hall element 13, and the lines of magnetic force of the magnet 12 cross the second Hall element 14 at right angles under normal conditions, and the magnetic flux density decreases when the carburized part 16 approaches. It looks like this. The protective container 11 is made of non-magnetic material.

上記構成のプルーブ10を用いて、クラッキングチュー
ブ15の浸炭部16の計測を行なう際には、プルーブ1
0をチューブ15外表面にあてがい、チューブ15の軸
心方向及び周方向にプルーブ10を走査する。
When measuring the carburized portion 16 of the cracking tube 15 using the probe 10 configured as described above, the probe 10 is
0 is applied to the outer surface of the tube 15, and the probe 10 is scanned in the axial direction and circumferential direction of the tube 15.

チューブ15に浸炭部16がない場合には、磁石12の
磁界が乱されることがないため、磁極N−3間の中央部
では磁石12と略平行に磁束が分布している。従って、
第1ホール素子13を横切る磁力線は略平行であるため
、その起電圧の出力は零若しくは低レベルの一定値を示
す。一方、第2ホール素子14に対しては、磁力線が直
角方向に横切り、しかもその磁束密度が大であるから、
この第2ホール素子14の起電圧は大である。従って、
これらホール素子13.14の出力によって、浸炭部1
6が存在しないことが判る。
If the tube 15 does not have the carburized portion 16, the magnetic field of the magnet 12 is not disturbed, so that magnetic flux is distributed approximately parallel to the magnet 12 in the center between the magnetic poles N-3. Therefore,
Since the lines of magnetic force that cross the first Hall element 13 are substantially parallel, the output of the electromotive voltage exhibits a constant value of zero or a low level. On the other hand, since the magnetic lines of force cross the second Hall element 14 at right angles and the magnetic flux density is large,
The electromotive voltage of this second Hall element 14 is large. Therefore,
By the outputs of these Hall elements 13 and 14, the carburized part 1
It turns out that 6 does not exist.

チューブ15内部に広がりを有する浸炭部16が存在す
る場合には、プルーブlOが接近すると、磁石12の磁
界が浸炭部16の高い透磁率の影響を受けて強(引きつ
けられるため、第1ホール素子13を通る磁力線に傾き
が生じる。このため、第1ホール素子13の出力波形は
、第3図Bに示す如く浸炭部16の両端部において起電
圧が立ち上がったものとなる。一方、浸炭部16で磁力
線が強く引きつけられると、第2ホール素子14を通る
磁力線の磁束密度は減少する。例えば、第2図に示すよ
うに浸炭部16の丁度中央部にプルーブ10がある場合
を仮定すると、磁石12のN極から出た磁力線は強く浸
炭部16側に引き付けられて、透磁率の高い浸炭部16
を通るようになり、この浸炭部16から磁石12のS極
側に入るため、第2ホール素子14を通る磁力線の磁束
密度が疎になる。従って、第2ホール素子14の起電圧
の出力波形は、第3図Aに示すように浸炭部16の中央
部分でレベルが下がるようになる。
When a carburized portion 16 with a wide spread exists inside the tube 15, when the probe 1O approaches, the magnetic field of the magnet 12 becomes strong (attracted) due to the influence of the high magnetic permeability of the carburized portion 16, so that the first Hall element An inclination occurs in the lines of magnetic force passing through the carburized portion 13. Therefore, the output waveform of the first Hall element 13 is such that the electromotive force rises at both ends of the carburized portion 16, as shown in FIG. 3B. When the lines of magnetic force are strongly attracted in the second Hall element 14, the magnetic flux density of the lines of magnetic force passing through the second Hall element 14 decreases. The lines of magnetic force coming out from the N pole of 12 are strongly attracted to the carburized part 16 side, and the carburized part 16 has high magnetic permeability.
Since the magnetic flux passes through the carburized portion 16 and enters the S pole side of the magnet 12, the magnetic flux density of the magnetic lines of force passing through the second Hall element 14 becomes sparse. Therefore, the level of the output waveform of the electromotive voltage of the second Hall element 14 decreases in the central portion of the carburized portion 16, as shown in FIG. 3A.

この場合、第2ホール素子14の磁束密度は、主に浸炭
部16の深さに依存する。しかし、浸炭部16は明瞭に
際立ってできるものとは限らず、また同じ深さであって
もチューブ15側全体としての透磁率は、浸炭部16の
端部側程低くなるので、第2ホール素子14の出力波形
は、第3図Aの如くなだらかに変化する。
In this case, the magnetic flux density of the second Hall element 14 mainly depends on the depth of the carburized portion 16. However, the carburized part 16 is not necessarily clearly formed, and even if the depth is the same, the overall magnetic permeability of the tube 15 side becomes lower toward the end of the carburized part 16, so the second hole The output waveform of the element 14 changes smoothly as shown in FIG. 3A.

第3図A、 Bに示すような出力波形が得られると、第
1ホール素子13の起電圧の立ち上がりが2箇所あり、
その間において第2ホール素子14の起電圧が所定レベ
ル以下の値を示す時には、その位置に広がりを持った浸
炭部16が存在することが判かり、またその浸炭部16
の面積も判断できる。なお、この場合の浸炭部16の浸
炭深さは、第1ホール素子13の起電圧の波高値に相関
しており、これから浸炭深さを知ることができる。
When the output waveforms shown in FIGS. 3A and 3B are obtained, there are two rises in the electromotive force of the first Hall element 13, and
When the electromotive force of the second Hall element 14 shows a value below a predetermined level during that time, it is known that a carburized portion 16 with a spread exists at that position, and the carburized portion 16
The area of can also be determined. Note that the carburization depth of the carburized portion 16 in this case is correlated with the peak value of the electromotive force of the first Hall element 13, and the carburization depth can be determined from this.

第2ホール素子14は、磁石12の磁極間の中央部に配
置するものに限られず、例えば第4図に示すように、一
方の磁極の磁石長手方向の外方近傍であっても良い。こ
の場合にも、浸炭部16に近接すれば、磁石12の磁力
線が強くチューブ15側に引きよせられるため、第2ホ
ール素子14を通る磁力線の磁束密度が低くなり、浸炭
部16の計測が可能である。
The second Hall element 14 is not limited to being placed in the center between the magnetic poles of the magnet 12, but may be placed near the outside of one of the magnetic poles in the longitudinal direction of the magnet, as shown in FIG. 4, for example. In this case as well, if the magnet 12 is close to the carburized part 16, the magnetic lines of force of the magnet 12 are strongly drawn toward the tube 15, so the magnetic flux density of the magnetic lines of force passing through the second Hall element 14 becomes low, making it possible to measure the carburized part 16. It is.

因みに、この場合の第2ホール素子13及び第1ホール
素子13の出力波形は、第5図A、Bに示す通りである
Incidentally, the output waveforms of the second Hall element 13 and the first Hall element 13 in this case are as shown in FIGS. 5A and 5B.

なお、上記実施例では、第1ホール素子13を磁石12
と平行に、第2ホール素子14を第1ホール素子13と
略直角に夫々配置しているが、このように厳密に配置す
る必要がなく、第1ボール素子13は磁力線と沿う方向
であり、第2ホール素子14は浸炭部16の近接による
磁束密度の減少を検出し得る配置であれば十分である。
Note that in the above embodiment, the first Hall element 13 is connected to the magnet 12.
Although the second Hall element 14 is arranged in parallel with the first Hall element 13 at substantially right angles to the first Hall element 13, it is not necessary to arrange them strictly like this, and the first ball element 13 is arranged in a direction along the lines of magnetic force. It is sufficient that the second Hall element 14 is arranged so that it can detect a decrease in magnetic flux density due to the proximity of the carburized portion 16.

磁石12は中実状の棒磁石に限らず、角筒伏、円筒状等
であっても良いし、また第6図に示すようにコ字状であ
っても良い。
The magnet 12 is not limited to a solid bar magnet, but may be square, cylindrical, etc., or may be U-shaped as shown in FIG.

更に磁石としては、実施例に示すように永久磁石12に
代替して、電磁石を使用するこ゛とも可能である。例え
ば、電磁石18の場合には、第7図に示すようにコ字状
等の鉄心19にコイル2oを捲周したものが適当である
Further, as the magnet, it is also possible to use an electromagnet instead of the permanent magnet 12 as shown in the embodiment. For example, in the case of the electromagnet 18, it is appropriate to use a coil 2o wound around a U-shaped iron core 19 as shown in FIG.

プルーブ10はチューブ15の周方向に複数個設けてお
いても良い。
A plurality of probes 10 may be provided in the circumferential direction of the tube 15.

(発明の効果) 本発明によれば、磁石の被検材側でかつ一対の磁極間の
中央部側に、磁力線の方向と略沿うように第1ホール素
子を設ける一方、これとは別の第2ホール素子を、浸炭
部の近接時に磁束密度が減少するように設けているから
、浸炭部の深さのみならず、広がりを有する浸炭部をも
計測でき、その浸炭部の面積の判断が可能となり、従来
に比較して計測精度が著しく向上する。また第2ホール
素子は磁極の近傍に設けて、浸炭部の近接時に第2ホー
ル素子を通る磁力線の磁束密度が増加することも考えら
れるが、本発明では第2ホール素子の磁束密度が減少す
るようにしているから、磁束密度の増減の変化を太き−
くでき、浸炭部と非浸炭部との区別が容易になる。
(Effects of the Invention) According to the present invention, the first Hall element is provided on the specimen material side of the magnet and on the center side between the pair of magnetic poles so as to be substantially along the direction of the magnetic lines of force, and the Since the second Hall element is provided so that the magnetic flux density decreases when approaching the carburized part, it is possible to measure not only the depth of the carburized part but also the wide carburized part, making it easy to judge the area of the carburized part. This makes it possible to significantly improve measurement accuracy compared to conventional methods. It is also possible that the second Hall element is provided near the magnetic pole so that the magnetic flux density of the lines of magnetic force passing through the second Hall element increases when the carburized part approaches, but in the present invention, the magnetic flux density of the second Hall element decreases. Therefore, changes in the increase or decrease in magnetic flux density are
This makes it easy to distinguish between carburized and non-carburized parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す構成図、第2図は同
作用説明図、第3図は同波形図、第4図は本発明の第2
実施例を示す構成図、第5図は同波形図、第6図及び第
7図は別の実施例を示す構成図・第8図は従来例を示す
構成図・第9図は別      :の従来例を示す構成
図、第10図は波形図、第11図はチューブの断面図で
ある。 10−・・プルーブ、12−・永久磁石、13−・第1
ホール素子、14−・第2ホール素子、15・−・クラ
ッキングチューブ、16−・−・浸炭部、17−脱炭層
FIG. 1 is a configuration diagram showing the first embodiment of the present invention, FIG. 2 is a diagram explaining the same operation, FIG. 3 is a waveform diagram of the same, and FIG. 4 is a diagram showing the second embodiment of the present invention.
A configuration diagram showing the embodiment, FIG. 5 is the same waveform diagram, FIGS. 6 and 7 are configuration diagrams showing another embodiment, FIG. 8 is a configuration diagram showing the conventional example, and FIG. 9 is different. FIG. 10 is a waveform diagram, and FIG. 11 is a sectional view of a tube. 10--probe, 12--permanent magnet, 13--first
Hall element, 14--Second Hall element, 15--Cracking tube, 16--Carburized portion, 17-Decarburized layer.

Claims (1)

【特許請求の範囲】[Claims] 1、磁石と、該磁石の磁場内に配置されたホール素子と
を備え、被検材内部の浸炭部による磁力線の変化によっ
て該浸炭部を計測するようにした浸炭計測用プルーブに
おいて、磁石の被検材側でかつ一対の磁極間の中央部側
に、磁力線の方向と略沿うように第1ホール素子を設け
ると共に、浸炭部の近接時に磁束密度が減少するように
第2ホール素子を設けたことを特徴とする浸炭計測用プ
ルーブ。
1. In a probe for carburization measurement, which is equipped with a magnet and a Hall element placed in the magnetic field of the magnet, and measures the carburized portion by changes in the lines of magnetic force caused by the carburized portion inside the material to be inspected. A first Hall element was provided on the inspection material side and on the center side between a pair of magnetic poles so as to be substantially along the direction of the magnetic lines of force, and a second Hall element was provided so that the magnetic flux density decreased when the carburized part approached. A probe for carburization measurement that is characterized by:
JP14597385A 1985-07-02 1985-07-02 Carburization measuring probe Granted JPS626155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14597385A JPS626155A (en) 1985-07-02 1985-07-02 Carburization measuring probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14597385A JPS626155A (en) 1985-07-02 1985-07-02 Carburization measuring probe

Publications (2)

Publication Number Publication Date
JPS626155A true JPS626155A (en) 1987-01-13
JPH0344664B2 JPH0344664B2 (en) 1991-07-08

Family

ID=15397266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14597385A Granted JPS626155A (en) 1985-07-02 1985-07-02 Carburization measuring probe

Country Status (1)

Country Link
JP (1) JPS626155A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970463A (en) * 1989-03-13 1990-11-13 Durakool Incorporated Temperature stable proximity sensor with sensing of flux emanating from the lateral surface of a magnet
US5818222A (en) * 1995-06-07 1998-10-06 The Cherry Corporation Method for adjusting ferrous article proximity detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970463A (en) * 1989-03-13 1990-11-13 Durakool Incorporated Temperature stable proximity sensor with sensing of flux emanating from the lateral surface of a magnet
US5818222A (en) * 1995-06-07 1998-10-06 The Cherry Corporation Method for adjusting ferrous article proximity detector

Also Published As

Publication number Publication date
JPH0344664B2 (en) 1991-07-08

Similar Documents

Publication Publication Date Title
US4528856A (en) Eddy current stress-strain gauge
US4855676A (en) Ferromagnetic eddy current probe having transmit and receive coil assemblies
EP0646790B1 (en) Method and apparatus for detecting embrittlement of metal material
US5117182A (en) Ferromagnetic eddy current probe having multiple levels of magnetization
JP5648663B2 (en) Hardened hardened layer thickness inspection device and nickel plating film thickness inspection device
JPS626155A (en) Carburization measuring probe
US10001531B2 (en) Giant magneto-impedance (GMI) based sensing device for the detection of carburization in austenitic stainless steel
JPS626159A (en) Carburization measuring probe
JPH0344666B2 (en)
JPS626153A (en) Carburization measuring probe
JPH0445071B2 (en)
JPH0449653B2 (en)
JPS626154A (en) Carburization measuring probe
JPS626160A (en) Carburization measuring probe
JP4109114B2 (en) Detector for nondestructive evaluation of steel structures or components
JPS626156A (en) Carburization measuring probe
JP5643023B2 (en) Total carbon measuring machine and carburizing depth evaluation device for ferritic steel pipes containing Cr
JP2616105B2 (en) Method for measuring carburized thickness and probe for measurement
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JPS626158A (en) Carburization measuring probe
JP2539091B2 (en) Measuring method for carburized part
Vértesy et al. Nondestructive material evaluation by novel electromagnetic methods
Tsafack et al. Effect of bending stress on the magnetic properties of electrical steel using needle probe method
JP2024018348A (en) Quenching depth evaluation method, and quenching depth evaluation device
JPH06194341A (en) Magnetic head