JPS626156A - Carburization measuring probe - Google Patents

Carburization measuring probe

Info

Publication number
JPS626156A
JPS626156A JP14597485A JP14597485A JPS626156A JP S626156 A JPS626156 A JP S626156A JP 14597485 A JP14597485 A JP 14597485A JP 14597485 A JP14597485 A JP 14597485A JP S626156 A JPS626156 A JP S626156A
Authority
JP
Japan
Prior art keywords
hall element
carburized
magnetic
magnet
carburized part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14597485A
Other languages
Japanese (ja)
Other versions
JPH0344665B2 (en
Inventor
Makoto Takahashi
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14597485A priority Critical patent/JPS626156A/en
Priority to EP86102443A priority patent/EP0193168A3/en
Publication of JPS626156A publication Critical patent/JPS626156A/en
Publication of JPH0344665B2 publication Critical patent/JPH0344665B2/ja
Priority to US07/785,197 priority patent/US5128613A/en
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure not only depth of a carburized part but also the carburized part having an expense by providing a Hall element in the direction running roughly along a line of magnetic force of the side of a material to be inspected of a magnet, and a position where a magnetic flux density decreases at the time when the carburized part has approached, respectively. CONSTITUTION:In case a carburized part 18 having an expanse in the inside of a tube 17 exists, when a probe 10 approaches, a line of magnetic force of a magnet 12 is influenced by a high magnetic permeability of the carburized part 18 and a attracted strongly, and an inclination is generated in the line of magnetic force passing through a Hall element 13. Therefore, an output waveform of the Hall element 13 becomes that which has raised an electromotive voltage in both end parts of the carburized part 18. Also, when the line of magnetic force is attracted strongly by the carburized part 18, a magnetic flux density of the line of magnetic force passing through a Hall element 14 which is roughly equivalent to the side of a Hall element 15, due to existence of decarbonized layers 19, 20 of the high magnetic permeability of the tube 17 and a dummy piece 16, and when an output which has offset the electromotive voltage of the Hall elements 14, 15 shows a value of a prescribed level or above, it is decided that the carburized part 18 having an expanse exists.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石油化学工業におけるエチレン製造用クラブ
キングチューブ内面に発生する浸炭部を外表面から非破
壊的に計測する際等に用いる浸炭計測用プルーブに関す
るものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a carburization measurement method used for non-destructively measuring carburized parts generated on the inner surface of crab king tubes for ethylene production in the petrochemical industry from the outer surface. This relates to probes for use.

(従来の技術) 原料ナフサを高温・高圧下に熱分解してエチレン等を回
収するための反応管であるエチレン製造用タラフキング
チューブとしては、ASTM  H)[40(0,4χ
C−25χCr−20χNi)、HP45 (0,45
χC−25XCr−35χNl)、又はIP改良材(1
1P材にMo2N 、Nb等を単独若しくは複合添加し
たもの)等が使用されている。
(Prior art) As a reaction tube for recovering ethylene, etc. by thermally decomposing raw material naphtha under high temperature and high pressure, a cod tube for ethylene production is manufactured using ASTM H) [40 (0,4χ
C-25χCr-20χNi), HP45 (0,45
χC-25XCr-35χNl), or IP improved material (1
1P material with Mo2N, Nb, etc. added singly or in combination), etc. are used.

タラソキングチューブは、長期間使用されろう    
゛ちに、チューブ内面に反応に伴って生成される炭素が
付着し、この付着炭素が高温下において金属内部に拡散
して浸炭が発生する。浸炭により浸入した炭素は、Cr
炭化物を形成し、浸炭が加速された状態ではCr炭化物
が粗大となり、低温域゛(約800℃以下)で著しい延
性低下を招く。またチューブの浸炭部の熱膨張係数は、
非浸炭部のそれより小さいので、急激な加熱・冷却を行
なうと、引張・圧縮応力の発生と、前記低温域での延性
低下とが重畳して、チューブに破壊が生ずることがあっ
た。
Thalassoking tubes will be used for a long time
Immediately, carbon generated as a result of the reaction adheres to the inner surface of the tube, and this adhered carbon diffuses into the metal at high temperatures, causing carburization. Carbon infiltrated by carburizing becomes Cr
When carbides are formed and carburization is accelerated, the Cr carbides become coarse, resulting in a significant decrease in ductility in a low temperature range (approximately 800° C. or lower). The coefficient of thermal expansion of the carburized part of the tube is
Since it is smaller than that of the non-carburized part, when it is heated and cooled rapidly, the generation of tensile and compressive stress and the decrease in ductility in the low temperature range are combined, and the tube may break.

従って、チューブの破壊を未然に防止し、安全で円滑な
操業を維持するには、浸炭検査を定期的に実施し、浸炭
の有無、及びその進行状況を適確に把握することが必要
である。
Therefore, in order to prevent tube destruction and maintain safe and smooth operations, it is necessary to conduct carburization inspections periodically to accurately understand the presence or absence of carburization and its progress. .

浸炭深さを非破壊的に測定する方法としては、浸炭部の
組成変化、即ちCrの欠乏と、Fe及びNiの相対的増
量に伴なう磁気特性の変化を利用した各種の磁気測定法
が知られている。例えば、電磁誘導によりチューブの浸
炭深さを判定する方法、ホール効果を応用したガウスメ
ータを用いる方法等がある。
As a non-destructive method for measuring the carburization depth, there are various magnetic measurement methods that utilize changes in the composition of the carburized part, that is, changes in magnetic properties due to Cr deficiency and relative increases in Fe and Ni. Are known. For example, there is a method of determining the carburization depth of the tube by electromagnetic induction, a method of using a Gauss meter that applies the Hall effect, etc.

ガウスメータを用いる測定方法は、第5図に示すように
ガウスメータ本体1に接続されたホール素子2を内蔵す
るプルーブ3を、被検材であるチューブ4の外表面にあ
てがい、その内面に浸炭部5が存在すると、浸炭部5の
残留磁気の磁力線がホール素子2を横切ることにより生
じるホール起電圧を検出して、浸炭部5の深さを測定す
るようにしたものである。しかしながら、浸炭部の残留
磁束密度はあまりにも小さく  (HP材で2〜3ガウ
ス程゛度)地磁気よりわずかに大きい程度では浸炭深さ
を正確に測定するにはいたらない。
As shown in FIG. 5, the measurement method using a Gaussmeter is to apply a probe 3 containing a Hall element 2 connected to a Gaussmeter body 1 to the outer surface of a tube 4, which is a material to be tested, and to form a carburized portion 5 on the inner surface. If there is, the depth of the carburized part 5 is measured by detecting the Hall electromotive force generated when the lines of magnetic force of the residual magnetism of the carburized part 5 cross the Hall element 2. However, the residual magnetic flux density of the carburized part is too small (about 2 to 3 Gauss for HP material) and is not able to accurately measure the carburized depth if it is slightly larger than the earth's magnetic field.

一方、電磁誘導法により得られる浸炭深さ測定結果と、
破壊検査による実測結果とを対比すると、HK40材チ
ューブについては比較的良い対応か得られるものの、I
IP材や計数良材のチューブでは、測定値のバラツキが
大きく、信頼性に乏しかった。
On the other hand, the carburization depth measurement results obtained by electromagnetic induction method,
Comparing with the actual measurement results from destructive testing, the HK40 material tube shows a relatively good response, but the I
For tubes made of IP material or good count material, the measurement values varied greatly and were unreliable.

これは、HP材やl(P改良材のチューブ4では、その
外表面に生成した脱炭層(その深さはチューブの使用温
度、使用磁気に依存し、高温、長時間となる程、深さが
増す)6に脱炭と共に脱Crが生じ、その部分の透磁率
が高くなることによるものである。即ち、これらのチュ
ーブにあっては、高温下で長時間使用されると、チュー
ブ内面に浸炭が生じていなくても、外表面に生した脱炭
層(層深さ約50〜500μm)によりその深さが大き
い場合に高い指示値を示すのでこの指示値部分を浸炭発
生と見誤るためである。
This is due to the decarburized layer formed on the outer surface of the tube 4 of HP material and l (P improved material). This is due to the fact that Cr removal occurs along with decarburization, and the magnetic permeability of that part increases.In other words, when these tubes are used for a long time at high temperatures, the inner surface of the tube becomes Even if carburization has not occurred, if the depth of the decarburized layer (approximately 50 to 500 μm deep) that has formed on the outer surface is large, a high reading will be shown, so this reading may be mistaken for carburization. be.

このためチューブ4の浸炭@5の存無及び深さを測定す
る際には、チューブ4の外表面の脱炭層6を予めグライ
ンダ等で研削除去した上で再測定し、評価しなければな
らないと云うのが実情である。従って、測定個所が僅か
である場合はともかく、多数の個所を測定しようとすれ
ば、多大の時間を費やさなければならず、実用性の点で
問題が多い。
Therefore, when measuring the presence or absence and depth of carburization on the tube 4, it is necessary to first remove the decarburized layer 6 on the outer surface of the tube 4 with a grinder, etc., and then remeasure and evaluate. That is the reality. Therefore, even if the number of locations to be measured is small, if a large number of locations are to be measured, a large amount of time must be spent, which poses many problems in terms of practicality.

そこで、出願人は、脱炭層6をグラインダ処理すること
なく簡易かつ迅速に測定できる技術を既に提案した。即
ち、これは、第6図に示すように、永久磁石7と、この
磁石7のN極とS極との中間部の磁場内に、磁石7と略
平行となるように配置されたホール素子8とを備えたプ
ルーブ9を使用するもであって、プルーブ9が浸炭部5
に接近すれば、磁石7の磁場が浸炭部5による影響を受
けて、その磁力線が点線で示すようにホール素子8を斜
めに横切ることを利用し、その時に発生する起電圧でチ
ューブ4内面の浸炭部5を判断するようにしたものであ
る。
Therefore, the applicant has already proposed a technique that allows simple and quick measurement of the decarburized layer 6 without grinding it. That is, as shown in FIG. 6, this is a Hall element arranged approximately parallel to the permanent magnet 7 in the magnetic field between the N pole and the S pole of the magnet 7. 8, the probe 9 is provided with a carburized part 5.
, the magnetic field of the magnet 7 is influenced by the carburized part 5, and the lines of magnetic force diagonally cross the Hall element 8 as shown by the dotted line. The carburized portion 5 is determined.

従って、チューブ4の外表面に脱炭層6が部分的に存在
するならば、その脱炭層6の影響により磁石7の磁束分
布に変化が生じるが、脱炭層6はチューブ4の外表面の
全域にわたって存在するため、それによって磁石7の磁
場が変化し、磁力線がホール素子8を斜めに横切るよう
なことはない。
Therefore, if the decarburized layer 6 is partially present on the outer surface of the tube 4, the magnetic flux distribution of the magnet 7 will change due to the influence of the decarburized layer 6, but the decarburized layer 6 is spread over the entire outer surface of the tube 4. Since it exists, the magnetic field of the magnet 7 changes, and the lines of magnetic force do not cross the Hall element 8 diagonally.

つまり、浸炭部5がない限り、ホール素子8を通る磁力
線は、ホール素子8と平行なままであり、ホール素子8
に起電圧を生じることはなく、従って、脱炭層6を浸炭
部5と誤認することはない。
In other words, as long as there is no carburized part 5, the lines of magnetic force passing through the Hall element 8 remain parallel to the Hall element 8, and the lines of magnetic force passing through the Hall element 8 remain parallel to the Hall element 8.
Therefore, the decarburized layer 6 will not be mistaken for the carburized portion 5.

(発明が解決しようとする問題点) しかしながら、このような構成のプルーブ9を使用する
場合、浸炭部5が広がりを持っている部分の中央におい
ては、ホール素子8を通る磁力線は、ホール素子8と平
行になり、出力の起電圧が零となるため、その判断がで
きな(なる問題がある。つまり、浸炭部5の両端部では
磁力線がホール素子8に対して斜め方向に横切るため、
ホール素子8の起電圧の出力波形は、第7図に示すよう
になる。しかし、これは第8図に示すように局部的な浸
炭部5が2個所ある場合の出力波形と同じであり、従っ
て、広がりのある浸炭部5がある場合と局部的な2箇所
の浸炭部5がある場合との区別をすることができなかっ
た。
(Problem to be Solved by the Invention) However, when using the probe 9 having such a configuration, at the center of the part where the carburized part 5 has a wide spread, the lines of magnetic force passing through the Hall element 8 , and the output electromotive voltage becomes zero, so there is a problem that it cannot be determined. In other words, at both ends of the carburized part 5, the lines of magnetic force cross diagonally with respect to the Hall element 8,
The output waveform of the electromotive force of the Hall element 8 is as shown in FIG. However, this is the same as the output waveform when there are two locally carburized parts 5 as shown in FIG. It was not possible to distinguish between cases where there is a 5.

本発明は、このような問題点に鑑み、浸炭部の深さと範
囲を判断し得る新規な浸炭計測用プルーブを提案するも
のである。
In view of these problems, the present invention proposes a novel probe for measuring carburization that can determine the depth and range of a carburized portion.

(問題点を解決するための手段) 本発明は、前述のような問題点を解決するための具体的
手段として、磁石と、該磁石の磁場内に配置されたホー
ル素子とを備え、被検材内部の浸炭部による磁力線の変
化によって該浸炭部を計測するようにした浸炭計測用プ
ルーブにおいて、磁石の被検材側でかつ一対の磁極間の
中央部側に、磁力線の方向と略沿うように第1ホール素
子を設けると共に、浸炭部の近接時に磁束密度が減少す
るように第2ホール素子を設け、磁石に対して第2ホー
ル素子と反対側に第3ホール素子を設け、第3ホール素
子側の磁場が、被検材の浸炭部のない部分での第2ホー
ル素子側の磁場と略等価となるように該第3ホール素子
の近傍にダミー片を設けたものである。
(Means for Solving the Problems) As a specific means for solving the above-mentioned problems, the present invention includes a magnet and a Hall element disposed within the magnetic field of the magnet. In a carburized measurement probe that measures carburized parts by changes in magnetic lines of force caused by the carburized parts inside the material, a probe is placed on the side of the material to be inspected of the magnet and on the side of the center between a pair of magnetic poles so as to be approximately along the direction of the lines of magnetic force. A first Hall element is provided at the magnet, a second Hall element is provided so that the magnetic flux density decreases when the carburized part approaches, a third Hall element is provided on the opposite side of the second Hall element to the magnet, and a third Hall element is provided at the side opposite to the second Hall element with respect to the magnet. A dummy piece is provided near the third Hall element so that the magnetic field on the element side is approximately equivalent to the magnetic field on the second Hall element side in a portion of the test material that does not have a carburized portion.

(作 用) チューブ17の浸炭部18の計測に際して、第1ホール
素子13が浸炭部18に近接すると、磁石12の磁力線
が第1ホール素子13に対して斜めに横切り、その出力
として浸炭部18の深さに相関する起電圧が発生する。
(Function) When the first Hall element 13 approaches the carburized part 18 when measuring the carburized part 18 of the tube 17, the lines of magnetic force of the magnet 12 cross diagonally with respect to the first Hall element 13, and as its output, the carburized part 18 An electromotive force is generated that correlates to the depth of the

また浸炭部18が広がりを有する場合には、その両端部
で第1ホール素子13が出力を発生する。一方、第2ホ
ール素子14を通る磁力線の磁束密度は、浸炭部18が
あれば減少するので、その起電圧も小となる。また第3
ホール素子15においては、その第3ホール素子15に
脱炭層19相当分の起電圧が発生しているので、これを
第2ホール素子14の出力から相殺することにより、脱
炭層19の影響が少なくなる。
Further, when the carburized portion 18 has a spread, the first Hall element 13 generates an output at both ends thereof. On the other hand, the magnetic flux density of the lines of magnetic force passing through the second Hall element 14 is reduced if the carburized portion 18 is present, so the electromotive voltage thereof is also reduced. Also the third
In the Hall element 15, an electromotive force equivalent to the decarburized layer 19 is generated in the third Hall element 15, so by offsetting this from the output of the second Hall element 14, the influence of the decarburized layer 19 is reduced. Become.

(実施例) 以下、図示の実施例について本発明を詳述すると、第1
図に示すように、この浸炭計測用プルーブ10は、保護
容器11内に永久磁石12と第1ホール素子13と第2
ホール素子14と第3ホール素子15とを設けると共に
、保護容器ll上にダミー片16を設けて成る。磁石1
2は棒状であり、この磁石12のクランキングチューブ
(被検材H7側において、その磁極N−S間の略中央部
に位置するように2個のホール素子13.14が設けら
れている。ホール素子13.14は偏平な板状であって
、板厚方向の磁界に対して直角方向に電流を流した時に
、その磁界及び電流に対して直角方向に起電圧が生ずる
ようになっている。第1ホール素子13は磁石12と平
行であって、浸炭部18のない通常時に磁石12の磁力
線と略沿うように設けられている。第2ホール素子14
は第1ホール素子13と略直角方向に配置されており、
通常時に磁石12の磁力線が第2ホール素子14を直角
に横切り、かつ浸炭部18の近接時に磁束密度が減少す
るようになっている。
(Example) Hereinafter, the present invention will be described in detail with reference to the illustrated example.
As shown in the figure, this probe 10 for carburization measurement includes a permanent magnet 12, a first Hall element 13, and a second Hall element 13 in a protective container 11.
A Hall element 14 and a third Hall element 15 are provided, and a dummy piece 16 is provided on the protective container 11. magnet 1
2 has a rod shape, and two Hall elements 13 and 14 are provided on the cranking tube (test material H7 side) of this magnet 12 so as to be located approximately in the center between the magnetic poles N and S. The Hall elements 13 and 14 have a flat plate shape, and when a current is passed in a direction perpendicular to a magnetic field in the thickness direction of the plate, an electromotive force is generated in a direction perpendicular to the magnetic field and current. The first Hall element 13 is provided parallel to the magnet 12 and substantially along the lines of magnetic force of the magnet 12 when there is no carburized portion 18.The second Hall element 14
is arranged substantially perpendicular to the first Hall element 13,
Normally, the lines of magnetic force of the magnet 12 cross the second Hall element 14 at right angles, and the magnetic flux density decreases when the carburized portion 18 approaches.

ダミー片16はチューブ17の浸炭部18以外の部分、
即ち脱炭層19部分と略同等の透磁率を有するものであ
り、例えば脱炭層20を有するクランキングチューブの
一部を切断して使用することも可能であるし、また全く
別の部材を使用しても良い。このダミー片16は磁石1
2に対してチューブ17と略対称になるように、チュー
ブ17と等距離だけ離れて設けられている。第3ホール
素子15は第2ホール素子14と同じものであって、磁
石12ア一対の磁極間の中央部近傍に、磁石12に対し
て第2ホール素子14と略対称となるように配置されて
おり、従って、第3ホール素子15側の磁場は、ダミー
片16があるため、浸炭部18のないチューブ17の部
分での第2ホール素子14側の磁場と略等価的である。
The dummy piece 16 is a portion of the tube 17 other than the carburized portion 18,
That is, it has approximately the same magnetic permeability as the decarburized layer 19 portion.For example, it is possible to cut a part of the cranking tube having the decarburized layer 20 and use it, or it is possible to use a completely different member. It's okay. This dummy piece 16 is the magnet 1
It is provided at an equal distance from the tube 17 so as to be substantially symmetrical with respect to the tube 17 with respect to the tube 17. The third Hall element 15 is the same as the second Hall element 14, and is arranged near the center between the magnetic poles of the pair of magnets 12A so as to be approximately symmetrical with the second Hall element 14 with respect to the magnet 12. Therefore, because of the presence of the dummy piece 16, the magnetic field on the third Hall element 15 side is approximately equivalent to the magnetic field on the second Hall element 14 side in the portion of the tube 17 without the carburized portion 18.

この第3ホール素子15は第2ホール素子14に対して
起電圧が相殺するように逆方向に接続されている。保護
容器11は非磁性材料から成り、ダミー片16と結合さ
れている。
The third Hall element 15 is connected in the opposite direction to the second Hall element 14 so that the electromotive force cancels out. The protective container 11 is made of a non-magnetic material and is combined with a dummy piece 16.

上記構成のプルーブIOを用いて、クランキングチュー
ブ17の浸炭部16の計測を行なう際には、プルーブl
Oをチューブ17外表面にあてがい、チューブ17の軸
心方向及び周方向にプルーブlOを走査する。
When measuring the carburized portion 16 of the cranking tube 17 using the probe IO configured as described above, the probe l
A probe 10 is applied to the outer surface of the tube 17, and the probe 10 is scanned in the axial direction and circumferential direction of the tube 17.

チューブ17に浸炭部18がない場合には、磁石12の
磁界が乱されることがないため、磁極N−5間の中央部
では磁石12と略平行に磁束が分布している。従って、
第1ホール素子13を横切る磁力線は略平行であるため
、その起電圧の出力は零もしくは低レベルの一定値を示
す。一方、第2ホール素子14及び第3ホール素子15
側では、その近傍にチューブ17及びダミー片16の高
透磁率の脱炭層19120が存在し、これによって磁石
12の磁力線が引きつけられるが、両者の磁場が略等価
であるため、各ホール素子14.15を通る磁束密度は
共に大であり、その起電圧は略同等のレベルを示す、従
って、第2ホール素子14と第3ホール素子15との起
電圧を相殺して得られる端子21の出力は殆んど零に近
い値であり、この出力と第1ホール素子13の出力とか
らチューブ17に浸炭部18が存在しないことが判る。
If the tube 17 does not have the carburized portion 18, the magnetic field of the magnet 12 is not disturbed, so that magnetic flux is distributed approximately parallel to the magnet 12 in the center between the magnetic poles N-5. Therefore,
Since the lines of magnetic force that cross the first Hall element 13 are substantially parallel, the output of the electromotive voltage exhibits a constant value of zero or a low level. On the other hand, the second Hall element 14 and the third Hall element 15
On the side, a decarburized layer 19120 of high magnetic permeability exists in the tube 17 and the dummy piece 16 in the vicinity thereof, and this attracts the magnetic lines of force of the magnet 12, but since the magnetic fields of both are approximately equivalent, each Hall element 14. The magnetic flux densities passing through the second Hall element 14 and the third Hall element 15 are both large, and their electromotive voltages are at approximately the same level. Therefore, the output of the terminal 21 obtained by canceling out the electromotive voltages of the second Hall element 14 and the third Hall element 15 is as follows. The value is almost zero, and it can be seen from this output and the output of the first Hall element 13 that there is no carburized portion 18 in the tube 17.

チューブ17内部に広がりを有する浸炭部18が存在す
る場合には、プループlOが接近すると、磁石12の磁
力線が浸炭部18の高い透磁率の影響を受けて強く引き
つけられるため、第1ホール素子13を通る磁力線に傾
きが生じる。このため、第1ホール素子13の出力波形
は、第3図りに示す如く浸炭部18の両端部において起
電圧が立ち上がったものとなる。また、浸炭部18で磁
力線が強く引きつけられると、第2ホール素子14を通
る磁力線の磁束密度はそれに応じて減少する。例えば、
第2図に示すように浸炭部18の丁度中央部にプルーブ
10がある場合を仮定すると、磁石12のN極から出た
磁力線は強く浸炭部18側に引き付けられて、透磁率の
高い浸炭部18を通るようになり、この浸炭部18から
磁石12のS極側に入るため、第2ホール素子14を通
る磁力線の磁束密度が疎になる。従っ′て、第2ホール
素子14の起電圧の出力波形は、第3図Aに示すように
浸炭部18の中央部分でレベルが下がるようになる。こ
の場合、第2ホール素子14の磁束密度は、主に浸炭部
18の深さに依存する。しかし、浸炭部18は明瞭に際
立ってできるものとは限らず、また同じ深さであっても
チューブ17側全体としての透磁率は、浸炭部18の端
部側程低くなるので、第2ホール素子14の出力波形は
、第3図Aの如くなだらかに変化する。
If there is a carburized part 18 that spreads inside the tube 17, when the probe lO approaches, the lines of magnetic force of the magnet 12 are strongly attracted by the high magnetic permeability of the carburized part 18, so that the first Hall element 13 There is a slope in the magnetic field lines that pass through. Therefore, the output waveform of the first Hall element 13 is such that the electromotive voltage rises at both ends of the carburized portion 18, as shown in the third diagram. Furthermore, when the lines of magnetic force are strongly attracted by the carburized portion 18, the magnetic flux density of the lines of magnetic force passing through the second Hall element 14 decreases accordingly. for example,
Assuming that the probe 10 is located exactly in the center of the carburized part 18 as shown in FIG. 18 and enters the S pole side of the magnet 12 from this carburized portion 18, so that the magnetic flux density of the magnetic lines of force passing through the second Hall element 14 becomes sparse. Therefore, the level of the output waveform of the electromotive force of the second Hall element 14 decreases in the central portion of the carburized portion 18, as shown in FIG. 3A. In this case, the magnetic flux density of the second Hall element 14 mainly depends on the depth of the carburized portion 18. However, the carburized part 18 is not necessarily clearly formed, and even if the depth is the same, the overall magnetic permeability of the tube 17 side becomes lower toward the end of the carburized part 18, so the second hole The output waveform of the element 14 changes smoothly as shown in FIG. 3A.

一方、第3ホール素子15側では、磁石12の磁力線が
高透磁率で断面積の大きい浸炭部18側にき強く引き寄
せられるため、ダミー片16があるものの、この第3ホ
ール素子15を通る磁束密度が若干減少することになる
。これによって第2ホール素子14及び第3ホール素子
15の起電圧は、第3図A、 Bのような波形となり、
これら両起電圧を相殺して得られる端子21の出力は、
第3図Cに示すように、チューブ17の脱炭層19の影
響を除去し、浸炭部18゜が際立ったものとなる。
On the other hand, on the third Hall element 15 side, the lines of magnetic force of the magnet 12 are strongly attracted to the carburized part 18 side, which has high magnetic permeability and a large cross-sectional area, so although there is a dummy piece 16, the magnetic flux passing through this third Hall element 15 The density will decrease slightly. As a result, the electromotive voltages of the second Hall element 14 and the third Hall element 15 have waveforms as shown in FIGS. 3A and 3B.
The output of the terminal 21 obtained by canceling out both of these electromotive voltages is:
As shown in FIG. 3C, the influence of the decarburized layer 19 of the tube 17 is removed, and the carburized portion 18° becomes conspicuous.

第3図に示すような出力波形が得られると、第1ホール
素子13の起電圧の立ち上がりが2箇所あり、その間に
おいて第2ホール素子14及び第3ホール素子15の起
電圧を相殺した出力が所定レベル以上の値を示す時には
、その位置に広がりを持った浸炭部18が存在すること
が判かり、またその浸炭部18の面積も判断できる。な
お、この場合の浸炭部18の浸炭深さは、第1ホール素
子13の起電圧の波高値に相関しており、これから浸炭
深さを知ることができる。
When the output waveform shown in FIG. 3 is obtained, there are two rises in the electromotive force of the first Hall element 13, and an output obtained by canceling out the electromotive voltages of the second Hall element 14 and the third Hall element 15 between them. When the value is higher than a predetermined level, it is known that a carburized portion 18 with a spread exists at that position, and the area of the carburized portion 18 can also be determined. Note that the carburization depth of the carburized portion 18 in this case is correlated with the peak value of the electromotive force of the first Hall element 13, and the carburization depth can be determined from this.

第2ホール素子14及び第3ホール素子15は、磁石1
2の磁極間の中央部に配置するものに限られず、例えば
第4図に示すように、一方の磁極の磁石長手方向の外方
近傍であっても良い、この場合にも、浸炭部18に近接
すれば、磁石12の磁力線が強くチューブ17側に引、
きよせられるため、第2ホール素子14及び第3ホール
素子15を通る磁力線の磁束密度が低くなり、浸炭部1
日の計測が可能である。
The second Hall element 14 and the third Hall element 15 are connected to the magnet 1
The carburized portion 18 is not limited to being disposed at the center between the two magnetic poles, but may be placed near the outer side of one of the magnetic poles in the longitudinal direction of the magnet, as shown in FIG. If they are close to each other, the lines of magnetic force of the magnet 12 will be strongly drawn toward the tube 17,
As a result, the magnetic flux density of the lines of magnetic force passing through the second Hall element 14 and the third Hall element 15 becomes lower, and the carburized part 1
It is possible to measure days.

なお、上記実施例では、第1ホール素子13を磁石12
と平行に、第2ホール素子14及び第3ホール素子15
を第1ホール素子13と略直角に夫々配置しているが、
このように厳密に配置する必要がなく、第1ホール素子
13は磁力線と沿う方向であり、第2ホール素子14は
浸炭部18の近接による磁束密度の減少を検出し得る配
置であれば十分である。
Note that in the above embodiment, the first Hall element 13 is connected to the magnet 12.
In parallel, the second Hall element 14 and the third Hall element 15
are arranged approximately at right angles to the first Hall element 13,
It is not necessary to arrange them strictly as described above, and it is sufficient that the first Hall element 13 is arranged in a direction along the lines of magnetic force, and the second Hall element 14 is arranged so that a decrease in magnetic flux density due to the proximity of the carburized part 18 can be detected. be.

磁石12は中実状の棒磁石に限らず、角筒状、円筒状等
であっても良いし、また第6図に示すようにコ字状であ
っても良い。
The magnet 12 is not limited to a solid bar magnet, but may be square or cylindrical, or may be U-shaped as shown in FIG.

更に磁石としては、実施例に示すように永久磁石12に
代替して、電磁石を使用することも可能である。
Further, as the magnet, it is also possible to use an electromagnet instead of the permanent magnet 12 as shown in the embodiment.

プルーブ10はチューブ17の周方向に複数個設けてお
いても良い。
A plurality of probes 10 may be provided in the circumferential direction of the tube 17.

(発明の効果) 本発明によれば、磁石の被検出側でかつ一対の磁極間の
中央部側に、磁力線の方向と略沿うように第1ホール素
子を設ける一方、これとは別の第2ホール素子を、浸炭
部の近接時に磁束密度が減少するように設けているから
、浸炭部の深さのみならず、広がりを有する浸炭部をも
計測でき、その浸炭部の面積の判断が可能となり、従来
に比較して計測精度が著しく向上する。また第2ホール
素子は磁極の近傍に設けて、浸炭部の近接時に第2ホー
ル素子を通る磁力線の磁束密度が増加することも考えら
れるが、本発明では第2ホール素子の磁束密度が減少す
るようにしているから、磁束密度の増減の変化を大きく
でき、浸炭部と非浸炭部との区別が容易になる。しかも
、第2ホール素子とは別に第3ホール素子を設け、かつ
第2ホール素子側の磁場が、被検材の浸炭部のない部分
での第2ホール素子側での磁場と略等価となるようにダ
ミー片を設けているので、第2ホール素子と第3ホール
素子との出力によって浸炭部以外の部分による影響を除
去することが可能であり、信顛性のある計測を容易、迅
速に行ない得る利点がある。
(Effects of the Invention) According to the present invention, the first Hall element is provided on the detected side of the magnet and on the center side between the pair of magnetic poles so as to be substantially along the direction of the lines of magnetic force, and the first Hall element Since the 2-hole element is installed so that the magnetic flux density decreases when approaching the carburized part, it is possible to measure not only the depth of the carburized part but also the spread of the carburized part, making it possible to determine the area of the carburized part. Therefore, measurement accuracy is significantly improved compared to the conventional method. It is also possible that the second Hall element is provided near the magnetic pole so that the magnetic flux density of the lines of magnetic force passing through the second Hall element increases when the carburized part approaches, but in the present invention, the magnetic flux density of the second Hall element decreases. This makes it possible to increase or decrease the change in magnetic flux density, making it easy to distinguish between carburized and non-carburized parts. Moreover, the third Hall element is provided separately from the second Hall element, and the magnetic field on the second Hall element side is approximately equivalent to the magnetic field on the second Hall element side in the part of the test material that does not have a carburized part. Since a dummy piece is provided as shown in FIG. There are benefits to doing so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は同作
用説明図、第3図は同波形図、第4図は本発明の他の実
施例を示す断面図、第5図は従来例を示す構成図、第6
図は別の従来例を示す構成図、第7図は波形図、第8図
はチューブの断面図である。 10−・プループ、12−永久磁石、13−第1ホール
素子、14−・第2ホール素子、15・−・第3ホール
素子、16−ダミー片、17・−クラッキングチューブ
、18−・浸炭部、19・−脱炭層。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is an explanatory diagram of the same operation, FIG. 3 is a waveform diagram of the same, FIG. The figure is a configuration diagram showing a conventional example.
The figures are a configuration diagram showing another conventional example, FIG. 7 is a waveform diagram, and FIG. 8 is a sectional view of the tube. 10--Ploop, 12-Permanent magnet, 13--First Hall element, 14--Second Hall element, 15--Third Hall element, 16-Dummy piece, 17--Cracking tube, 18--Carburized part , 19.-Decarburized layer.

Claims (1)

【特許請求の範囲】[Claims] 1、磁石と、該磁石の磁場内に配置されたホール素子と
を備え、被検材内部の浸炭部による磁力線の変化によっ
て該浸炭部を計測するようにした浸炭計測用プルーブに
おいて、磁石の被検材側でかつ一対の磁極間の中央部側
に、磁力線の方向と略沿うように第1ホール素子を設け
ると共に、浸炭部の近接時に磁束密度が減少するように
第2ホール素子を設け、磁石に対して第2ホール素子と
反対側に第3ホール素子を設け、第3ホール素子側の磁
場が、被検材の浸炭部のない部分での第2ホール素子側
の磁場と略等価となるように該第3ホール素子の近傍に
ダミー片を設けたことを特徴とする浸炭計測用プルーブ
1. In a probe for carburization measurement, which is equipped with a magnet and a Hall element placed in the magnetic field of the magnet, and measures the carburized portion by changes in the lines of magnetic force caused by the carburized portion inside the material to be inspected. A first Hall element is provided on the inspection material side and on the center side between the pair of magnetic poles so as to be substantially along the direction of the lines of magnetic force, and a second Hall element is provided so that the magnetic flux density decreases when the carburized part approaches, A third Hall element is provided on the opposite side of the second Hall element to the magnet, and the magnetic field on the third Hall element side is approximately equivalent to the magnetic field on the second Hall element side in a portion of the test material that does not have a carburized portion. A probe for carburization measurement, characterized in that a dummy piece is provided near the third Hall element so that
JP14597485A 1985-02-25 1985-07-02 Carburization measuring probe Granted JPS626156A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14597485A JPS626156A (en) 1985-07-02 1985-07-02 Carburization measuring probe
EP86102443A EP0193168A3 (en) 1985-02-25 1986-02-25 Method of inspecting carburization and probe therefor
US07/785,197 US5128613A (en) 1985-02-25 1991-11-01 Method of inspecting magnetic carburization in a non-permeable material and probe therefore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14597485A JPS626156A (en) 1985-07-02 1985-07-02 Carburization measuring probe

Publications (2)

Publication Number Publication Date
JPS626156A true JPS626156A (en) 1987-01-13
JPH0344665B2 JPH0344665B2 (en) 1991-07-08

Family

ID=15397287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14597485A Granted JPS626156A (en) 1985-02-25 1985-07-02 Carburization measuring probe

Country Status (1)

Country Link
JP (1) JPS626156A (en)

Also Published As

Publication number Publication date
JPH0344665B2 (en) 1991-07-08

Similar Documents

Publication Publication Date Title
US4855676A (en) Ferromagnetic eddy current probe having transmit and receive coil assemblies
US5128613A (en) Method of inspecting magnetic carburization in a non-permeable material and probe therefore
US4528856A (en) Eddy current stress-strain gauge
Pham et al. Highly sensitive planar Hall magnetoresistive sensor for magnetic flux leakage pipeline inspection
US5117182A (en) Ferromagnetic eddy current probe having multiple levels of magnetization
US10001531B2 (en) Giant magneto-impedance (GMI) based sensing device for the detection of carburization in austenitic stainless steel
JPS626156A (en) Carburization measuring probe
JPS626159A (en) Carburization measuring probe
JPH0344666B2 (en)
JPH0449653B2 (en)
JPH0344664B2 (en)
JPS626153A (en) Carburization measuring probe
Oka et al. Fatigue dependence of residual magnetization in austenitic stainless steel plates
JPH0445071B2 (en)
JPS626160A (en) Carburization measuring probe
JPS626154A (en) Carburization measuring probe
JPS626158A (en) Carburization measuring probe
JP4109114B2 (en) Detector for nondestructive evaluation of steel structures or components
JP2616105B2 (en) Method for measuring carburized thickness and probe for measurement
JP2539091B2 (en) Measuring method for carburized part
CA1293024C (en) Ferromagnetic eddy current probe
JPH06194341A (en) Magnetic head
Vértesy et al. Nondestructive material evaluation by novel electromagnetic methods
CA1100186A (en) Needle type non-destructive metal inspection probe
Oka et al. Development of the Non‐Destructive Evaluation System Using an Eddy Current Probe for Detection of Fatigue Damage in a Stainless Steel