JPS626154A - Carburization measuring probe - Google Patents

Carburization measuring probe

Info

Publication number
JPS626154A
JPS626154A JP14597285A JP14597285A JPS626154A JP S626154 A JPS626154 A JP S626154A JP 14597285 A JP14597285 A JP 14597285A JP 14597285 A JP14597285 A JP 14597285A JP S626154 A JPS626154 A JP S626154A
Authority
JP
Japan
Prior art keywords
hall element
magnet
magnetic
carburized
carburized part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14597285A
Other languages
Japanese (ja)
Other versions
JPH0344663B2 (en
Inventor
Makoto Takahashi
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14597285A priority Critical patent/JPS626154A/en
Priority to EP86102443A priority patent/EP0193168A3/en
Publication of JPS626154A publication Critical patent/JPS626154A/en
Publication of JPH0344663B2 publication Critical patent/JPH0344663B2/ja
Priority to US07/785,197 priority patent/US5128613A/en
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure not only depth of a carburized part but also the carburized part having an expanse by providing the first Hall element so as to run roughly along the direction of a line of magnetic force, and providing the second Hall element in the vicinity of a magnetic pole of the magnet. CONSTITUTION:In case a carburized part 16 having an expanse in the inside of a tube 15 exists, when a probe 10 approaches, a line of magnetic force of a magnet 12 is influenced by a high magnetic permeability of the carburized part 16 and attracted strongly, and an inclination is generated in the line of magnetic force passing through the Hall element 13. Therefore, an output waveform of the Hall element 13 becomes that which has raised an electromotive voltage in both end parts of the carburized part 16. On the other hand, when the line of magnetic force is attracted strongly by the carburized part 16, a magnetic flux density of a Hall element 14 being in the vicinity of a magnetic pole of the magnet increases. Accordingly, when the elctromotive voltage of the Hall element 14 shows a prescribed level or above, it is decided that the carburized part 16 having an expanse exists in its position, and also an area of its carburized part 16 can be decided.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、石油化学工業におけるエチレン製造用クラッ
キングチューブ内面に発生する浸炭部を外表面から非破
壊的に計測する際等に用いる浸炭計測用プルーブに関す
るものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is used for carburization measurement, which is used when non-destructively measuring carburized parts generated on the inner surface of cracking tubes for ethylene production in the petrochemical industry from the outer surface. It concerns probes.

〈従来の技術〉 原料ナフサを高温・高圧下に熱分解してエチレン等を回
収するための反応管であるエチレン製造用クランキング
チューブとしては、ASTM HK40(0,4%C−
25%Cr−20%Ni)  、Hr’45  (0,
45%C−25%Cr −35%Ni)、又はHP改良
材(IP材にMOlW、Nb等を単独若しくは複合添加
したもの)等が使用されている。
<Prior art> ASTM HK40 (0.4%C-
25%Cr-20%Ni), Hr'45 (0,
45%C-25%Cr-35%Ni), or HP improving material (IP material with MOlW, Nb, etc. added singly or in combination), etc. are used.

クランキングチューブは、長期間使用されるうちに、チ
ューブ内面に反応に伴って生成される炭素が付着し、こ
の付着炭素が高温下において金属内部に拡散して浸炭が
発生する。浸炭により浸入した炭素は、Cr炭化物を形
成し、浸炭が加速された状態ではC「炭化物が粗大とな
り、低温域(約800℃以下)で著しい延性低下を招く
、またチューブの浸炭部の熱膨張係数は、非浸炭部のそ
れより小さいので、急激な加熱・冷却を行なうと、引張
・圧縮応力の発生と、前記低温域での延性低下とが重畳
して、チューブに破壊が生ずることがあった。
When a cranking tube is used for a long period of time, carbon generated by reaction adheres to the inner surface of the tube, and this adhered carbon diffuses into the metal at high temperatures, causing carburization. Carbon infiltrated by carburization forms Cr carbide, and when carburization is accelerated, the Cr carbide becomes coarse, leading to a significant decrease in ductility at low temperatures (approximately 800°C or less), and thermal expansion of the carburized portion of the tube. The coefficient is smaller than that of the non-carburized part, so if the tube is heated and cooled rapidly, the generation of tensile and compressive stress and the decrease in ductility in the low temperature range may occur, causing the tube to break. Ta.

従って、チューブの破壊を未然に防止し、安全で円滑な
操業を維持するには、浸炭検査を定期的に実施し、浸炭
の有無、及びその進行状況を適確に把握することが必要
である。
Therefore, in order to prevent tube destruction and maintain safe and smooth operations, it is necessary to conduct carburization inspections periodically to accurately understand the presence or absence of carburization and its progress. .

浸炭深さを非破壊的に測定する方法としては、浸炭部の
組成変化、即ちCrの欠乏と、Fe及びNiの相対的増
量に伴なう磁気特性の変化を利用した各種の磁気測定法
が知られている。例えば、電磁誘導によりチューブの浸
炭深さを測定する方法、ボール効果を応用したガウスメ
ータを用いる方法等がある。
As a non-destructive method for measuring the carburization depth, there are various magnetic measurement methods that utilize changes in the composition of the carburized part, that is, changes in magnetic properties due to Cr deficiency and relative increases in Fe and Ni. Are known. For example, there is a method of measuring the carburized depth of a tube by electromagnetic induction, a method of using a Gauss meter that applies the ball effect, etc.

ガウスメータを用いる測定方法は、第7図に示すように
ガウスメータ本体lに接続されたホール素子2を内蔵す
るプルーブ3を、被検材であるチューブ4の外表面にあ
てがい、その内面に浸炭部5が存在すると、浸炭部5の
残留磁気の磁力線がホール素子2を横切ることにより生
じるホール起電圧を検出して、浸炭部5の深さを測定す
るようにしたものである。しかしながら、浸炭部の残留
磁束密度はあまりにも小さく  (HP材で2〜3ガウ
ス程度)地磁気よりわずかに大きい程度では浸炭深さを
正確に測定するにはいたらない。
As shown in FIG. 7, the measurement method using a Gaussmeter is to apply a probe 3 containing a Hall element 2 connected to a Gaussmeter main body l to the outer surface of a tube 4, which is a material to be tested, and to form a carburized portion 5 on the inner surface. If there is, the depth of the carburized part 5 is measured by detecting the Hall electromotive force generated when the lines of magnetic force of the residual magnetism of the carburized part 5 cross the Hall element 2. However, the residual magnetic flux density of the carburized part is too small (about 2 to 3 gauss for HP material), and it is not possible to accurately measure the carburized depth if it is slightly larger than the earth's magnetic field.

一方、電磁誘導法により得られる浸炭深さ測定結果と、
破壊検査による実測結果とを対比すると、II K 4
0材チユーブについては比較的良い対応が得られるもの
の、IP材やHP改良材のチューブでは、測定値のバラ
ツキが大きく、信輔性に乏しかった。
On the other hand, the carburization depth measurement results obtained by electromagnetic induction method,
When compared with the actual measurement results from destructive testing, II K 4
Although a relatively good response was obtained for tubes made of 0 material, the measurements for tubes made of IP material or HP improved material had large variations and lacked reliability.

これは、IIP材やIP改良材のチューブ4では、その
外表面に生成した脱炭層(その深さはチューブの使用温
度、使用時間に依存し、高温、長時間となる程、深さが
増す)6に脱炭と共に脱Crが生じ、その部分の透磁率
が高くなることによるものである。即ち、これらのチュ
ーブ4にあっては、高温下で長時間使用されると、チュ
ーブ内面に浸炭が生じていなくても、外表面に生じた脱
炭層(層深さ約50〜500 μ+a)6によりそ”の
深さが大きい場合に高い指示値を示すのでこの指示値部
分を浸炭発生と見誤るためである。
This is due to the decarburized layer formed on the outer surface of the tube 4 made of IIP material or IP improved material. ) 6, decarburization and Cr removal occur, and the magnetic permeability of that portion increases. That is, when these tubes 4 are used for a long time at high temperatures, even if no carburization occurs on the inner surface of the tube, a decarburized layer (layer depth of about 50 to 500 μ+a) 6 forms on the outer surface. This is because when the depth of the groove is large, a high indicated value is indicated, and this indicated value is mistaken for carburization.

このためチューブ4の浸炭部5の有無及び深さを測定す
る際には、チューブ4外表面の脱炭層6を予めグライン
ダ等で研削除去した上で再測定し、評価しなければなら
ないと云うのが実情である。
Therefore, when measuring the presence or absence and depth of the carburized portion 5 of the tube 4, it is necessary to first remove the decarburized layer 6 on the outer surface of the tube 4 with a grinder, etc., and then remeasure and evaluate. is the reality.

従って、測定個所が僅かである場合はともかく、多数の
個所を測定しようとすれば、多大の時間を費やさなけれ
ばならず、実用性の点で問題が多い。
Therefore, even if the number of locations to be measured is small, if a large number of locations are to be measured, a large amount of time must be spent, which poses many problems in terms of practicality.

そこで、出願人は、脱炭層6をグラインダ処理すること
なく簡易かつ迅速に測定できる技術を既に提案した。即
ち、これは、第8図に示すように、永久磁石7と、この
永久磁石7のN極とS極との中間部の磁場内に、永久磁
石7と略平行となるように配置されたホール素子8とを
備えたプルーブ9を使用するものである。この場合、プ
ルーブ9が浸炭部5に接近すれば、永久磁石7の磁場が
浸炭部5による影響を受けて、その磁力線が点線で示す
ようにホール素子8を斜めに横切ることを利用し、その
時に発生する起電圧でチューブ4内面の浸炭部5を判断
するようにしたものである。
Therefore, the applicant has already proposed a technique that allows simple and quick measurement of the decarburized layer 6 without grinding it. That is, as shown in FIG. 8, this is arranged in a magnetic field between the permanent magnet 7 and the N pole and S pole of this permanent magnet 7 so as to be substantially parallel to the permanent magnet 7. A probe 9 equipped with a Hall element 8 is used. In this case, when the probe 9 approaches the carburized part 5, the magnetic field of the permanent magnet 7 is influenced by the carburized part 5, and the magnetic field line crosses the Hall element 8 diagonally as shown by the dotted line. The carburized portion 5 on the inner surface of the tube 4 is determined based on the electromotive force generated.

従って、チューブ4の外表面に脱炭層6が部分的に存在
するならば、その脱炭N6の影響により永久磁石7の磁
束分布に変化が生じるが、脱炭層6はチューブ4の外表
面の全域にわたって存在するため、それによって永久磁
石7の磁場が変化して磁力線がホール素子8を斜めに横
切るようなことはない。つまり、浸炭部5がない限り、
ホール素子8を通る磁力線は、ホール素子8と平行なま
まであり、ホール素子8に起電圧を生じることはなく、
従って、脱炭層6を浸炭層5と誤認することはない。
Therefore, if the decarburized layer 6 partially exists on the outer surface of the tube 4, the magnetic flux distribution of the permanent magnet 7 will change due to the influence of the decarburized N6, but the decarburized layer 6 is present over the entire outer surface of the tube 4. Since the magnetic field of the permanent magnet 7 is changed by this, the lines of magnetic force do not cross the Hall element 8 diagonally. In other words, unless there is a carburized part 5,
The lines of magnetic force passing through the Hall element 8 remain parallel to the Hall element 8, and no electromotive force is generated in the Hall element 8.
Therefore, the decarburized layer 6 will not be mistaken as the carburized layer 5.

〈発明が解決しようとする問題点〉 しかしながら、このような構成のプルーブ3.9を使用
する場合、浸炭部5が広がりを持っている部分の中央に
おいては、ホール素子8を通る磁力線は、ホール素子8
と平行になり、出力の起電圧が零となるため、その判断
ができなくなる問題がある。つまり、浸炭部5の両端部
では磁力線がホール素子8に対して斜め方向に横切るた
め、ホール素子8の起電圧の出力波形tよ、第9図に示
すようになる。しかし、これは第1O図に示すように局
部的な浸炭部5が2個所ある場合の出力波形と同じであ
り、従って、広がりのある浸炭部5がある場合と局部的
な2箇所の浸炭部5がある場合との区別をすることがで
きなかった。
<Problems to be Solved by the Invention> However, when using the probe 3.9 having such a configuration, in the center of the part where the carburized part 5 has a wide spread, the magnetic field lines passing through the Hall element 8 are Element 8
Since the voltage becomes parallel to the output voltage and the electromotive voltage of the output becomes zero, there is a problem that it becomes impossible to make a determination. That is, at both ends of the carburized portion 5, the lines of magnetic force cross obliquely with respect to the Hall element 8, so that the output waveform t of the electromotive force of the Hall element 8 becomes as shown in FIG. However, this is the same as the output waveform when there are two locally carburized parts 5 as shown in Fig. It was not possible to distinguish between cases where there is a 5.

本発明は、このような問題点に鑑み、浸炭部の深さと範
囲を判断し得る新規な浸炭計測用プルーブを提供するも
のである。
In view of these problems, the present invention provides a novel carburization measuring probe that can determine the depth and range of a carburized portion.

く問題点を解決するための手段〉 本発明は、前述のような問題点を解決するための第1の
具体的手段として、磁石と、該磁石の磁場内に配置され
たホール素子とを備え、被検材内部の浸炭部による磁力
線の変化によって該浸炭部を計測するようにした浸炭計
測用プルーブにおいて、磁石の被検材側でかつ一対の磁
極間の中央部側に、磁力線の方向と略沿うように第1ホ
ール素子を設けると共に、磁石に対して該第1ホール素
子と同一側でかつ磁石の磁極近傍に、浸炭部の近接時に
磁束密度が増加するように第2ホール素子を設けたもの
であり、また第2の具体的手段として、磁石と、該磁石
の磁場内に配置されたホール素子とを備え、被検材内部
の浸炭部による磁力線の変化によって該浸炭部を計測す
るようにした浸炭計測用プルーブにおいて、磁石の被検
材側でかつ一対の磁極間の中央部側に、磁力線の方向と
略沿うように第1ホール素子を設けると共に、磁石に対
して該第1ホール素子と同一側でかつ磁石の磁極近傍に
、浸炭部の近接時に磁束密度が増加するように第2ホー
ル素子を設け、磁石の磁極近傍でかつ該磁石に対して第
2ホール素子と反対側に第3ホール素子を設け、この第
3ホール素子側の磁場が、被検材の浸炭部のない部分で
の第2ホール素子側の磁場と略等価となるように該第3
ホール素子の近傍にダミー片を設けたものである。
Means for Solving the Problems> As a first specific means for solving the above problems, the present invention comprises a magnet and a Hall element disposed within the magnetic field of the magnet. In a carburized measurement probe that measures a carburized part by changes in magnetic lines of force caused by the carburized part inside the material to be inspected, there is a probe on the side of the material to be inspected of the magnet and on the side of the center between a pair of magnetic poles that corresponds to the direction of the lines of magnetic force. A first Hall element is provided approximately along the same side as the first Hall element, and a second Hall element is provided on the same side of the magnet as the first Hall element and near the magnetic pole of the magnet so that the magnetic flux density increases when the carburized portion approaches. As a second specific means, the method includes a magnet and a Hall element placed in the magnetic field of the magnet, and measures the carburized portion by changes in magnetic lines of force due to the carburized portion inside the material to be inspected. In the probe for carburization measurement, a first Hall element is provided on the test material side of the magnet and on the center side between the pair of magnetic poles so as to be substantially along the direction of the magnetic lines of force, and the first Hall element is provided with respect to the magnet. A second Hall element is provided on the same side as the Hall element and near the magnetic pole of the magnet so that the magnetic flux density increases when the carburized part approaches, and a second Hall element is provided on the same side as the Hall element and on the opposite side of the magnet with respect to the second Hall element. A third Hall element is provided on the third Hall element, and the magnetic field on the third Hall element side is approximately equivalent to the magnetic field on the second Hall element side in a portion of the test material that does not have a carburized part.
A dummy piece is provided near the Hall element.

く作 用〉 チューブ15の浸炭部16の計測に際して、第1ホール
素子13が浸炭部16に近接すると、磁石12の磁力線
が第1ホール素子13に対して斜めに横切り、その出力
として浸炭部16の深さに相関する起電圧が発生する。
Effect> When the first Hall element 13 approaches the carburized part 16 when measuring the carburized part 16 of the tube 15, the lines of magnetic force of the magnet 12 cross diagonally with respect to the first Hall element 13, and as its output, the carburized part 16 An electromotive force is generated that correlates to the depth of the

また浸炭部16が広がりを有する場合には、その両端部
で第1ホール素子13が出力を発生する。一方、第2ホ
ール素子14を通る磁力線の磁束密度は、浸炭部16が
あれば増えるので、その起電圧も大となる。従って、こ
れらホール素子13゜14の出力より、浸炭部16の深
さのみならず、面積をも判断できる。
Further, when the carburized portion 16 has a spread, the first Hall element 13 generates an output at both ends thereof. On the other hand, since the magnetic flux density of the lines of magnetic force passing through the second Hall element 14 increases if the carburized portion 16 exists, the electromotive voltage thereof also increases. Therefore, from the outputs of these Hall elements 13 and 14, not only the depth but also the area of the carburized portion 16 can be determined.

ダミー片18及び第3ホール素子19を有するプルーブ
lOにおいては、その第3ホール素子19に浸炭部16
相当分の起電圧が発生しているので、これを第2ホール
素子14の出力から相殺することにより、脱炭層17の
影響が少なくなる。
In the proof lO having the dummy piece 18 and the third Hall element 19, the third Hall element 19 has a carburized portion 16.
Since a considerable amount of electromotive voltage is generated, by offsetting this from the output of the second Hall element 14, the influence of the decarburized layer 17 is reduced.

〈実施例〉 以下、図示の実施例について本発明を詳述すると、第1
図に示すように、この浸炭計測用プルーブ10は、保護
容器ll内に永久磁石12と第1ホール素子13と第2
ホール素子14とを設けて成る。磁石12は棒状であり
、この磁石12のタラフキングチューブ(被検材)15
側には、その磁極N−5間の略中央部に位置するように
第1ホール素子13が、磁石12の一方の磁極近傍に第
2ホール素子14が夫々設けられている。ホール素子1
3.14は共に偏平な板状であって、板厚方向の磁界に
対して直角方向に電流を流した時に、その磁界及び電流
に対して直角方向に起電圧が生ずるようになってい、る
。第1ホール素子13は磁石12と平行であって、通常
時に磁石12の磁力線と略沿うように設けられている。
<Example> Hereinafter, the present invention will be described in detail with regard to the illustrated example.
As shown in the figure, this carburization measurement probe 10 includes a permanent magnet 12, a first Hall element 13, and a second Hall element 13 in a protective container 11.
A Hall element 14 is provided. The magnet 12 is rod-shaped, and the trough king tube (test material) 15 of this magnet 12
On the side, a first Hall element 13 is provided so as to be located approximately in the center between the magnetic poles N-5, and a second Hall element 14 is provided near one of the magnetic poles of the magnet 12, respectively. Hall element 1
3.14 both have a flat plate shape, and when a current is passed in a direction perpendicular to the magnetic field in the thickness direction, an electromotive force is generated in the direction perpendicular to the magnetic field and current. . The first Hall element 13 is provided parallel to the magnet 12 and substantially along the lines of magnetic force of the magnet 12 during normal operation.

また第2ホール素子14は第1ホール素子13と同様に
磁石12と平行であって、通常時にも磁石12の磁力線
が第2ホール素子14を略直角方向に横切るが、浸炭部
16が近接した時にはその磁束密度が更に増加するよう
に設けられている。保護容器11は非磁性材料によって
構成されている。なお各ホール素子13.14は図外の
ガウスメータ本体に接続されている。
Further, the second Hall element 14 is parallel to the magnet 12 like the first Hall element 13, and the lines of magnetic force of the magnet 12 cross the second Hall element 14 in a substantially perpendicular direction even in normal times. Sometimes the magnetic flux density is provided to further increase. The protective container 11 is made of non-magnetic material. Note that each Hall element 13, 14 is connected to a Gaussmeter main body (not shown).

上記構成のプルーブ10を用いて、クランキングチュー
ブ15の浸炭部16の計測を行なう際には、プルーブ1
0をチューブ15外表面にあてがい、チューブ15の軸
心方向及び周方向にプルーブ10を走査する。
When measuring the carburized portion 16 of the cranking tube 15 using the probe 10 configured as described above, the probe 10 is
0 is applied to the outer surface of the tube 15, and the probe 10 is scanned in the axial direction and circumferential direction of the tube 15.

チューブ15に浸炭部16がない場合には、磁石12の
磁界が乱されることがないため、磁極N−3間の中央部
では磁石12と略平行に磁力線が分布している。従って
、第1ホール素子13を横切る磁力線は略平行であるた
め、その起電圧の出力は零若しくは低レベルの一定値を
示す、一方、第2ホール素子14に対しては磁力線が直
角方向に横切るが、浸炭部16でなく薄い脱炭層17が
存在するのみであるため、磁力線の集中度は低く、磁束
密度の増加が低いので、この第2ホール素子14の起電
圧は略一定値を示す。従って、これらホール素子13.
14の出力によって、浸炭部16が存在しないことが判
る。
When the tube 15 does not have the carburized portion 16, the magnetic field of the magnet 12 is not disturbed, so that lines of magnetic force are distributed approximately parallel to the magnet 12 in the center between the magnetic poles N-3. Therefore, since the lines of magnetic force that cross the first Hall element 13 are approximately parallel, the output of the electromotive voltage shows a constant value of zero or a low level.On the other hand, the lines of magnetic force that cross the second Hall element 14 are perpendicular to each other. However, since only the thin decarburized layer 17 exists instead of the carburized portion 16, the concentration of magnetic lines of force is low and the increase in magnetic flux density is low, so the electromotive voltage of the second Hall element 14 exhibits a substantially constant value. Therefore, these Hall elements 13.
14 indicates that the carburized portion 16 does not exist.

チューブ15内部に広がりを有する浸炭部16が存在す
る場合には、プルーブlOが接近すると、磁石12の磁
力線が浸炭部16の高い透磁率の影響を受けて強く引き
つけられるため、第1ホール素子13を通る磁力線に傾
きが生じる。
When a carburized portion 16 with a wide spread exists inside the tube 15, when the probe lO approaches, the lines of magnetic force of the magnet 12 are strongly attracted due to the influence of the high magnetic permeability of the carburized portion 16, so that the first Hall element 13 There is a slope in the magnetic field lines that pass through.

このため、第1ホール素子13の出力波形は、第3図B
に示す如く浸炭部16の両端部において起電圧が立ち上
がったものとなる。一方、浸炭部16によって磁力線が
強く引きつけられると、磁石の磁極近傍にある第2ホー
ル素子14の磁束密度が第2図に示すように増加し、そ
れに応じて第2ホール素子14の起電圧が大きくなる。
Therefore, the output waveform of the first Hall element 13 is as shown in FIG.
As shown in the figure, the electromotive force rises at both ends of the carburized portion 16. On the other hand, when the magnetic lines of force are strongly attracted by the carburized part 16, the magnetic flux density of the second Hall element 14 near the magnetic pole of the magnet increases as shown in FIG. 2, and the electromotive force of the second Hall element 14 increases accordingly. growing.

従って、第3図A。Therefore, Figure 3A.

Bに示すように、第1ホール素子13の起電圧の立ち上
がりが2箇所あり、その間において第2ホー4し素子1
4の起電圧が所定レベル以上を示す時には、その位置に
広がりを持りた浸炭部16が存在することが判かり、ま
たその浸炭部16の面積も判断できる。なお、この場合
の浸炭深さは、第1ホール素子13の出力の波形高値に
相関しており、これから浸炭深さを知ることができる。
As shown in B, there are two places where the electromotive force of the first Hall element 13 rises, and between them
When the electromotive force of No. 4 shows a predetermined level or higher, it is known that a carburized portion 16 with a spread exists at that position, and the area of the carburized portion 16 can also be determined. Note that the carburization depth in this case is correlated with the waveform high value of the output of the first Hall element 13, and the carburization depth can be determined from this.

上記構成において、第2ホール素子14を通る磁力線の
磁束密度は、チューブ15内の浸炭部16の有無によっ
て変化するが、高い透磁率を示す脱炭層17の影響も皆
無ではない、従って、チューブ15の部位によって脱炭
層17の深さが異なる場合には、その脱炭層17によっ
ても第2ホール素子14の起電圧がなだらかに変化する
ことがある。また長いチューブ15の場合、バーナ側と
反バーナ側とでは脱炭度合いも変わるため、第2ホール
素子14の出力は変化することになる。
In the above configuration, the magnetic flux density of the magnetic lines of force passing through the second Hall element 14 changes depending on the presence or absence of the carburized portion 16 in the tube 15, but the decarburized layer 17 exhibiting high magnetic permeability also has an influence. If the depth of the decarburized layer 17 differs depending on the location, the electromotive voltage of the second Hall element 14 may change gradually depending on the decarburized layer 17. Furthermore, in the case of a long tube 15, the degree of decarburization differs between the burner side and the anti-burner side, so the output of the second Hall element 14 changes.

そこで、このような脱炭層17による影響をなくするた
めには、第4図に示すように、プルーブ10にダミー片
18と第3ホール素子19とを設け、その第3ホール素
子19を第2ホール素子14に対して起電圧が相殺され
るように接続したものを使用する。
Therefore, in order to eliminate the influence of such a decarburized layer 17, as shown in FIG. A device connected to the Hall element 14 so that the electromotive force is canceled out is used.

ダミー片18はチューブ15の浸炭部16以外の部分と
略同等の透磁率を有するものであり、例えば脱炭層20
を有するクランキングチューブの一部を切断して使用す
ることも可能であるし、また全く別の部材を使用しても
良い。このダミー片18は磁石12に対してチューブ1
5と略対称になるように、チューブ15と等距離(d1
=d2)だけ離れて設けられている。第3ホール素子1
9は第2ホール素子14と同じものであって、磁石12
のN極近傍に、磁石12に対して第2ホール素子14と
略対称となるように配置されており、従って、第3ホー
ル素子19側の磁場は、ダミー片1日があるため、浸炭
部20のないチューブ15の部分での第2ホール素子1
4側の磁場と略等価的である。この第3ホール素子19
は第2ホール素子14に対して起電圧が相殺するように
逆方向に接続されている。
The dummy piece 18 has substantially the same magnetic permeability as the part other than the carburized part 16 of the tube 15, for example, the decarburized layer 20.
It is also possible to cut a part of the cranking tube and use it, or a completely different member may be used. This dummy piece 18 is attached to the tube 1 against the magnet 12.
5, equidistant from the tube 15 (d1
= d2). Third Hall element 1
9 is the same as the second Hall element 14, and the magnet 12
It is arranged near the N pole of the second Hall element 14 with respect to the magnet 12, so that the magnetic field on the third Hall element 19 side is affected by the carburized part because there is a dummy piece. Second Hall element 1 in the part of the tube 15 without 20
This is approximately equivalent to the magnetic field on the 4th side. This third Hall element 19
are connected in opposite directions to the second Hall element 14 so that the electromotive voltages cancel each other out.

このような構成のプルーブ10においては、チューブ1
5の浸炭部16のない部分では、第2ホール素子14及
び第3ホール素子19の起電圧は略同等のレベルを示し
、両者を相殺して得られる端子21からの出力は、殆ん
ど零に近い値である。
In the probe 10 having such a configuration, the tube 1
In the part of No. 5 where the carburized portion 16 is not present, the electromotive voltages of the second Hall element 14 and the third Hall element 19 are at approximately the same level, and the output from the terminal 21 obtained by canceling them out is almost zero. The value is close to .

浸炭部16が存在すれば、前述におけると同様に第2ホ
ール素子14を通る磁力線の磁束密度が大となる。また
第3ホール素子19側では、磁石12の磁力線が高透磁
率で断面積の大きい浸炭部16側に強く引き寄せられる
ため、ダミー片18があるものの、この第3ホール素子
19を通る磁束密度が若干減少することになる。これに
よって第2ホール素子14及び第3ホール素子19の起
電圧は、第5図に示すA、Hのような波形となり、これ
ら両起電圧を相殺して得られる端子21の出力は、第5
図に示すCのように、チューブ15の脱炭層17の影響
を除去し、浸炭部16が際立ったものとなる。
If the carburized portion 16 is present, the magnetic flux density of the lines of magnetic force passing through the second Hall element 14 becomes large, as described above. Furthermore, on the third Hall element 19 side, the magnetic lines of force of the magnet 12 are strongly attracted to the carburized part 16 side, which has high permeability and a large cross-sectional area, so although there is a dummy piece 18, the magnetic flux density passing through this third Hall element 19 is It will decrease slightly. As a result, the electromotive voltages of the second Hall element 14 and the third Hall element 19 have waveforms such as A and H shown in FIG.
As shown in the figure C, the influence of the decarburized layer 17 of the tube 15 is removed, and the carburized portion 16 becomes conspicuous.

ダミー片18は、計測すべき被検材の条件、例えば加熱
温度が高くて脱炭深さが大となる場合には、それに応じ
て透磁率を変更する必要がある。従って、保護容器11
に対して着脱自在にダミー片18を設けておけば、プル
ーブ10の汎用性が得られる。
The magnetic permeability of the dummy piece 18 needs to be changed in accordance with the conditions of the material to be measured, such as when the heating temperature is high and the decarburization depth is large. Therefore, the protective container 11
If the dummy piece 18 is provided in a detachable manner, the versatility of the probe 10 can be obtained.

第2ホール素子14と第3ホール素子19とは、第6図
に示すように磁石12の異なる磁極の近傍に夫々設けて
も良い。
The second Hall element 14 and the third Hall element 19 may be provided near different magnetic poles of the magnet 12, respectively, as shown in FIG.

また第2ホール素子14と第3ホール素子19は逆方向
に接続する他、夫々の起電圧の出力を減算器等に入れて
電気的に相殺するようにしても良い。
In addition to connecting the second Hall element 14 and the third Hall element 19 in opposite directions, the outputs of the respective electromotive voltages may be input into a subtractor or the like to electrically cancel each other out.

磁石は永久磁石12に代替して電磁石を利用しても良い
。また磁石12の形状、構造等は、特に限定されるもの
でなく、被検材等に応じて任意に設計変更可能である。
An electromagnet may be used instead of the permanent magnet 12. Further, the shape, structure, etc. of the magnet 12 are not particularly limited, and can be arbitrarily changed in design depending on the material to be inspected.

プルーブ10はチューブ15の周方向に複数個設けてお
いても良い。
A plurality of probes 10 may be provided in the circumferential direction of the tube 15.

〈発明の効果〉 本発明によれば、磁石の磁力線の方向と略沿うように第
1ホール素子を設ける他、これと同一側でかつ磁石の磁
極近傍に、浸炭部の近接時に磁束密度が増加するように
第2ホール素子を設け、これらホール素子を併用してい
るので、浸炭部の深さのみならず、広がりを有する浸炭
部を、広がりを有するも゛のとして計測でき、従来に比
較して浸炭部の計測精度が向上し、浸炭部の面積の判断
が可能である。
<Effects of the Invention> According to the present invention, in addition to providing the first Hall element so as to be substantially along the direction of the magnetic lines of force of the magnet, the magnetic flux density increases when the carburized part approaches the first Hall element on the same side and near the magnetic pole of the magnet. A second Hall element is provided to ensure that the carburized area is wide, and these Hall elements are used in combination, so it is possible to measure not only the depth of the carburized area, but also the carburized area that has a wide area. This improves the measurement accuracy of the carburized part, making it possible to determine the area of the carburized part.

また本発明によれば、第2ホール素子とは別に第2ホー
ル素子を設け、かつ第2ホール素子側の磁場が、被検材
の浸炭部のない部分での第2ホール素子側での磁場と略
等価となるようにダミー片を設けているので、第2ホー
ル素子と第3ホール素子との出力によって浸炭部以外の
部分による影響を除去することが可能であり、信頼性の
ある計測を容易、迅速に行ない得る利点がある。
Further, according to the present invention, the second Hall element is provided separately from the second Hall element, and the magnetic field on the second Hall element side is the same as the magnetic field on the second Hall element side in a portion of the test material that does not have a carburized part. Since the dummy piece is provided so that the output is approximately equivalent to that of the carburized part, it is possible to eliminate the influence of parts other than the carburized part by the output of the second Hall element and the third Hall element, and it is possible to perform reliable measurements. It has the advantage of being easy and quick to perform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は同作
用説明図、第3図は同波形図、第4図は本発明の他の実
施例を示す断面図、第5図は同波形図、第6図は別の実
施例を示す断面図、第7図は従来例を示す構成図、第8
図は別の従来例を示す構成図、第9図は波形図、第10
図はチューブの断面図である。 10・・・プルーブ、12・・・永久磁石、13・・・
第1ホール素子、14・・・第2ホール素子、15・・
・クラッキングチューブ、16・・・浸炭部、17・・
・脱炭層、18・・・ダミー片、19・・・第3ホール
素子。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is an explanatory diagram of the same operation, FIG. 3 is a waveform diagram of the same, FIG. 6 is a sectional view showing another embodiment, FIG. 7 is a configuration diagram showing a conventional example, and FIG. 8 is a diagram showing the same waveform.
The figure is a configuration diagram showing another conventional example, Figure 9 is a waveform diagram, and Figure 10 is a waveform diagram.
The figure is a cross-sectional view of the tube. 10...Probe, 12...Permanent magnet, 13...
First Hall element, 14...Second Hall element, 15...
・Cracking tube, 16... Carburized part, 17...
- Decarburized layer, 18... dummy piece, 19... third Hall element.

Claims (1)

【特許請求の範囲】 1、磁石と、該磁石の磁場内に配置されたホール素子と
を備え、被検材内部の浸炭部による磁力線の変化によっ
て該浸炭部を計測するようにした浸炭計測用プルーブに
おいて、磁石の被検材側でかつ一対の磁極間の中央部側
に、磁力線の方向と略沿うように第1ホール素子を設け
ると共に、磁石に対して該第1ホール素子と同一側でか
つ磁石の磁極近傍に、浸炭部の近接時に磁束密度が増加
するように第2ホール素子を設けたことを特徴とする浸
炭計測用プルーブ。 2、磁石と、該磁石の磁場内に配置されたホール素子と
を備え、被検材内部の浸炭部による磁力線の変化によっ
て該浸炭部を計測するようにした浸炭計測用プルーブに
おいて、磁石の被検材側でかつ一対の磁極間の中央部側
に、磁力線の方向と略沿うように第1ホール素子を設け
ると共に、磁石に対して該第1ホール素子と同一側でか
つ磁石の磁極近傍に、浸炭部の近接時に磁束密度が増加
するように第2ホール素子を設け、磁石の磁極近傍でか
つ該磁石に対して第2ホール素子と反対側に第3ホール
素子を設け、この第3ホール素子側の磁場が、被検材の
浸炭部のない部分での第2ホール素子側の磁場と略等価
となるように該第3ホール素子の近傍にダミー片を設け
たことを特徴とする浸炭計測用プルーブ。
[Claims] 1. For carburization measurement, comprising a magnet and a Hall element disposed within the magnetic field of the magnet, and measuring the carburized portion by changes in magnetic lines of force caused by the carburized portion inside the material to be inspected. In the probe, a first Hall element is provided on the test material side of the magnet and on the center side between the pair of magnetic poles so as to be substantially along the direction of the magnetic lines of force, and on the same side of the magnet as the first Hall element. A probe for measuring carburization, characterized in that a second Hall element is provided near the magnetic pole of the magnet so that the magnetic flux density increases when the carburized part approaches. 2. In a probe for carburization measurement, which is equipped with a magnet and a Hall element placed in the magnetic field of the magnet, and measures the carburized portion by changes in the lines of magnetic force caused by the carburized portion inside the material to be inspected. A first Hall element is provided on the inspection material side and on the center side between the pair of magnetic poles so as to be substantially along the direction of the lines of magnetic force, and on the same side of the magnet as the first Hall element and near the magnetic poles of the magnet. , a second Hall element is provided so that the magnetic flux density increases when the carburized part approaches, a third Hall element is provided near the magnetic pole of the magnet and on the opposite side of the second Hall element to the magnet, and the third Hall element is provided so that the magnetic flux density increases when the carburized part approaches. A carburizing method characterized in that a dummy piece is provided near the third Hall element so that the magnetic field on the element side is approximately equivalent to the magnetic field on the second Hall element side in a portion of the material to be inspected that does not have a carburized part. Probe for measurement.
JP14597285A 1985-02-25 1985-07-02 Carburization measuring probe Granted JPS626154A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14597285A JPS626154A (en) 1985-07-02 1985-07-02 Carburization measuring probe
EP86102443A EP0193168A3 (en) 1985-02-25 1986-02-25 Method of inspecting carburization and probe therefor
US07/785,197 US5128613A (en) 1985-02-25 1991-11-01 Method of inspecting magnetic carburization in a non-permeable material and probe therefore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14597285A JPS626154A (en) 1985-07-02 1985-07-02 Carburization measuring probe

Publications (2)

Publication Number Publication Date
JPS626154A true JPS626154A (en) 1987-01-13
JPH0344663B2 JPH0344663B2 (en) 1991-07-08

Family

ID=15397244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14597285A Granted JPS626154A (en) 1985-02-25 1985-07-02 Carburization measuring probe

Country Status (1)

Country Link
JP (1) JPS626154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140220A1 (en) * 2014-03-18 2015-09-24 Sensitec Gmbh Magnetic field sensor arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140220A1 (en) * 2014-03-18 2015-09-24 Sensitec Gmbh Magnetic field sensor arrangement

Also Published As

Publication number Publication date
JPH0344663B2 (en) 1991-07-08

Similar Documents

Publication Publication Date Title
US4528856A (en) Eddy current stress-strain gauge
EP0125064B1 (en) Method for detecting stress and defect in a metal piece
Tsukada et al. Detection of inner corrosion of steel construction using magnetic resistance sensor and magnetic spectroscopy analysis
US5117182A (en) Ferromagnetic eddy current probe having multiple levels of magnetization
JPWO2012057224A1 (en) Hardening depth measuring method and quenching depth measuring device
Moorthy Important factors influencing the magnetic Barkhausen noise profile
Perevertov et al. Detection of spring steel surface decarburization by magnetic hysteresis measurements
Arenas et al. Magnetic evaluation of the external surface in cast heat-resistant steel tubes with different aging states
Tanner et al. Magnetic and metallurgical properties of high-tensile steels
Sandomirsky Analysis of the error in measuring the magnetic permeability of a ferromagnetic material in an open magnetic circuit
JPS626154A (en) Carburization measuring probe
JP4831298B2 (en) Hardening depth measuring device
JPH06271926A (en) Non-destructive measuring method of depth of quench-hardened layer
JPS626159A (en) Carburization measuring probe
EP3118641B1 (en) An improved giant magneto-impedance (gmi) based sensing device for the detection of carburization in austenitic stainless steel
JPS6276453A (en) Carburization measuring probe
JPS626153A (en) Carburization measuring probe
JP2002014081A (en) Method and device for measuring hardness penetration
JPH0449653B2 (en)
JPH0344664B2 (en)
JPH0445071B2 (en)
JP2002277442A (en) Non-destructive inspection method and apparatus
JPS626160A (en) Carburization measuring probe
JPS626158A (en) Carburization measuring probe
JPS626156A (en) Carburization measuring probe