JPS626160A - Carburization measuring probe - Google Patents

Carburization measuring probe

Info

Publication number
JPS626160A
JPS626160A JP14597885A JP14597885A JPS626160A JP S626160 A JPS626160 A JP S626160A JP 14597885 A JP14597885 A JP 14597885A JP 14597885 A JP14597885 A JP 14597885A JP S626160 A JPS626160 A JP S626160A
Authority
JP
Japan
Prior art keywords
hall element
magnetic
carburized
magnet
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14597885A
Other languages
Japanese (ja)
Inventor
Makoto Takahashi
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14597885A priority Critical patent/JPS626160A/en
Priority to EP86102443A priority patent/EP0193168A3/en
Publication of JPS626160A publication Critical patent/JPS626160A/en
Priority to US07/785,197 priority patent/US5128613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decide with a high accuracy a carburized part having an expanse by providing a Hall element in the direction crossing a line of magnetic force in the center part between a pair of magnetic poles of a magnet, and also providing a Hall element in the vicinity of each magnetic pole, as well. CONSTITUTION:In case a carburized part 19 does not exist in a tube 16, an electromotive voltage of the first Hall element 13 shows a high level, and an output which has offset an electromotive voltage of the second Hall element 14 and the third Hall element 15 shows zero or its near value. In case when the carburized part 19 exists, a line of magnetic force which has been emitted from the N pole is attracted strongly to the side of the carburized part 19, and the electromotive voltage of the first Hall element 13 drops. On the other hand,in each magnetic pole side of the magnet 12, while it is opposed to the carburized part 19, a magnetic flux density between each magnetic pole and the tube 16 increases, and a signal which rises in both end parts of the carburized part 19 is obtained from a terminal 17, therefore, a range of the carburized part can be decided from between two signals.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石油化学工業におけるエチレン製造用クラン
キングチューブ内面に発生する浸炭部を外表面から非破
壊的に計測する際等に用いる浸炭計測用プルーブに関す
るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a carburization measurement method used for non-destructively measuring carburized parts generated on the inner surface of cranking tubes for ethylene production in the petrochemical industry from the outer surface. This relates to probes for use.

(従来の技術) 原料ナフサを高温・高圧下に熱分解してエチレン等を回
収するための反応管であるエチレン製造用タラフキング
チューブとしては、^STM  HK40(0,4%C
−25%Cr −20%Ni) 、HP45 (0,4
5%C−25%Cr −35%Ni) 、又はHP改良
材(HP材にMo。
(Prior technology) As a cod tube for ethylene production, which is a reaction tube for recovering ethylene etc. by thermally decomposing raw material naphtha under high temperature and high pressure, ^STM HK40 (0.4% C
-25%Cr -20%Ni), HP45 (0,4
5%C-25%Cr-35%Ni), or HP improving material (Mo added to HP material).

W、 Nb等を単独若しくは複合添加したもの)等が使
用されている。
W, Nb, etc. are used singly or in combination.

クランキングチューブは、長期間使用されるうちに、チ
ューブ内面に反応に伴って生成される炭素が付着し、こ
の付着炭素が高温下において金属内部に拡散して浸炭が
発生する。浸炭により浸入した炭素は、Cr炭化物を形
成し、浸炭が加速された状態ではCr炭化物が粗大とな
り、低温域(約800℃以下)で著しい延性低下を招く
。またチューブの浸炭部の熱膨張係数は、非浸炭部のそ
れより小さいので、急激な加熱・冷却を行うと、引張圧
縮応力の発生と、前記低温域での延性低下とが重畳して
、チューブに破壊が生ずることがあった。
When a cranking tube is used for a long period of time, carbon generated by reaction adheres to the inner surface of the tube, and this adhered carbon diffuses into the metal at high temperatures, causing carburization. Carbon infiltrated by carburization forms Cr carbide, and when carburization is accelerated, the Cr carbide becomes coarse, resulting in a significant decrease in ductility in a low temperature range (approximately 800° C. or lower). In addition, the coefficient of thermal expansion of the carburized part of the tube is smaller than that of the non-carburized part, so if rapid heating and cooling are performed, the generation of tensile and compressive stress and the decrease in ductility in the low temperature range will overlap, causing the tube to Destruction could occur.

従って、チューブの破壊を未然に防止し、安全で円滑な
操業を維持するには、浸炭検査を定期的に実施し、浸炭
の有無、及びその進行状況を適確に把握することが必要
である。
Therefore, in order to prevent tube destruction and maintain safe and smooth operations, it is necessary to conduct carburization inspections periodically to accurately understand the presence or absence of carburization and its progress. .

浸炭深さを非破壊的に測定する方法としては、浸炭部の
組成変化、即ちCrの欠乏と、Fe及びNiの相対的増
量に伴う磁気特性の変化を利用した各種の磁気測定法が
知られている。例えば、電磁誘導によりチューブの浸炭
深さを判定する方法、ホール効果を応用したガウスメー
タを用いる方法等がある。
Various magnetic measurement methods are known as methods for non-destructively measuring the carburized depth, which utilize changes in the composition of the carburized part, that is, changes in magnetic properties due to Cr deficiency and relative increases in Fe and Ni. ing. For example, there is a method of determining the carburization depth of the tube by electromagnetic induction, a method of using a Gauss meter that applies the Hall effect, etc.

ガウスメータを用いる測定方法は、第5図に示すように
ガウスメータ本体1に接続されたホール素子2を内蔵す
るプルーブ3を、被検材であるチューブ4の外表面にあ
てがい、その内面に浸炭部5が存在すると、浸炭部5の
残留磁気の磁力線がホール素子2を横切ることにより生
じるホール起電圧を検出して、浸炭部5の深さを測定す
るようにしたものである。しかしながら、浸炭部の磁束
密度はあまりにも小さく(IIP材で2〜3ガウス程度
)地磁気よりわずかに大きい程度では浸炭深さを正確に
測定するにはいたらない。
As shown in FIG. 5, the measurement method using a Gaussmeter is to apply a probe 3 containing a Hall element 2 connected to a Gaussmeter body 1 to the outer surface of a tube 4, which is a material to be tested, and to form a carburized portion 5 on the inner surface. If there is, the depth of the carburized part 5 is measured by detecting the Hall electromotive force generated when the lines of magnetic force of the residual magnetism of the carburized part 5 cross the Hall element 2. However, the magnetic flux density of the carburized part is too small (about 2 to 3 gauss for IIP material) and is slightly larger than the earth's magnetism, making it impossible to accurately measure the carburized depth.

(発明が解決しようとする問題点) 一方、電磁誘導法により得られる浸炭深さ測定結果と、
破壊検査による実測結果とを対比すると、11に40材
チユーブについては比較的良い反応が得られるものの、
胛材やIIP改良材のチューブでは、測定値のバラツキ
が大きく、信顛性に乏しがった。
(Problems to be solved by the invention) On the other hand, the carburization depth measurement results obtained by the electromagnetic induction method,
Comparing the actual measurement results from destructive testing, although a relatively good response was obtained for the 11 and 40 material tubes,
For tubes made of bamboo or IIP-improved materials, the measurement values varied widely and were less reliable.

これは、HP材やIIP改良材のチューブ4では、その
外表面に生成した脱炭層(その深さはチューブの使用温
度、使用時間に依存し、高温、長時間となる程、深さが
増す)6に脱炭と共に脱Crが生じ、その部分の透磁率
が高くなることによるものである。即ち、これらのチュ
ーブにあっては、高温下で長時間使用されると、チュー
ブ4内面に浸炭が生じていなくても、外表面に生じた脱
炭層(層深す約50〜500μm)によりその深さが大
きい場合に高い指示値を示すのでこの指示値部分を浸炭
発生と見誤るためである。
This is because tube 4 of HP material or IIP improved material has a decarburized layer formed on its outer surface (the depth of which depends on the temperature and time of use of the tube; the higher the temperature and the longer the time, the deeper it becomes). ) 6, decarburization and Cr removal occur, and the magnetic permeability of that portion increases. In other words, when these tubes are used for a long time at high temperatures, even if the inner surface of the tube 4 is not carburized, the decarburized layer (approximately 50 to 500 μm deep) formed on the outer surface causes carburization. This is because when the depth is large, a high indicated value is shown, so this indicated value portion can be mistaken for carburization.

このため従来では、チューブ4の浸炭部5の有無及び深
さを測定する際には、チューブ4外表面の脱炭層6を予
めグラインダ等で研削除去した上で再測定し、評価しな
ければならないと言うのが実情である。従って、測定個
所が僅かである場合はともかく、多数の個所を測定しよ
うとすれば、多大の時間を費やさなければならず、実用
性の点で問題が多い。
For this reason, conventionally, when measuring the presence or absence and depth of the carburized portion 5 of the tube 4, it is necessary to remove the decarburized layer 6 on the outer surface of the tube 4 with a grinder or the like beforehand, and then remeasure and evaluate. That is the reality. Therefore, even if the number of locations to be measured is small, if a large number of locations are to be measured, a large amount of time must be spent, which poses many problems in terms of practicality.

(問題点を解決するための手段) 本発明は、このような従来の問題点を解決することを目
的とするものであって、そのための具体的手段として、
磁石と、該磁石の磁場内に配置されたホール素子とを備
え、外表面に脱炭層を有する被検材内部の浸炭部を、ホ
ール素子を通る磁力線の変化によって計測するようにし
た浸炭計測用プルーブにおいて、磁石の一対の磁極間の
中央部に磁力線と交差する方向の第1ホール素子を設け
、磁石の各磁極近傍に位置して第2ホール素子と第3ホ
ール素子を設け、これら第2ホール素子及び第3ホール
素子の起電圧を相殺するようにしたものである。
(Means for Solving the Problems) The present invention aims to solve such conventional problems, and as specific means for that purpose,
For carburization measurement, which includes a magnet and a Hall element placed in the magnetic field of the magnet, and measures a carburized part inside a test material having a decarburized layer on the outer surface by changes in magnetic lines of force passing through the Hall element. In the probe, a first Hall element is provided at the center between a pair of magnetic poles of the magnet in a direction intersecting the lines of magnetic force, a second Hall element and a third Hall element are provided near each magnetic pole of the magnet, and these second Hall elements are provided in the vicinity of each magnetic pole of the magnet. The electromotive voltages of the Hall element and the third Hall element are canceled out.

(作  用) 浸炭部19があれば、第1ホール素子13を通る磁束密
度が低下し、起電圧が下がる。一方、第2ホール素子1
4及び第3ホール素子15側では浸炭部19があれば、
磁束密度が大となり、起電圧が上昇する。従って、その
両者の出力を相殺すると、浸炭部19の両端で信号が現
われるので、この信号間で第1ホール素子13の出力が
一定以下にあれば、浸炭部19を判断できる。
(Function) If the carburized portion 19 exists, the magnetic flux density passing through the first Hall element 13 decreases, and the electromotive voltage decreases. On the other hand, the second Hall element 1
If there is a carburized part 19 on the 4th and 3rd Hall element 15 sides,
The magnetic flux density increases and the electromotive voltage increases. Therefore, when the two outputs are canceled out, signals appear at both ends of the carburized portion 19, and if the output of the first Hall element 13 is below a certain level between these signals, the carburized portion 19 can be determined.

(実施例) 以下、図示の実施例について本発明を詳述すると、第1
図に示すように、この浸炭計測用プルーブ10は、保護
容器11内に永久磁石12と、第1乃至第3ホール素子
13.14.15を組込んで構成されている。磁石12
はコ字状であって、その一対の磁極N・Sが被検材たる
クラッキングチューブ16に近接しかつ長手方向に位置
するように配置されている。
(Example) Hereinafter, the present invention will be described in detail with reference to the illustrated example.
As shown in the figure, this carburization measuring probe 10 is constructed by incorporating a permanent magnet 12 and first to third Hall elements 13, 14, and 15 into a protective container 11. magnet 12
has a U-shape, and is arranged so that its pair of magnetic poles N and S are located close to the cracking tube 16, which is the material to be tested, in the longitudinal direction.

第1ホール素子13は磁石12の一対の磁極N−5間の
中央部にあり、N極からS極への磁力線と直角に交差す
るように設けられている。第2ホール素子14は磁石1
2の一方の磁極の近傍で、第3ホール素子15は他方の
磁極の近傍で夫々磁極とチューブエ6との間に配置され
ており、しかもチューブ16と平行とされている。なお
、第1乃至第3ホール素子13.14.15は、何れも
磁石12の磁場内にあり、板厚方向に横切る磁力線に対
して直角方向に電流を流した時に、その磁力線及び電流
に直角方向に起電圧が生じるように構成されている。第
2ホール素子14と第3ホール素子15とは逆方向に接
続されており、従って、端子17からは両者の起電圧を
相殺した出力が出るようになっている。チューブ16は
外表面の全域に脱炭層18を有し、また内部側に浸炭部
19が発生している。
The first Hall element 13 is located in the center between the pair of magnetic poles N-5 of the magnet 12, and is provided so as to intersect at right angles with the line of magnetic force from the N pole to the S pole. The second Hall element 14 is the magnet 1
The third Hall element 15 is arranged near one of the magnetic poles of 2 and between the respective magnetic poles and the tube 6, and parallel to the tube 16. Note that the first to third Hall elements 13, 14, and 15 are all within the magnetic field of the magnet 12, and when a current is passed in a direction perpendicular to the line of magnetic force that crosses the plate thickness direction, the current is perpendicular to the line of magnetic force and the current. The structure is such that an electromotive voltage is generated in the direction. The second Hall element 14 and the third Hall element 15 are connected in opposite directions, so that the terminal 17 outputs an output that cancels out their electromotive voltages. The tube 16 has a decarburized layer 18 over the entire outer surface and a carburized portion 19 on the inside.

上記構成のプルーブ10を用いて、チューブ16内部の
浸炭部19の有無の計測を行う際には、プルーブlOを
チューブ16の外表面にあてがい、第2図(^)〜(D
)の如くチューブ16長手方向に順次走査する。
When measuring the presence or absence of the carburized portion 19 inside the tube 16 using the probe 10 configured as described above, apply the probe IO to the outer surface of the tube 16 and
) is sequentially scanned in the longitudinal direction of the tube 16.

チューブ16に浸炭部19がない場合には、磁石12の
N極から出た磁力線は、第1図に点線で示すようにS極
に入っており、第1ホール素子13を横切る磁力線の磁
束密度は大であり、第1ホール素子13の起電圧は第3
図(A)の如く高レベルを示す。
If the tube 16 does not have a carburized part 19, the magnetic lines of force coming out of the N pole of the magnet 12 enter the S pole as shown by the dotted line in FIG. 1, and the magnetic flux density of the lines of magnetic force crossing the first Hall element 13 is large, and the electromotive force of the first Hall element 13 is
Figure (A) shows a high level.

また各磁極に対向して設けられた第2ホール素子I4及
び第3ホール素子15を通る磁力線の磁束密度は共に大
であるため、その起電圧は第3図(B) (C)のよう
に略同程度の高レベルである。従って、その両者起電圧
を相殺して得られる端子17の出力は、第3図(D)の
ように零若しくはそれに近い値を示し、第1ホール素子
13の出力(高レベル)と合わせて、チューブ16に浸
炭部19の存在しないことが判る。
Furthermore, since the magnetic flux densities of the lines of magnetic force passing through the second Hall element I4 and the third Hall element 15, which are provided opposite to each magnetic pole, are both large, the electromotive force is as shown in Fig. 3 (B) and (C). The level is approximately the same. Therefore, the output of the terminal 17 obtained by canceling out both electromotive voltages shows a value of zero or a value close to it as shown in FIG. 3(D), and together with the output of the first Hall element 13 (high level), It can be seen that there is no carburized portion 19 in the tube 16.

浸炭部19が存在する場合には、その透磁率が大であり
ζしかも断面積が大であるから、N極から出た磁力線は
浸炭部19側に強(引きつけられて、この浸炭部19を
経てS極側に入るため、第1ホール素子13を通る磁力
線の磁束密度は著しく減少し、その起電圧は第3図(八
)のように低下する。
When the carburized part 19 exists, its magnetic permeability is high and the cross-sectional area is large. Therefore, the lines of magnetic force coming from the N pole are strongly (attracted) to the carburized part 19, and the carburized part 19 is Since the magnetic flux passes through the first Hall element 13 and enters the south pole side, the magnetic flux density of the magnetic lines of force passing through the first Hall element 13 decreases significantly, and the electromotive voltage decreases as shown in FIG. 3 (8).

一方、磁石12の各磁極側においては、それが浸炭部1
9に対向している間は、磁力線が浸炭部19に強く引き
つけられているため、各磁極とチューブ16との間の磁
束密度が増大し、第2ホール素子14及び第3ホール素
子15を通る磁束密度の増大によって各起電圧が大とな
る。例えば、プルーブ10が第2図(B)の位置にある
時には、第2ホール素子14の起電圧が上昇し、第2図
(C)の位置にある時には、第2及び第3ホール素子1
4.15の起電圧が共に上昇し、第2図(D)の位置に
ある時には、第3ホール素子15の起電圧が上昇する。
On the other hand, on each magnetic pole side of the magnet 12, the carburized portion 1
9, the lines of magnetic force are strongly attracted to the carburized part 19, so the magnetic flux density between each magnetic pole and the tube 16 increases, and the magnetic flux density passes through the second Hall element 14 and the third Hall element 15. Each electromotive voltage increases as the magnetic flux density increases. For example, when the probe 10 is in the position shown in FIG. 2(B), the electromotive voltage of the second Hall element 14 increases, and when the probe 10 is in the position shown in FIG. 2(C), the electromotive force of the second and third Hall elements 1
Both the electromotive voltages of 4.15 and 15 rise, and when the position shown in FIG. 2(D) is reached, the electromotive voltage of the third Hall element 15 rises.

つまり、第2及び第3ホール素子14.15の起電圧は
、チューブ16長手方向の位置に応じて第3図(B) 
(C)に示すような変化をする。そして、これら起電圧
を相殺すると、端子17からは第3図(D)に示すよう
に浸炭部19の両端部において上昇する信号が得られる
In other words, the electromotive force of the second and third Hall elements 14.15 varies depending on the longitudinal position of the tube 16 as shown in FIG. 3(B).
Changes occur as shown in (C). When these electromotive voltages are canceled out, a signal is obtained from the terminal 17 that increases at both ends of the carburized portion 19 as shown in FIG. 3(D).

従って、この2つの信号間において第1ホール素子13
の起電圧が一定以下に低下していれば、その位置に浸炭
部19が存在するものと判断でき、またその範囲は2つ
の信号間に相当するものであることが判る。
Therefore, between these two signals, the first Hall element 13
If the electromotive voltage has decreased below a certain level, it can be determined that the carburized portion 19 exists at that position, and it can be seen that the range corresponds to the area between the two signals.

なお、第2ホール素子14と第3ホール素子15は実施
例のように逆方向に接続する他、夫々の起電圧の出力を
減算器等に入れて電気的に相殺するようにしても良い。
In addition to connecting the second Hall element 14 and the third Hall element 15 in opposite directions as in the embodiment, the outputs of their respective electromotive voltages may be input into a subtracter or the like to electrically cancel each other out.

磁石は永久磁石12に代替して、第4図の如く鉄心19
にコイル20を巻付けた電磁石21を利用しても良い。
The permanent magnet 12 is replaced with an iron core 19 as shown in FIG.
An electromagnet 21 having a coil 20 wound around it may also be used.

また磁石12の形状、構造等は、特に限定されるもので
なく、被検材等に応じて任意に設計変更可能である。
Further, the shape, structure, etc. of the magnet 12 are not particularly limited, and can be arbitrarily changed in design depending on the material to be inspected.

(発明の効果) 本発明によれば、第2ホール素子と第3ホール素子との
出力を相殺することにより浸炭部の両端が判かるので、
第1ホール素子と併用することに     □よって、
広がりを持つ浸炭部を精度良く判断でき、特に表面に存
在する脱炭層等によって浸炭部を誤認することがなく、
その効果は極めて大である。
(Effects of the Invention) According to the present invention, both ends of the carburized portion can be determined by canceling the outputs of the second Hall element and the third Hall element.
By using it together with the first Hall element □Therefore,
It is possible to accurately judge carburized areas that spread out, and in particular, there is no misidentification of carburized areas due to decarburized layers existing on the surface.
The effect is extremely large.

また第1ホール素子は浸炭部があれば、磁束密度の減少
を検出するようにしているため、増加を検出するものに
比較してその変化が大であることから、信頼性も向上す
る。
Furthermore, if there is a carburized portion, the first Hall element detects a decrease in the magnetic flux density, so the change is larger than that of a device that detects an increase, so reliability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図(八)
〜(D)は同作用説明図、第3図(A)〜(D)は波形
図、第4図は他の実施例を示す構成図、第5図は従来例
を示す図である。 10・・・プルーブ、12・・・永久磁石、13・・・
第1ホール素子、14・・・第2ホール素子、15・・
・第3ホール素子、16・・・クラッキングチューブ。 特 許 出 願 人  久保田鉄工株式会社第1図 第3図 (A) L じ−−
Figure 1 is a configuration diagram showing one embodiment of the present invention, Figure 2 (8)
3(A) to 3(D) are waveform diagrams, FIG. 4 is a block diagram showing another embodiment, and FIG. 5 is a diagram showing a conventional example. 10...Probe, 12...Permanent magnet, 13...
First Hall element, 14...Second Hall element, 15...
- Third Hall element, 16... cracking tube. Patent applicant Kubota Iron Works Co., Ltd. Figure 1 Figure 3 (A) L Ji--

Claims (1)

【特許請求の範囲】[Claims] 1、磁石と、該磁石の磁場内に配置されたホール素子と
を備え、外表面に脱炭層を有する被検材内部の浸炭部を
、ホール素子を通る磁力線の変化によって計測するよう
にした浸炭計測用プルーブにおいて、磁石の一対の磁極
間の中央部に磁力線と交差する方向の第1ホール素子を
設け、磁石の各磁極近傍に位置して第2ホール素子と第
3ホール素子を設け、これら第2ホール素子及び第3ホ
ール素子の起電圧を相殺するようにしたことを特徴とす
る浸炭計測用プルーブ。
1. A carburizing method that includes a magnet and a Hall element placed in the magnetic field of the magnet, and measures the carburized part inside the specimen having a decarburized layer on the outer surface by changes in magnetic lines of force passing through the Hall element. In the measurement probe, a first Hall element is provided at the center between a pair of magnetic poles of the magnet in a direction that intersects the lines of magnetic force, and a second Hall element and a third Hall element are provided near each magnetic pole of the magnet. A probe for carburization measurement, characterized in that the electromotive voltages of the second Hall element and the third Hall element are canceled out.
JP14597885A 1985-02-25 1985-07-02 Carburization measuring probe Pending JPS626160A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14597885A JPS626160A (en) 1985-07-02 1985-07-02 Carburization measuring probe
EP86102443A EP0193168A3 (en) 1985-02-25 1986-02-25 Method of inspecting carburization and probe therefor
US07/785,197 US5128613A (en) 1985-02-25 1991-11-01 Method of inspecting magnetic carburization in a non-permeable material and probe therefore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14597885A JPS626160A (en) 1985-07-02 1985-07-02 Carburization measuring probe

Publications (1)

Publication Number Publication Date
JPS626160A true JPS626160A (en) 1987-01-13

Family

ID=15397367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14597885A Pending JPS626160A (en) 1985-02-25 1985-07-02 Carburization measuring probe

Country Status (1)

Country Link
JP (1) JPS626160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10456302B2 (en) 2006-05-18 2019-10-29 Curt G. Joa, Inc. Methods and apparatus for application of nested zero waste ear to traveling web

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10456302B2 (en) 2006-05-18 2019-10-29 Curt G. Joa, Inc. Methods and apparatus for application of nested zero waste ear to traveling web

Similar Documents

Publication Publication Date Title
Mierczak et al. A new method for evaluation of mechanical stress using the reciprocal amplitude of magnetic Barkhausen noise
EP0646790B1 (en) Method and apparatus for detecting embrittlement of metal material
US4855676A (en) Ferromagnetic eddy current probe having transmit and receive coil assemblies
EP0193168A2 (en) Method of inspecting carburization and probe therefor
US5117182A (en) Ferromagnetic eddy current probe having multiple levels of magnetization
Kobayashi et al. Evaluation of case depth in induction-hardened steels: Magnetic hysteresis measurements and hardness-depth profiling by differential permeability analysis
Perevertov et al. Detection of spring steel surface decarburization by magnetic hysteresis measurements
Cheng Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors
Arenas et al. Magnetic evaluation of the external surface in cast heat-resistant steel tubes with different aging states
Tanner et al. Magnetic and metallurgical properties of high-tensile steels
JPS626160A (en) Carburization measuring probe
EP3118641B1 (en) An improved giant magneto-impedance (gmi) based sensing device for the detection of carburization in austenitic stainless steel
Ebine et al. Magnetic measurement to evaluate material properties of ferromagnetic structural steels with planar coils
JPH0445071B2 (en)
JPS626159A (en) Carburization measuring probe
JPH0449653B2 (en)
JPH0344664B2 (en)
JPS626153A (en) Carburization measuring probe
JPS626154A (en) Carburization measuring probe
JPS626158A (en) Carburization measuring probe
JP5643023B2 (en) Total carbon measuring machine and carburizing depth evaluation device for ferritic steel pipes containing Cr
JP4109114B2 (en) Detector for nondestructive evaluation of steel structures or components
JP2616105B2 (en) Method for measuring carburized thickness and probe for measurement
JPS626156A (en) Carburization measuring probe
JPH0344666B2 (en)