JPH0344665B2 - - Google Patents

Info

Publication number
JPH0344665B2
JPH0344665B2 JP60145974A JP14597485A JPH0344665B2 JP H0344665 B2 JPH0344665 B2 JP H0344665B2 JP 60145974 A JP60145974 A JP 60145974A JP 14597485 A JP14597485 A JP 14597485A JP H0344665 B2 JPH0344665 B2 JP H0344665B2
Authority
JP
Japan
Prior art keywords
hall element
carburized
magnetic
magnet
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60145974A
Other languages
Japanese (ja)
Other versions
JPS626156A (en
Inventor
Makoto Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14597485A priority Critical patent/JPS626156A/en
Priority to EP86102443A priority patent/EP0193168A3/en
Publication of JPS626156A publication Critical patent/JPS626156A/en
Publication of JPH0344665B2 publication Critical patent/JPH0344665B2/ja
Priority to US07/785,197 priority patent/US5128613A/en
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石油化学工業におけるエチレン製造
用クラツキングチユーブ内面に発生する浸炭部を
外表面から非破壊的に計測する際等に用いる浸炭
計測用プルーブに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a carburizing method used for non-destructively measuring carburized parts generated on the inner surface of cracking tubes for ethylene production in the petrochemical industry from the outer surface. This relates to measurement probes.

(従来の技術) 原料ナフサを高温・高圧下に熱分解してエチレ
ン等を回収するための反応管であるエチレン製造
用クラツキングチユーブとしては、ASTM
HK40(0.4%C−25%Cr−20%Ni)、HP45(0.45
%C−25%Cr−35%Ni)、又はHP改良材(HP材
にMo、W、Nb等を単独若しくは複合添加したも
の)等が使用されている。
(Prior technology) As a cracking tube for ethylene production, which is a reaction tube for recovering ethylene, etc. by thermally decomposing raw material naphtha under high temperature and high pressure, ASTM
HK40 (0.4%C-25%Cr-20%Ni), HP45 (0.45
%C-25%Cr-35%Ni), or HP improving material (HP material with Mo, W, Nb, etc. added singly or in combination).

クラツキングチユーブは、長期間使用されるう
ちに、チユーブ内面に反応に伴つて生成される炭
素が付着し、この付着炭素が高温下において金属
内部に拡散して浸炭が発生する。浸炭により浸入
した炭素は、Cr炭化物を形成し、浸炭が加速さ
れた状態ではCr炭化物が粗大となり、低温域
(約800℃以下)で著しい延性低下を招く。またチ
ユーブの浸炭部の熱膨張係数は、非浸炭部のそれ
より小さいので、急激な加熱・冷却を行なうと、
引張・圧縮応力の発生と、前記低温域での延性低
下とが重畳して、チユーブに破壊が生ずることが
あつた。
When a cracking tube is used for a long period of time, carbon generated as a result of reaction adheres to the inner surface of the tube, and this adhered carbon diffuses into the metal at high temperatures, causing carburization. Carbon infiltrated by carburization forms Cr carbide, and when carburization is accelerated, the Cr carbide becomes coarse, resulting in a significant decrease in ductility at low temperatures (approximately 800°C or lower). Also, the coefficient of thermal expansion of the carburized part of the tube is smaller than that of the non-carburized part, so if rapid heating or cooling is performed,
The occurrence of tensile/compressive stress and the decrease in ductility in the low temperature range sometimes caused the tube to break.

従つて、チユーブの破壊を未然に防止し、安全
で円滑な操業を維持するには、浸炭検査を定期的
に実施し、浸炭の有無、及びその進行状況を適確
に把握することが必要である。
Therefore, in order to prevent tube destruction and maintain safe and smooth operation, it is necessary to conduct carburization inspections periodically to accurately understand the presence or absence of carburization and its progress. be.

浸炭深さを非破壊的に測定する方法としては、
浸炭部の組成変化、即ちCrの欠乏と、Fe及びNi
の相対的増量に伴なう磁気特性の変化を利用した
各種の磁気測定法が知られている。例えば、電磁
誘導によりチユーブの浸炭深さを判定する方法、
ホール効果を応用したガウスメータを用いる方法
等がある。
As a non-destructive method of measuring carburization depth,
Compositional changes in the carburized zone, i.e. Cr deficiency, Fe and Ni
Various magnetic measurement methods are known that utilize changes in magnetic properties due to a relative increase in the amount of . For example, a method of determining the carburization depth of a tube by electromagnetic induction,
There are methods such as using a Gaussmeter that applies the Hall effect.

ガウスメータを用いる測定方法は、第5図に示
すようにガウスメータ本体1に接続されたホール
素子2を内蔵するプルーブ3を、被検材であるチ
ユーブ4の外表面にあてがい、その内面に浸炭部
5が存在すると、浸炭部5の残留磁気の磁力線が
ホール素子2を横切ることにより生じるホール起
電圧を検出して、浸炭部5の深さを測定するよう
にしたものである。しかしながら、浸炭部の残留
磁束密度はあまりにも小さく(HP材で2〜3ガ
ウス程度)地磁気よりわずかに大きい程度では浸
炭深さを正確に測定するにはいたらない。
The measurement method using a Gaussmeter is as shown in FIG. 5, by applying a probe 3 containing a Hall element 2 connected to a Gaussmeter body 1 to the outer surface of a tube 4, which is a material to be tested, and forming a carburized portion 5 on its inner surface. If there is, the depth of the carburized part 5 is measured by detecting the Hall electromotive force generated when the lines of magnetic force of the residual magnetism of the carburized part 5 cross the Hall element 2. However, the residual magnetic flux density of the carburized part is too small (about 2 to 3 gauss for HP material), and if it is slightly larger than the earth's magnetism, it is not possible to accurately measure the carburized depth.

一方、電磁誘導法により得られる浸炭深さ測定
結果と、破壊検査による実測結果とを対比する
と、HK40材チユーブについては比較的良い対応
か得られるものの、HP材やHP改良材のチユー
ブでは、測定値のバラツキが大きく、信頼性に乏
しかつた。
On the other hand, when comparing the carburization depth measurement results obtained by the electromagnetic induction method with the actual measurement results by destructive inspection, a relatively good correspondence is obtained for the HK40 material tube, but the measurement results for the HP material and HP improved material tube are The values varied widely and were unreliable.

これは、HP材やHP改良材のチユーブ4では、
その外表面に生成した脱炭層(その深さはチユー
ブの使用温度、使用磁気に依存し、高温、長時間
となる程、深さが増す)6に脱炭と共に脱Crが
生じ、その部分の透磁率が高くなることによるも
のである。即ち、これらのチユーブにあつては、
高温下で長時間使用されると、チユーブ内面に浸
炭が生じていなくても、外表面に生じた脱炭層
(層深さ約50〜500μm)によりその深さが大きい
場合に高い指示値を示すのでこの指示値部分を浸
炭発生と見誤るためである。
This is true for tube 4 of HP material and HP improved material.
Decarburization occurs in the decarburized layer (the depth of which depends on the operating temperature and magnetism of the tube; the higher the temperature and the longer the time, the deeper the depth increases) formed on the outer surface of the tube. This is due to the increase in magnetic permeability. That is, for these tubes,
When used for a long time at high temperatures, even if there is no carburization on the inner surface of the tube, a decarburized layer (approximately 50 to 500 μm deep) that forms on the outer surface will give a high reading if the depth is large. This is because this indicated value can be mistaken for carburization.

このためチユーブ4の浸炭部5の有無及び深さ
を測定する際には、チユーブ4の外表面の脱炭層
6を予めグラインダ等で研削除去した上で再測定
し、評価しなければならないと云うのが実情であ
る。従つて、測定個所が僅かである場合はともか
く、多数の個所を測定しようとすれば、多大の時
間を費やさなければならず、実用性の点で問題が
多い。
Therefore, when measuring the presence or absence and depth of the carburized portion 5 of the tube 4, it is necessary to first remove the decarburized layer 6 on the outer surface of the tube 4 with a grinder, etc., and then remeasure and evaluate. That is the reality. Therefore, even if the number of locations to be measured is small, if a large number of locations are to be measured, a large amount of time must be spent, which poses many problems in terms of practicality.

そこで、出願人は、脱炭層6をグラインダ処理
することなく簡易かつ迅速に測定できる技術を既
に提案した。即ち、これは、第6図に示すよう
に、永久磁石7と、この磁石7のN極とS極との
中間部の磁場内に、磁石7と略平行となるように
配置されたホール素子8とを備えたプルーブ9を
使用するもであつて、プルーブ9が浸炭部5に接
近すれば、磁石7の磁場が浸炭部5による影響を
受けて、その磁力線が点線で示すようにホール素
子8を斜めに横切ることを利用し、その時に発生
する起電圧でチユーブ4内面の浸炭部5を判断す
るようにしたものである。
Therefore, the applicant has already proposed a technique that allows simple and quick measurement of the decarburized layer 6 without grinding it. That is, as shown in FIG. 6, this is a Hall element arranged approximately parallel to the permanent magnet 7 in the magnetic field between the N pole and the S pole of the magnet 7. 8, and when the probe 9 approaches the carburized part 5, the magnetic field of the magnet 7 is influenced by the carburized part 5, and the lines of magnetic force are influenced by the Hall element as shown by the dotted line. 8 is used to cross the tube diagonally, and the carburized portion 5 on the inner surface of the tube 4 is determined based on the electromotive force generated at that time.

従つて、チユーブ4の外表面に脱炭層6が部分
的に存在するならば、その脱炭層6の影響により
磁石7の磁束分布に変化が生じるが、脱炭層6は
チユーブ4の外表面の全域にわたつて存在するた
め、それによつて磁石7の磁場が変化し、磁力線
がホール素子8を斜めに横切るようなことはな
い。つまり、浸炭部5がない限り、ホール素子8
を通る磁力線は、ホール素子8と平行なままであ
り、ホール素子8に起電圧を生じることはなく、
従つて、脱炭層6を浸炭部5と誤認することはな
い。
Therefore, if the decarburized layer 6 partially exists on the outer surface of the tube 4, the magnetic flux distribution of the magnet 7 will change due to the influence of the decarburized layer 6, but the decarburized layer 6 covers the entire outer surface of the tube 4. Since the magnetic field exists across the Hall element 8, the magnetic field of the magnet 7 changes thereby, and the lines of magnetic force do not cross the Hall element 8 diagonally. In other words, unless there is a carburized part 5, the Hall element 8
The lines of magnetic force passing through remain parallel to the Hall element 8, and no electromotive force is generated in the Hall element 8.
Therefore, the decarburized layer 6 will not be mistaken as the carburized portion 5.

(発明が解決しようとする問題点) しかしながら、このような構成のプルーブ9を
使用する場合、浸炭部5が広がりを持つている部
分の中央においては、ホール素子8を通る磁力線
は、ホール素子8と平行になり、出力の起電圧が
零となるため、その判断ができなくなる問題があ
る。つまり、浸炭部5の両端部では磁力線がホー
ル素子8に対して斜め方向に横切るため、ホール
素子8の起電圧の出力波形は、第7図に示すよう
になる。しかし、これは第8図に示すように局部
的な浸炭部5が2個所ある場合の出力波形と同じ
であり、従つて、広がりのある浸炭部5がある場
合と局部的な2箇所の浸炭部5がある場合との区
別をすることができなかつた。
(Problem to be Solved by the Invention) However, when using the probe 9 having such a configuration, at the center of the part where the carburized part 5 has a wide spread, the lines of magnetic force passing through the Hall element 8 Since the voltage becomes parallel to the output voltage and the electromotive voltage of the output becomes zero, there is a problem that it becomes impossible to make a determination. That is, since the lines of magnetic force obliquely cross the Hall element 8 at both ends of the carburized part 5, the output waveform of the electromotive force of the Hall element 8 is as shown in FIG. However, this is the same as the output waveform when there are two locally carburized parts 5 as shown in FIG. It was not possible to distinguish between cases where part 5 was present.

本発明は、このような問題点に鑑み、浸炭部の
深さと範囲を判断し得る新規な浸炭計測用プルー
ブを提案するものである。
In view of these problems, the present invention proposes a novel probe for measuring carburization that can determine the depth and range of a carburized portion.

(問題点を解決するための手段) 本発明は、前述のような問題点を解決するため
の具体的手段として、磁石と、該磁石の磁場内に
配置されたホール素子とを備え、被検材内部の浸
炭部による磁力線の変化によつて該浸炭部を計測
するようにした浸炭計測用プルーブにおいて、磁
石の被検材側でかつ一対の磁極間の中央部側に、
磁力線の方向と略沿うように第1ホール素子を設
けると共に、浸炭部の近接時に磁束密度が減少す
るように第2ホール素子を設け、磁石に対して第
2ホール素子と反対側に第3ホール素子を設け、
第3ホール素子側の磁場が、被検材の浸炭部のな
い部分での第2ホール素子側の磁場と略等価とな
るように該第3ホール素子の近傍にダミー片を設
けたものである。
(Means for Solving the Problems) As a specific means for solving the above-mentioned problems, the present invention includes a magnet and a Hall element disposed within the magnetic field of the magnet. In a probe for carburization measurement that measures a carburized part by changes in magnetic lines of force caused by the carburized part inside the material, on the side of the material to be inspected of the magnet and on the central part side between a pair of magnetic poles,
A first Hall element is provided so as to be substantially along the direction of the magnetic lines of force, a second Hall element is provided so that the magnetic flux density decreases when the carburized part approaches, and a third Hall element is provided on the opposite side of the second Hall element with respect to the magnet. Provide an element,
A dummy piece is provided near the third Hall element so that the magnetic field on the third Hall element side is approximately equivalent to the magnetic field on the second Hall element side in a portion of the material to be inspected that does not have a carburized part. .

(作用) チユーブ17の浸炭部18の計測に際して、第
1ホール素子13が浸炭部18に近接すると、磁
石12の磁力線が第1ホール素子13に対して斜
めに横切り、その出力として浸炭部18の深さに
相関する起電圧が発生する。また浸炭部18が広
がりを有する場合には、その両端部で第1ホール
素子13が出力を発生する。一方、第2ホール素
子14を通る磁力線の磁束密度は、浸炭部18が
あれば減少するので、その起電圧も小となる。ま
た第3ホール素子15においては、その第3ホー
ル素子15に脱炭層19相当分の起電圧が発生し
ているので、これを第2ホール素子14の出力か
ら相殺することにより、脱炭層19の影響が少な
くなる。
(Function) When the first Hall element 13 approaches the carburized part 18 when measuring the carburized part 18 of the tube 17, the lines of magnetic force of the magnet 12 diagonally cross the first Hall element 13, and the output of the carburized part 18 is An electromotive force is generated that correlates with depth. Further, when the carburized portion 18 has a spread, the first Hall element 13 generates an output at both ends thereof. On the other hand, the magnetic flux density of the lines of magnetic force passing through the second Hall element 14 is reduced if the carburized portion 18 is present, so the electromotive voltage thereof is also reduced. Further, in the third Hall element 15, an electromotive force equivalent to the decarburized layer 19 is generated, so by canceling this from the output of the second Hall element 14, the decarburized layer 19 is generated. The impact will be less.

(実施例) 以下、図示の実施例について本発明を詳述する
と、第1図に示すように、この浸炭計測用プルー
ブ10は、保護容器11内に永久磁石12と第1
ホール素子13と第2ホール素子14と第3ホー
ル素子15とを設けると共に、保護容器11上に
ダミー片16を設けて成る。磁石12は棒状であ
り、この磁石12のクラツキングチユーブ(被検
材)17側において、その磁極N・S間の略中央
部に位置するように2個のホール素子13,14
が設けられている。ホール素子13,14は偏平
な板状であつて、板厚方向の磁界に対して直角方
向に電流を流した時に、その磁界及び電流に対し
て直角方向に起電圧が生ずるようになつている。
第1ホール素子13は磁石12と平行であつて、
浸炭部18のない通常時に磁石12の磁力線と略
沿うように設けられている。第2ホール素子14
は第1ホール素子13と略直角方向に配置されて
おり、通常時に磁石12の磁力線が第2ホール素
子14を直角に横切り、かつ浸炭部18の近接時
に磁束密度が減少するようになつている。
(Embodiment) Hereinafter, the present invention will be described in detail with reference to the illustrated embodiment. As shown in FIG.
A Hall element 13, a second Hall element 14, and a third Hall element 15 are provided, and a dummy piece 16 is provided on the protective container 11. The magnet 12 is rod-shaped, and two Hall elements 13 and 14 are installed on the cracking tube (test material) 17 side of the magnet 12 so as to be located approximately in the center between the magnetic poles N and S.
is provided. The Hall elements 13 and 14 have a flat plate shape, and when a current is passed in a direction perpendicular to a magnetic field in the thickness direction of the plate, an electromotive force is generated in a direction perpendicular to the magnetic field and current. .
The first Hall element 13 is parallel to the magnet 12, and
It is provided so as to substantially follow the lines of magnetic force of the magnet 12 during normal operation without the carburized portion 18 . Second Hall element 14
is arranged in a direction substantially perpendicular to the first Hall element 13, so that the lines of magnetic force of the magnet 12 normally cross the second Hall element 14 at right angles, and the magnetic flux density decreases when the carburized part 18 approaches. .

ダミー片16はチユーブ17の浸炭部18以外
の部分、即ち脱炭層19部分と略同等の透磁率を
有するものであり、例えば脱炭層20を有するク
ラツキングチユーブの一部を切断して使用するこ
とも可能であるし、また全く別の部材を使用して
も良い。このダミー片16は磁石12に対してチ
ユーブ17と略対称になるように、チユーブ17
と等距離だけ離れて設けられている。第3ホール
素子15は第2ホール素子14と同じものであつ
て、磁石12の一対の磁極間の中央部近傍に、磁
石12に対して第2ホール素子14と略対称とな
るように配置されており、従つて、第3ホール素
子15側の磁場は、ダミー片16があるため、浸
炭部18のないチユーブ17の部分での第2ホー
ル素子14側の磁場と略等価的である。この第3
ホール素子15は第2ホール素子14に対して起
電圧が相殺するように逆方向に接続されている。
保護容器11は非磁性材料から成り、ダミー片1
6と結合されている。
The dummy piece 16 has substantially the same magnetic permeability as the portion of the tube 17 other than the carburized portion 18, that is, the decarburized layer 19 portion, and is used by cutting, for example, a part of the cracking tube that has the decarburized layer 20. Alternatively, a completely different member may be used. This dummy piece 16 is attached to the tube 17 so that it is approximately symmetrical to the tube 17 with respect to the magnet 12.
are placed equidistant apart. The third Hall element 15 is the same as the second Hall element 14 and is arranged near the center between the pair of magnetic poles of the magnet 12 so as to be approximately symmetrical with the second Hall element 14 with respect to the magnet 12. Therefore, because of the presence of the dummy piece 16, the magnetic field on the third Hall element 15 side is approximately equivalent to the magnetic field on the second Hall element 14 side in the portion of the tube 17 where the carburized portion 18 is not present. This third
The Hall element 15 is connected in the opposite direction to the second Hall element 14 so that the electromotive force cancels out.
The protective container 11 is made of a non-magnetic material, and the dummy piece 1
It is combined with 6.

上記構成のプルーブ10を用いて、クラツキン
グチユーブ17の浸炭部16の計測を行なう際に
は、プルーブ10をチユーブ17外表面にあてが
い、チユーブ17の軸心方向及び周方向にプルー
ブ10を走査する。
When measuring the carburized portion 16 of the cracking tube 17 using the probe 10 configured as described above, the probe 10 is applied to the outer surface of the tube 17, and the probe 10 is scanned in the axial direction and circumferential direction of the tube 17. do.

チユーブ17に浸炭部18がない場合には、磁
石12の磁界が乱されることがないため、磁極
N・S間の中央部では磁石12と略平行に磁束が
分布している。従つて、第1ホール素子13を横
切る磁力線は略平行であるため、その起電圧の出
力は零もしくは低レベルの一定値を示す。一方、
第2ホール素子14及び第3ホール素子15側で
は、その近傍にチユーブ17及びダミー片16の
高透磁率の脱炭層19,20が存在し、これによ
つて磁石12の磁力線が引きつけられるが、両者
の磁場が略等価であるため、各ホール素子14,
15を通る磁束密度は共に大であり、その起電圧
は略同等のレベルを示す。従つて、第2ホール素
子14と第3ホール素子15との起電圧を相殺し
て得られる端子21の出力は殆んど零に近い値で
あり、この出力と第1ホール素子13の出力とか
らチユーブ17に浸炭部18が存在しないことが
判る。
When the tube 17 does not have the carburized portion 18, the magnetic field of the magnet 12 is not disturbed, so that magnetic flux is distributed approximately parallel to the magnet 12 in the center between the magnetic poles N and S. Therefore, since the lines of magnetic force that cross the first Hall element 13 are substantially parallel, the output of the electromotive voltage exhibits a constant value of zero or a low level. on the other hand,
On the second Hall element 14 and third Hall element 15 sides, decarburized layers 19 and 20 of high magnetic permeability of the tube 17 and dummy piece 16 are present in the vicinity thereof, and the lines of magnetic force of the magnet 12 are attracted by this. Since the magnetic fields of both are approximately equivalent, each Hall element 14,
The magnetic flux densities passing through 15 are both large, and their electromotive voltages exhibit approximately the same level. Therefore, the output of the terminal 21 obtained by canceling out the electromotive voltages of the second Hall element 14 and the third Hall element 15 is almost a value close to zero, and this output and the output of the first Hall element 13 are It can be seen from the figure that no carburized portion 18 exists in the tube 17.

チユーブ17内部に広がりを有する浸炭部18
が存在する場合には、プルーブ10が接近する
と、磁石12の磁力線が浸炭部18の高い透磁率
の影響を受けて強く引きつけられるため、第1ホ
ール素子13を通る磁力線に傾きが生じる。この
ため、第1ホール素子13の出力波形は、第3図
Dに示す如く浸炭部18の両端部において起電圧
が立ち上がつたものとなる。また、浸炭部18で
磁力線が強く引きつけられると、第2ホール素子
14を通る磁力線の磁束密度はそれに応じて減少
する。例えば、第2図に示すように浸炭部18の
丁度中央部にプルーブ10がある場合を仮定する
と、磁石12のN極から出た磁力線は強く浸炭部
18側に引き付けられて、透磁率の高い浸炭部1
8を通るようになり、この浸炭部18から磁石1
2のS極側に入るため、第2ホール素子14を通
る磁力線の磁束密度が疎になる。従つて、第2ホ
ール素子14の起電圧の出力波形は、第3図Aに
示すように浸炭部18の中央部分でレベルが下が
るようになる。この場合、第2ホール素子14の
磁束密度は、主に浸炭部18の深さに依存する。
しかし、浸炭部18は明瞭に際立つてできるもの
とは限らず、また同じ深さであつてもチユーブ1
7側全体としての透磁率は、浸炭部18の端部側
程低くなるので、第2ホール素子14の出力波形
は、第3図Aの如くなだらかに変化する。
Carburized portion 18 that extends inside the tube 17
exists, when the probe 10 approaches, the magnetic lines of force of the magnet 12 are strongly attracted under the influence of the high magnetic permeability of the carburized part 18, so that the lines of magnetic force passing through the first Hall element 13 are tilted. Therefore, the output waveform of the first Hall element 13 is such that an electromotive voltage rises at both ends of the carburized portion 18, as shown in FIG. 3D. Furthermore, when the lines of magnetic force are strongly attracted by the carburized portion 18, the magnetic flux density of the lines of magnetic force passing through the second Hall element 14 decreases accordingly. For example, assuming that the probe 10 is located exactly in the center of the carburized part 18 as shown in FIG. Carburized part 1
8, and from this carburized part 18 the magnet 1
2, the magnetic flux density of the lines of magnetic force passing through the second Hall element 14 becomes sparse. Therefore, the level of the output waveform of the electromotive force of the second Hall element 14 decreases in the central portion of the carburized portion 18, as shown in FIG. 3A. In this case, the magnetic flux density of the second Hall element 14 mainly depends on the depth of the carburized portion 18.
However, the carburized part 18 is not necessarily formed clearly and conspicuously, and even if the carburized part 18 is at the same depth, the tube 1
Since the overall magnetic permeability of the 7-side becomes lower toward the end of the carburized portion 18, the output waveform of the second Hall element 14 changes smoothly as shown in FIG. 3A.

一方、第3ホール素子15側では、磁石12の
磁力線が高透磁率で断面積の大きい浸炭部18側
にき強く引き寄せられるため、ダミー片16があ
るものの、この第3ホール素子15を通る磁束密
度が若干減少することになる。これによつて第2
ホール素子14及び第3ホール素子15の起電圧
は、第3図A.Bのような波形となり、これら両起
電圧を相殺して得られる端子21の出力は、第3
図Cに示すように、チユーブ17の脱炭層19の
影響を除去し、浸炭部18が際立つたものとな
る。
On the other hand, on the third Hall element 15 side, the lines of magnetic force of the magnet 12 are strongly attracted to the carburized part 18 side, which has high magnetic permeability and a large cross-sectional area, so although there is a dummy piece 16, the magnetic flux passing through this third Hall element 15 The density will decrease slightly. This results in the second
The electromotive voltages of the Hall element 14 and the third Hall element 15 have waveforms as shown in FIG.
As shown in FIG. C, the influence of the decarburized layer 19 of the tube 17 is removed, and the carburized portion 18 becomes conspicuous.

第3図に示すような出力波形が得られると、第
1ホール素子13の起電圧の立ち上がりが2箇所
あり、その間において第2ホール素子14及び第
3ホール素子15の起電圧を相殺した出力が所定
レベル以上の値を示す時には、その位置に広がり
を持つた浸炭部18が存在することが判かり、ま
たその浸炭部18の面積も判断できる。なお、こ
の場合の浸炭部18の浸炭深さは、第1ホール素
子13の起電圧の波高値に相関しており、これか
ら浸炭深さを知ることができる。
When the output waveform shown in FIG. 3 is obtained, there are two rises in the electromotive force of the first Hall element 13, and an output obtained by canceling out the electromotive voltages of the second Hall element 14 and the third Hall element 15 between them. When the value is above a predetermined level, it is known that a carburized portion 18 with a spread exists at that position, and the area of the carburized portion 18 can also be determined. Note that the carburization depth of the carburized portion 18 in this case is correlated with the peak value of the electromotive force of the first Hall element 13, and the carburization depth can be determined from this.

第2ホール素子14及び第3ホール素子15
は、磁石12の磁極間の中央部に配置するものに
限られず、例えば第4図に示すように、一方の磁
極の磁石長手方向の外方近傍であつても良い。こ
の場合にも、浸炭部18に近接すれば、磁石12
の磁力線が強くチユーブ17側に引きよせられる
ため、第2ホール素子14及び第3ホール素子1
5を通る磁力線の磁束密度が低くなり、浸炭部1
8の計測が可能である。
Second Hall element 14 and third Hall element 15
is not limited to being placed in the center between the magnetic poles of the magnet 12, but may be placed near the outside of one of the magnetic poles in the longitudinal direction of the magnet, as shown in FIG. 4, for example. In this case as well, if the magnet 12 is close to the carburized part 18,
Because the lines of magnetic force are strongly drawn toward the tube 17, the second Hall element 14 and the third Hall element 1
The magnetic flux density of the lines of magnetic force passing through 5 becomes lower, and the carburized part 1
8 measurements are possible.

なお、上記実施例では、第1ホール素子13を
磁石12と平行に、第2ホール素子14及び第3
ホール素子15を第1ホール素子13と略直角に
夫々配置しているが、このように厳密に配置する
必要がなく、第1ホール素子13は磁力線と沿う
方向であり、第2ホール素子14は浸炭部18の
近接による磁束密度の減少を検出し得る配置であ
れば十分である。
In the above embodiment, the first Hall element 13 is placed parallel to the magnet 12, and the second Hall element 14 and the third Hall element 13 are placed parallel to each other.
Although the Hall elements 15 are arranged approximately at right angles to the first Hall element 13, it is not necessary to arrange them strictly in this way, and the first Hall element 13 is arranged in a direction along the lines of magnetic force, and the second Hall element 14 is arranged in a direction along the lines of magnetic force. Any arrangement that can detect a decrease in magnetic flux density due to the proximity of the carburized portion 18 is sufficient.

磁石12は中実状の棒磁石に限らず、角筒状、
円筒状等であつても良いし、また第6図に示すよ
うにコ字状であつても良い。
The magnet 12 is not limited to a solid bar magnet, but may also be a rectangular cylindrical magnet,
It may be cylindrical or the like, or it may be U-shaped as shown in FIG.

更に磁石としては、実施例に示すように永久磁
石12に代替して、電磁石を使用することも可能
である。
Further, as the magnet, it is also possible to use an electromagnet instead of the permanent magnet 12 as shown in the embodiment.

プルーブ10はチユーブ17の周方向に複数個
設けておいても良い。
A plurality of probes 10 may be provided in the circumferential direction of the tube 17.

(発明の効果) 本発明によれば、磁石の被検出側でかつ一対の
磁極間の中央部側に、磁力線の方向と略沿うよう
に第1ホール素子を設ける一方、これとは別の第
2ホール素子を、浸炭部に近接時に磁束密度が減
少するように設けているから、チユーブに浸炭部
がない場合には、磁石の磁界が乱されることがな
いため、第1ホール素子を横切る磁力線は略平行
であり、その起電圧の出力は零もしくは低レベル
の一定値を示す。一方、第2ホール素子及び第3
ホール素子側では、例えチユーブに脱炭層が存在
しても、ダミー片によつて両者の磁場が略等価と
なるため、各ホール素子を通る磁束密度は共に大
であり、その起電圧は略同等のレベルを示す。従
つて、第2ホール素子と第3ホール素子との出力
と第1ホール素子の出力とからチユーブに浸炭部
が存在しないことが判る。また、チユーブ内部に
浸炭部が存在する場合には、プルーブが接近する
と、磁石の磁力線が浸炭部の高い透磁率の影響を
受けて強く引きつけられるため、第1ホール素子
を通る磁力線に傾きが生じる。このため、第1ホ
ール素子の出力波形は、浸炭部の両端部において
起電圧が立ち上がつたものとなる。また、第2ホ
ール素子を通る磁力線の磁束密度は減少する。従
つて、第2ホール素子の起電圧の出力波形は、浸
炭部の中央部分でレベルが下がるようになる。一
方、第3ホール素子側では、磁石の磁力線が高透
磁率で断面積の大きい浸炭部側に強く引き寄せら
れるため、ダミー片があるものの、この第3ホー
ル素子を通る磁束密度が若干減少することにな
る。これによつて第2ホール素子及び第3ホール
素子の起電圧は、チユーブの脱炭層の影響を除去
し、浸炭部が際立つたものとなる。従つて、例え
ば、第1ホール素子の起電圧の立ち上がりが2箇
所あり、その間において第2ホール素子及び第3
ホール素子の起電圧を相殺した出力が所定レベル
以上の値を示す時には、その位置に広がりを持つ
た浸炭部が存在することが判かり、またその浸炭
部の面積も判断できる。
(Effects of the Invention) According to the present invention, the first Hall element is provided on the detected side of the magnet and on the center side between the pair of magnetic poles so as to be substantially along the direction of the lines of magnetic force, and the first Hall element Since the two-hole element is provided in such a way that the magnetic flux density decreases when approaching the carburized part, if there is no carburized part in the tube, the magnetic field of the magnet will not be disturbed, so the magnetic flux density will decrease when approaching the carburized part. The lines of magnetic force are approximately parallel, and the output of the electromotive voltage exhibits a constant value of zero or a low level. On the other hand, the second Hall element and the third
On the Hall element side, even if there is a decarburized layer in the tube, the dummy piece makes the two magnetic fields approximately equivalent, so the magnetic flux density passing through each Hall element is large, and the electromotive force is approximately the same. Indicates the level of Therefore, it can be seen from the outputs of the second Hall element, the third Hall element, and the output of the first Hall element that there is no carburized portion in the tube. In addition, if there is a carburized part inside the tube, when the probe approaches, the magnetic lines of force of the magnet are strongly attracted due to the influence of the high magnetic permeability of the carburized part, causing a slope in the lines of magnetic force passing through the first Hall element. . Therefore, the output waveform of the first Hall element is such that an electromotive voltage rises at both ends of the carburized portion. Furthermore, the magnetic flux density of the lines of magnetic force passing through the second Hall element decreases. Therefore, the level of the output waveform of the electromotive force of the second Hall element decreases in the central portion of the carburized portion. On the other hand, on the third Hall element side, the magnetic lines of force of the magnet are strongly attracted to the carburized part side, which has high magnetic permeability and a large cross-sectional area, so although there is a dummy piece, the magnetic flux density passing through this third Hall element decreases slightly. become. As a result, the electromotive force of the second Hall element and the third Hall element is influenced by the decarburized layer of the tube, and the carburized portion becomes more prominent. Therefore, for example, there are two places where the electromotive force of the first Hall element rises, and between them there are two places where the electromotive force of the first Hall element and the third Hall element rise.
When the output after canceling the electromotive force of the Hall element shows a value equal to or higher than a predetermined level, it is known that a carburized portion with a spread exists at that position, and the area of the carburized portion can also be determined.

即ち、浸炭部の存在による磁力線の傾きの変化
と磁束密度の変化とを組み合わせて、浸炭部の深
さのみならず、広がりを有する浸炭部をも計測で
き、その浸炭部の面積の判断が可能となり、従来
に比較して計測精度が著しく向上する。また第2
ホール素子は磁極の近傍に設けて、浸炭部の近接
時に第2ホール素子を通る磁力線の磁束密度が増
加することも考えられるが、本発明では第2ホー
ル素子の磁束密度が減少するようにしているか
ら、磁束密度の増減の変化を大きくでき、浸炭部
と非浸炭部との区別が容易になる。しかも、ダミ
ー片を設けているので、第2ホール素子と第3ホ
ール素子との出力によつて浸炭部以外の部分によ
る影響を除去することが可能であり、信頼性のあ
る計測を容易、迅速に行ない得る利点がある。
In other words, by combining changes in the slope of the magnetic field lines and changes in magnetic flux density due to the presence of a carburized part, it is possible to measure not only the depth of the carburized part, but also the spread of the carburized part, making it possible to determine the area of the carburized part. Therefore, measurement accuracy is significantly improved compared to the conventional method. Also the second
It is conceivable that the Hall element is provided near the magnetic pole so that the magnetic flux density of the lines of magnetic force passing through the second Hall element increases when the carburized part approaches, but in the present invention, the magnetic flux density of the second Hall element is reduced. Therefore, it is possible to increase or decrease the change in magnetic flux density, and it becomes easy to distinguish between carburized parts and non-carburized parts. Moreover, since the dummy piece is provided, it is possible to eliminate the influence of parts other than the carburized part by the output of the second Hall element and the third Hall element, making reliable measurement easy and quick. There are benefits to doing so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2
図は同作用説明図、第3図は同波形図、第4図は
本発明の他の実施例を示す断面図、第5図は従来
例を示す構成図、第6図は別の従来例を示す構成
図、第7図は波形図、第8図はチユーブの断面図
である。 10……プルーブ、12……永久磁石、13…
…第1ホール素子、14……第2ホール素子、1
5……第3ホール素子、16……ダミー片、17
……クラツキングチユーブ、18……浸炭部、1
9……脱炭層。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and FIG.
3 is a waveform diagram, FIG. 4 is a sectional view showing another embodiment of the present invention, FIG. 5 is a configuration diagram showing a conventional example, and FIG. 6 is another conventional example. FIG. 7 is a waveform diagram, and FIG. 8 is a sectional view of the tube. 10...Probe, 12...Permanent magnet, 13...
...First Hall element, 14...Second Hall element, 1
5...Third Hall element, 16...Dummy piece, 17
... Cracking tube, 18 ... Carburizing section, 1
9...Decarburized layer.

Claims (1)

【特許請求の範囲】[Claims] 1 磁石と、該磁石の磁場内に配置されたホール
素子とを備え、被検材内部の浸炭部による磁力線
の変化によつて該浸炭部を計測するようにした浸
炭計測用プルーブにおいて、磁石の被検材側でか
つ一対の磁極間の中央部側に、磁力線の方向と略
沿うように第1ホール素子を設けると共に、浸炭
部の近接時に磁束密度が減少するように第2ホー
ル素子を設け、磁石に対して第2ホール素子と反
対側に第3ホール素子を設け、第3ホール素子側
の磁場が、被検材の浸炭部のない部分での第2ホ
ール素子側の磁場と略等価となるように該第3ホ
ール素子の近傍にダミー片を設けたことを特徴と
する浸炭計測用プルーブ。
1. In a probe for carburization measurement, which is equipped with a magnet and a Hall element placed in the magnetic field of the magnet, and measures the carburized part by changes in the lines of magnetic force caused by the carburized part inside the material to be inspected. A first Hall element is provided on the side of the material to be inspected and on the center side between the pair of magnetic poles so as to be substantially along the direction of the lines of magnetic force, and a second Hall element is provided so that the magnetic flux density decreases when the carburized part approaches. , a third Hall element is provided on the opposite side of the second Hall element to the magnet, and the magnetic field on the third Hall element side is approximately equivalent to the magnetic field on the second Hall element side in a portion of the test material that does not have a carburized part. A probe for carburization measurement, characterized in that a dummy piece is provided near the third Hall element so that the following is achieved.
JP14597485A 1985-02-25 1985-07-02 Carburization measuring probe Granted JPS626156A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14597485A JPS626156A (en) 1985-07-02 1985-07-02 Carburization measuring probe
EP86102443A EP0193168A3 (en) 1985-02-25 1986-02-25 Method of inspecting carburization and probe therefor
US07/785,197 US5128613A (en) 1985-02-25 1991-11-01 Method of inspecting magnetic carburization in a non-permeable material and probe therefore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14597485A JPS626156A (en) 1985-07-02 1985-07-02 Carburization measuring probe

Publications (2)

Publication Number Publication Date
JPS626156A JPS626156A (en) 1987-01-13
JPH0344665B2 true JPH0344665B2 (en) 1991-07-08

Family

ID=15397287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14597485A Granted JPS626156A (en) 1985-02-25 1985-07-02 Carburization measuring probe

Country Status (1)

Country Link
JP (1) JPS626156A (en)

Also Published As

Publication number Publication date
JPS626156A (en) 1987-01-13

Similar Documents

Publication Publication Date Title
US5128613A (en) Method of inspecting magnetic carburization in a non-permeable material and probe therefore
Mierczak et al. A new method for evaluation of mechanical stress using the reciprocal amplitude of magnetic Barkhausen noise
Moorthy et al. Evaluation of tempering induced changes in the hardness profile of case-carburised EN36 steel using magnetic Barkhausen noise analysis
US4855676A (en) Ferromagnetic eddy current probe having transmit and receive coil assemblies
Moorthy et al. Magnetic Barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised En36 steel
US5117182A (en) Ferromagnetic eddy current probe having multiple levels of magnetization
Moorthy Important factors influencing the magnetic Barkhausen noise profile
Kasai et al. Detection of carburization in ethylene pyrolysis furnace tubes by a C core probe with magnetization
Stevens et al. Through-wall carburization detection in ethylene pyrolysis tubes
US5105151A (en) Method and apparatus for magnetically detecting a carburized portion of an article while discriminating a non-carburized deteriorated layer of the article
JPH0344664B2 (en)
JPH0344665B2 (en)
JP4831298B2 (en) Hardening depth measuring device
JPH0344666B2 (en)
JPH0449653B2 (en)
JPH0344663B2 (en)
EP3118641B1 (en) An improved giant magneto-impedance (gmi) based sensing device for the detection of carburization in austenitic stainless steel
JPS626159A (en) Carburization measuring probe
JPS626153A (en) Carburization measuring probe
Oka et al. Fatigue dependence of residual magnetization in austenitic stainless steel plates
JPH0445071B2 (en)
JPS626160A (en) Carburization measuring probe
Stegemann et al. Evaluation of high spatial resolution imaging of magnetic stray fields for early damage detection
JPS626158A (en) Carburization measuring probe
JP4109114B2 (en) Detector for nondestructive evaluation of steel structures or components