JPS6260283A - Buried type semiconductor laser - Google Patents

Buried type semiconductor laser

Info

Publication number
JPS6260283A
JPS6260283A JP19998785A JP19998785A JPS6260283A JP S6260283 A JPS6260283 A JP S6260283A JP 19998785 A JP19998785 A JP 19998785A JP 19998785 A JP19998785 A JP 19998785A JP S6260283 A JPS6260283 A JP S6260283A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor layer
refractive index
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19998785A
Other languages
Japanese (ja)
Inventor
Hideo Kawano
川野 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19998785A priority Critical patent/JPS6260283A/en
Publication of JPS6260283A publication Critical patent/JPS6260283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize secure current constriction effect and facilitate stable basic horizontal mode oscillation and high output operation and improve yield by a method wherein a P<+> type GaAs layer is employed as a top layer and a P-N junction is formed. CONSTITUTION:A P<+> type GaAs layer 22 is employed as a top layer. A diffusion process of a P-type impurity is eliminated by doping the top layer 22 with a P-type impurity such as Zn or Ge with concentration of about 10<19>cm<-3>. As an N-type electrode is formed on an N<+> type GaAs layer (corresponding to the P<+> type GaAs layer 22) and, further, an N-type Al0.2Ga0.8As layer and a P-type Al0.4Ga0.6As buried layer (corresponding to a P-type Al0.2Ga0.8As layer 21 and an N-type Al0.4Ga0.6As buried layer 10) form a P-N junction, the diffusion potential is higher than that of the P-N junction in a mesa-stripe part so that a leakage current to the outside of the mesa part can be avoided completely. Moreover, the N<+> type GaAs layer can be formed to have sufficient thickness so that introduction of crystal defects caused by ohmic alloy of the N-type electrode also can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電流狭窄を施したストライブ埋め込み型半導
体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a stripe-embedded semiconductor laser with current confinement.

〔従来の技術とその問題点〕[Conventional technology and its problems]

埋め込み型半導体レーザの構造は、屈折率の高い活性領
域が屈折率の低い物質によって囲まれ、例えば、G昌、
活性層の場合、A1.A、層によって包囲された強い光
導波作用をもっている。この結果、このpn接合面に対
して垂直方向のみならず、水平方向も完全な屈折率導波
となるため安定した基本横モード発振及び低非点収差が
実現可能となる。この半導体レーザは、その構造上比較
的容易に電流狭窄ができるため、低発振閾値、高効率の
半導体レーザを実現できる4 このような埋め込み構造における電流狭窄を完全にする
ためには、メサストライプ部のpn順方向バイアス接合
と、埋め込み層のnp逆バイアス接合の接合面を一致さ
せる必要がある。しかし、その埋め込み成長過程では、
−fflにメサ側面部から成長していくため、電流阻止
層として働・く埋め込み層がメサ側面にぜり」二がうた
構造となることが多く、電流狭窄が不完全になることが
多い。
The structure of a buried semiconductor laser is such that an active region with a high refractive index is surrounded by a material with a low refractive index.
In the case of the active layer, A1. A: It has a strong optical waveguide effect because it is surrounded by layers. As a result, complete refractive index waveguiding is achieved not only in the vertical direction but also in the horizontal direction with respect to the pn junction surface, making it possible to realize stable fundamental transverse mode oscillation and low astigmatism. This semiconductor laser can achieve current confinement relatively easily due to its structure, making it possible to realize a semiconductor laser with a low oscillation threshold and high efficiency.4 In order to achieve complete current confinement in such a buried structure, it is necessary to It is necessary to make the junction planes of the pn forward bias junction of the buried layer and the np reverse bias junction of the buried layer coincide with each other. However, in the embedded growth process,
-ffl, the buried layer acting as a current blocking layer is often formed on the side surface of the mesa, resulting in a two-sided structure, resulting in incomplete current confinement.

この埋め込み成長の欠点を改良するために、メサストラ
イプのpn接合のE部にくびれを設け、埋め込み層の逆
バイアス接合を、このくびれ部で制御する試みが提案さ
れている。これは、低閾値で高効率の埋め込み型半導体
レーザを再現性良く実現しようとするものである。
In order to improve this drawback of buried growth, it has been proposed to provide a constriction in the E portion of the pn junction of the mesa stripe and to control the reverse bias junction of the buried layer using this constriction. This is an attempt to realize a low-threshold, high-efficiency embedded semiconductor laser with good reproducibility.

このくびれ部分をもつメサストライプ型半導体レーザの
構造としては、例えば第2図に示すような構造が報告さ
れている([第31回応用物理学会講演予稿集J  (
1984)、講演番号30a−M−9参照)。この図に
おいて、1はn型GaA。
For example, the structure shown in Figure 2 has been reported as a structure of a mesa stripe type semiconductor laser having this constricted part ([31st Japan Society of Applied Physics Conference Proceedings J (
1984), lecture number 30a-M-9). In this figure, 1 is n-type GaA.

基板、2はn型人 1 o4G、n、6Asクラッド層
、3はn型人 f20.35GaQ、65人。光導波層
、4は^Po。
Substrate, 2 is n-type person 1 o4G, n, 6As cladding layer, 3 is n-type person f20.35GaQ, 65 people. Optical waveguide layer 4 is ^Po.

+ +Gao、g9As  活性層、5はp型人105
G*Q、li人。
+ +Gao, g9As active layer, 5 is p-type person 105
G*Q, li people.

中間層、6はp型人10−4Ga0.6Asクラッド層
、7はp型Af!o−++;Gao−5sAs電極層、
8はくびれ部、9はp型人 (! 0.4G+10−6
^8埋め込み層、10はn型人f! 0.4G80.6
^8埋め込み層、11はp型不純物拡散層、12はn型
電極、13はn型電極、1・1はS+0□膜をそれぞれ
示す。 この′lfi造では、活性層4に隣接して光導
波層3が設けられており、光の大部分がこの光導波層3
の中を伝播するため、メサ部の実効屈折率が比較的小さ
くなり、メサ部と埋め込み部との間の屈折率差を小さく
することができる。この結果、2μm以上のメサ幅に対
しても安定した基本横モード発振が得られ、低発振閾値
、高効率、低非点収差かつ高出力が得られるという特徴
を有している。
Intermediate layer, 6 is p-type 10-4Ga0.6As cladding layer, 7 is p-type Af! o-++; Gao-5sAs electrode layer,
8 is the waist, 9 is p type person (! 0.4G + 10-6
^8 Embedded layer, 10 is n-type person f! 0.4G80.6
^8 is a buried layer, 11 is a p-type impurity diffusion layer, 12 is an n-type electrode, 13 is an n-type electrode, and 1.1 is an S+0□ film, respectively. In this 'lfi structure, an optical waveguide layer 3 is provided adjacent to the active layer 4, and most of the light is transmitted to this optical waveguide layer 3.
Since the light propagates through the mesa portion, the effective refractive index of the mesa portion becomes relatively small, and the difference in refractive index between the mesa portion and the buried portion can be reduced. As a result, stable fundamental transverse mode oscillation can be obtained even for mesa widths of 2 μm or more, and features include a low oscillation threshold, high efficiency, low astigmatism, and high output.

さらに、本構造においては、第3図に示すように、第2
図のS、O2膜14を取り除いても、電流狭窄の効果を
損なうことなく、低発振閾値、高効率を実現でき、製作
工程上簡単となりかっp型不純拡散層11およびn型電
極12を結晶表面全面に形成できるため、放熱特性も改
善され高温下においてもレーザ発振を充分性なわせるこ
とができ、かつSIO□膜14膜上4ストレスも解消で
きる特徴を有している。
Furthermore, in this structure, as shown in FIG.
S in the figure, even if the O2 film 14 is removed, a low oscillation threshold and high efficiency can be achieved without impairing the current confinement effect, and the manufacturing process is simple. Since it can be formed over the entire surface, the heat dissipation characteristics are improved and laser oscillation can be performed satisfactorily even at high temperatures, and the stress on the SIO□ film 14 can also be eliminated.

しかしながら、この構造は、p型不純物拡散層11がn
聖人(20−4Ga0.6^3埋め込み層10とp型A
ρo、4Gao、6A、クラッド層6内に形成されるよ
うに精密な深さ制御を行なう必要があり、製作上再現性
に難点がある。
However, in this structure, the p-type impurity diffusion layer 11 is
Saint (20-4Ga0.6^3 buried layer 10 and p-type A
It is necessary to perform precise depth control so that ρo, 4Gao, 6A are formed within the cladding layer 6, and there is a difficulty in manufacturing reproducibility.

また、図に示すように、p型人 20−15GllO−
85^3電極層7表面には成長形成せず選択的にn聖人
!。、4Gm0.6^、埋め込み層10が成長形成され
るなめ、一般に電極層7表面よりも埋め込み層10表面
が数μm程度高い段差ができ、レーザチップをヒートシ
ンクに融着マウントする際、この場合n型電極側を下に
してマウントすることになり、この段差のためにレーザ
チ・ツブとヒートシンクとの密着を損なったりヒートシ
ンクとの接触状態が不良となりやすい。このため素子組
立上の歩留りが悪く、熱放散の点でも不利となり高出力
動作が困難となる欠点がある。
In addition, as shown in the figure, p-type people 20-15GllO-
85^3 No growth is formed on the surface of the 3 electrode layer 7, selectively forming n saints! . , 4Gm0.6^, as the buried layer 10 is grown, there is generally a step that is several μm higher on the surface of the buried layer 10 than on the surface of the electrode layer 7, and when mounting the laser chip on a heat sink by fusion, in this case n Since it is mounted with the mold electrode side facing down, this difference in level tends to impair the adhesion between the laser chip and the heat sink and cause poor contact with the heat sink. For this reason, the yield rate for device assembly is low, and it is also disadvantageous in terms of heat dissipation, making high-output operation difficult.

一方、図ではn型G8^8基板を用いた半導体レーザの
構造を示したが、この構造ではp型G、A、基板を用い
た場合でも、メサストライプ部および埋め込み層のp型
、n型をそれぞれ反転するだけで、メサストライプ部の
pn接合面と埋め込み層で形成されるnp逆バイアス接
合面とは一致しており、電流狭窄構造となっている。し
かしながら、一般にn型の不純物拡散を形成することは
技術的に困難なために、n型電極とp型人 10.4G
a0.6As埋め込み層(n型G、A、基板1ではn型
人 (20,4G−0,6^3埋め込み層10に相当す
る)とがオーミック接触することになり、p型人(20
−4G+11]、6^8埋め込み層とp型人β0−35
GaO−6’i^8光導波層(n型68人8基板1では
n型Aβ0−95GaO−65^8光導波層3に相当す
る)とが電気的に短絡されているくびれを介したリーク
電流が流れるため、発振閾値電流が以上に大きくなる欠
点がある。
On the other hand, the figure shows the structure of a semiconductor laser using an n-type G8^8 substrate, but in this structure, even if a p-type G, A, substrate is used, the p-type, n-type By simply inverting each of them, the pn junction plane of the mesa stripe portion and the np reverse bias junction plane formed by the buried layer coincide, resulting in a current confinement structure. However, since it is generally technically difficult to form an n-type impurity diffusion, it is difficult to form an n-type electrode and a p-type electrode.
a0.6As buried layer (n type G, A, in substrate 1, n type layer (corresponding to 20,4G-0,6^3 buried layer 10) makes ohmic contact with p type layer (20
-4G+11], 6^8 buried layer and p-type person β0-35
Leakage through the constriction where the GaO-6'i^8 optical waveguide layer (corresponding to the n-type Aβ0-95GaO-65^8 optical waveguide layer 3 in the n-type 68 substrate 1) is electrically short-circuited. Since current flows, there is a drawback that the oscillation threshold current becomes larger than the threshold current.

また、メサストライプ上部にn型電極を形成した場合の
もう一つの問題として、n型電極となる−6= AuGeNI等の祠料を用いた場合、そのオーミ・ツク
アロイ層の一部がスパイク状に数μm以」二の深さまで
侵入するなめ、メサス1〜ライブの活性領域に達するこ
とになり、結晶欠陥が導入されレーザ素子の信頼性に問
題となる。
Another problem when forming an n-type electrode on the upper part of the mesa stripe is that when using an abrasive material such as -6=AuGeNI, which becomes the n-type electrode, a part of the ohmic alloy layer becomes spike-shaped. Since it penetrates to a depth of several micrometers or more, it reaches the active region of mesas 1 to 2, introducing crystal defects and causing problems in the reliability of the laser device.

し発明の目的〕 本発明の目的は、これら従来の欠点を除去し、確実な電
流狭窄効果を有し、安定した基本横モード発振でかつ高
出力動作を可能にし、製作歩留りが良く信頼性に優れた
埋め込み型半導体レーザを提供することにある。
[Object of the Invention] The object of the present invention is to eliminate these conventional drawbacks, to have a reliable current confinement effect, to enable stable fundamental transverse mode oscillation and high output operation, and to achieve high manufacturing yield and reliability. The objective is to provide an excellent buried semiconductor laser.

r発明の構成〕 本発明の埋め込み型半導体レーザの構成は、第1導電型
の半導体基板」二に、少なくとも第1導電型の第1半導
体層と、この第1半導体層よりも屈折率の大きい第1導
電型の第2半導体層と、この第2半導体層よりも屈折率
の大きい活性層と、前記第1半導体層よりも屈折率の小
さい第2導電型の第3半導体層と、前記第1半導体層と
同じ屈折率を有する第2導電型の第4半導体層とを順次
積層してなるストライブ状の多層構造と:前記第2す導
体層の側面に設けられこの第2半導体層と同一又は小さ
い屈折率をもつ第2導電型の第5半導体層と;前記活性
層と第3.第4半導体層の側面に設けられこの活性層よ
りも屈折率の小さい第1導電型の第6半導体層と:この
第6半導体層と前記第4半導体層との結晶表面上に設け
られ前記活性層よりも屈折率の小さい第2導電型の第7
半導体層とを備えたことに特徴とする。
rStructure of the Invention] The structure of the embedded semiconductor laser of the present invention includes a semiconductor substrate of a first conductivity type, a first semiconductor layer of at least a first conductivity type, and a refractive index higher than that of the first semiconductor layer. a second semiconductor layer of a first conductivity type; an active layer having a higher refractive index than the second semiconductor layer; a third semiconductor layer of a second conductivity type having a lower refractive index than the first semiconductor layer; a strip-shaped multilayer structure formed by sequentially laminating a fourth semiconductor layer of a second conductivity type having the same refractive index as the first semiconductor layer; a fifth semiconductor layer of a second conductivity type having the same or lower refractive index; the active layer; and a third semiconductor layer; a sixth semiconductor layer of a first conductivity type provided on a side surface of the fourth semiconductor layer and having a refractive index lower than that of the active layer; A seventh layer of the second conductivity type having a lower refractive index than the layer
It is characterized by comprising a semiconductor layer.

〔実施例〕〔Example〕

以下本発明の実施例について図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の断面図である9先に本実施
例の製造工程を説明する。
FIG. 1 is a cross-sectional view of one embodiment of the present invention. First, the manufacturing process of this embodiment will be explained.

先ず、第1の液相エピタキシャル成長工程において、n
型G、A、基板1上に順次、n聖人!。、4Ga11.
6人、クラ’7ド層2、n型人120.9.GaQ、6
1;人。
First, in the first liquid phase epitaxial growth step, n
Type G, A, n saints on board 1 in sequence! . , 4Ga11.
6 people, 2 people in the 7th class, n-type people 120.9. GaQ, 6
1; person.

光導波層3.^1 o、 + lGa0−89人、活性
層4.p聖人f Q、5GaO95Aa中間層5.p型
^f! 0.4GaO−6^3クラッド層6.p型A 
J? 0.05GaO15^8電極層20を順次形成す
る。これらの各層厚は各々、1゜0μm、0.5μm、
0.05μm、0.3μm、1.5μm、0.5μmと
している。ここで、従来の半導体レーザを構成する多層
構造と異なる点は、p聖人(’ XG、、−XA、電i
層20のAFil成(X) を比較的小さくしており、
本実施例では0.05≦X≦0.1の条件のもとで作成
している点にある。
Optical waveguide layer 3. ^1 o, + lGa0-89 people, active layer 4. p saint f Q, 5GaO95Aa intermediate layer 5. p-type ^f! 0.4GaO-6^3 cladding layer 6. p-type A
J? A 0.05GaO15^8 electrode layer 20 is sequentially formed. The thickness of each of these layers is 1°0 μm, 0.5 μm, and
They are 0.05 μm, 0.3 μm, 1.5 μm, and 0.5 μm. Here, the difference from the multilayer structure constituting a conventional semiconductor laser is that p Saint ('XG, -XA, electric i
The AFil composition (X) of the layer 20 is made relatively small,
In this embodiment, it is created under the condition of 0.05≦X≦0.1.

しかる後、H2O2+H3PO4+ 3CH30)1エ
ツチヤントを用い、n型G、As基板1に達するまでス
トライブ状にメサエッチングを行ない、活性領域をもっ
メサ部を形成する。次に、HF液を用いて室温で1分間
エツチングすると、p型A# 0.5Gal]、5人、
中間層5のみがメサ側面部から深さ0.3μmだけ選択
的にエツチングされる。さらに、H20□+)I3PO
4+3CH30Hエッチャントを用いて露出しな^1o
−r+Gs0.89^8活性層4を室温で10〜20秒
間軽くエツチングすると、図に示すようにメサ側面部に
深さ0.3μmのくびれ部8が形成される。
Thereafter, using H2O2+H3PO4+3CH30)1 etchant, mesa etching is performed in stripes until reaching the n-type G, As substrate 1, thereby forming a mesa portion having an active region. Then, when etched for 1 minute at room temperature using HF solution, p-type A# 0.5Gal], 5 people,
Only the intermediate layer 5 is selectively etched to a depth of 0.3 μm from the mesa side surface. Furthermore, H20□+)I3PO
Do not expose using 4+3CH30H etchant^1o
-r+Gs0.89^8 When the active layer 4 is lightly etched for 10 to 20 seconds at room temperature, a constriction 8 with a depth of 0.3 μm is formed on the side surface of the mesa as shown in the figure.

次に、第2の液相エピタキシャル成長工程により、上部
メサ部を包囲する様に、p聖人I!0−4G−66^8
埋込み層9.n型^R014GaO−6Aa埋込み層1
0を順次形成する2この際、n聖人!0.4Gar1.
6As埋め込み層]0はp聖人ρ0.05GaO195
^3電極層20上には成長せずメサ側面部に選択的に成
長される、これは通常メサ側面部の方がメサ上部よりも
成長速度が速いことと、電極層20に小量のA!が含ま
れているため非常に薄い酸化層が形成されていることか
ら結晶核が出来にくいことが関与している。
Next, by a second liquid phase epitaxial growth process, p Saint I! 0-4G-66^8
Buried layer9. n-type^R014GaO-6Aa buried layer 1
Forming 0 sequentially 2 At this time, n saint! 0.4 Gar1.
6As buried layer] 0 is p saint ρ0.05GaO195
^3 It does not grow on the electrode layer 20, but grows selectively on the mesa sides. This is because the growth rate on the mesa sides is usually faster than on the mesa top, and a small amount of A is grown on the electrode layer 20. ! This is due to the fact that a very thin oxide layer is formed due to the presence of carbon dioxide, making it difficult for crystal nuclei to form.

続いて、p型人β0−2Ga0.8As層21とp+型
G8^8層22とを結晶全面に成長形成する。この際、
p型人 f2 n−2G−o、sA、層21の成長に用
いる成長溶液の過飽和度を大きくすることにより、p型
人l。、。5GaO−95As電極層20上に均一に成
長形成できる。このことは、電極層20の^ρ組成(X
)を0.05≦X≦0.1の範囲で種々の過飽和度溶液
を用いて実験を行なった結果、7℃程度以上の過飽和度
で均一に成長できることが確かめられた。ここでp型”
 o 、2 G a o8A s層21は0.5 μr
n、 p+型G、A、、層22は5 )t、 mの層厚
とした。しかる後、n型電極12.n型電極]3を形成
して本実施例の埋め込み型半導体レーザが形成される。
Subsequently, a p-type β0-2Ga0.8As layer 21 and a p+-type G8^8 layer 22 are grown over the entire surface of the crystal. On this occasion,
By increasing the degree of supersaturation of the growth solution used to grow p-type f2 n-2G-o, sA, layer 21, p-type f2 n-2G-o, sA. ,. It can be uniformly grown on the 5GaO-95As electrode layer 20. This means that the ^ρ composition (X
) in the range of 0.05≦X≦0.1 using various supersaturation solutions, it was confirmed that uniform growth can be achieved at a supersaturation degree of about 7° C. or higher. Here p type”
o, 2 Ga o8A s layer 21 is 0.5 μr
The n, p+ type G, A, layer 22 had a layer thickness of 5)t,m. After that, the n-type electrode 12. n-type electrode] 3 is formed to form the buried semiconductor laser of this embodiment.

「、発明の効果〕 以」二述べたように、本発明によれば、p”G、A。",Effect of the invention〕 As described above, according to the present invention, p"G, A.

層22が最上層となり、この層にp型不純物濃度約10
”C11−3のZn、 G、等をドーピンクしておくこ
とにより、従来の半導体レーザのようなp型不純物の拡
散工程が不要となり、n型電極22とは良好なオーミッ
ク性が得られ、製作上工程が簡単となる。
Layer 22 is the top layer, and this layer has a p-type impurity concentration of about 10
"By doping C11-3 with Zn, G, etc., there is no need for a p-type impurity diffusion process as in conventional semiconductor lasers, and good ohmic properties are obtained with the n-type electrode 22, making it easier to manufacture. The upper process becomes easier.

また、結晶表面がほぼ全面にわたって平坦となるためレ
ーザチ・・lプとヒートシンクとの密着も良好で、放熱
の点でも有利であり、素子組立上の歩留りおよび高出力
動作が容易に実現でかる。
In addition, since the crystal surface is flat over almost the entire surface, there is good adhesion between the laser chip and the heat sink, which is advantageous in terms of heat dissipation, and it is easy to achieve high yields in device assembly and high output operation.

さらにp型G、A、基板を用いた場合でも、p型。Furthermore, even when using p-type G, A, substrates, it is p-type.

n型をそれぞれ反転するだけで、次のように問題点を解
消できる。すなわち、n型電極はn+型G aA3層(
本実施例ではP’G、^8層に相当する)上に形成され
、かつn型Aβ0.20@D−8Aa層とp型A!1.
4Gao、6Aa埋め込み層(本実施例ではp聖人β0
゜2GaO−8As層21.n型Aβ0−400−4O
^8埋め込み層10に相当する)とのpn接合が形成さ
れているため、メサストライプ部でのpn接合よりも拡
散電位が高く、メサ外部へのリーク電流を完全に防ぐこ
とができ、これにより低発振閾値、高効率でかつ高出力
動作が容易に実現できる。
By simply inverting each n-type, the problem can be solved as follows. In other words, the n-type electrode is an n+ type GaA three layer (
In this example, the n-type Aβ0.20@D-8Aa layer and the p-type A! 1.
4Gao, 6Aa buried layer (in this example, p Saint β0
゜2GaO-8As layer 21. n-type Aβ0-400-4O
^8 Since a pn junction is formed with the pn junction (corresponding to the buried layer 10), the diffusion potential is higher than that of the pn junction in the mesa stripe part, and leakage current to the outside of the mesa can be completely prevented. Low oscillation threshold, high efficiency, and high output operation can be easily achieved.

またn+03人3層を充分厚くすることも可能であり、
n型電極のオーミックアロイによる結晶欠陥の導入も防
ぐことができ、信頼性に優れたレーザ素子を形成できる
It is also possible to make the 3 layers of n+03 people sufficiently thick,
The introduction of crystal defects due to the ohmic alloy of the n-type electrode can also be prevented, and a highly reliable laser element can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例のi速断面図、第2図、
第3図は従来の埋め込み型半導体レーザの構造断面図を
それぞれ示す。 1 =−n型G、A、基板、2−n型A 1 o、4G
ao、6Asクラット層、3 =−n型A f:! Q
−3’3Ga0.66人、光導波層、4− A I! 
o、 t lGm0.89人m活性層、5−p聖人(!
 n、qGall、5As中間層、6−r)型A l 
0.4GalliAsクラッド層、7 ・P型人j? 
Q、+11G110.8!I^6電極層、8−<びれ部
、9−n聖人(2Q−4GaO−6Aa埋め込み層、1
1・・・p型不純物拡散層、12・・・n型電極、13
・・・n型電極、14−5I02膜、20−p型A 1
 o−o5G−o−7,し電極層、21−p型A 20
−2G−0,8A一層、22・・・p4型G、A、層。 摩 1 菌
FIG. 1 is an i-speed sectional view of an embodiment of the present invention, FIG.
FIG. 3 shows structural cross-sectional views of conventional buried semiconductor lasers. 1 =-n-type G, A, substrate, 2-n-type A 1 o, 4G
ao, 6As crat layer, 3 = -n type A f:! Q
-3'3Ga0.66 person, optical waveguide layer, 4- AI!
o, t lGm0.89 person m active layer, 5-p saint (!
n, qGall, 5As intermediate layer, 6-r) type A l
0.4GalliAs cladding layer, 7 ・P type person j?
Q, +11G110.8! I^6 electrode layer, 8-<fin part, 9-n Saint (2Q-4GaO-6Aa buried layer, 1
1...p-type impurity diffusion layer, 12...n-type electrode, 13
...n type electrode, 14-5I02 film, 20-p type A 1
o-o5G-o-7, electrode layer, 21-p type A 20
-2G-0,8A single layer, 22...p4 type G, A, layer. 1 bacteria

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に、少なくとも、第1導電型
の第1半導体層と、この第1半導体層よりも屈折率の大
きい第1導電型の第2半導体層と、この第2半導体層よ
りも屈折率の大きい活性層と、前記第1半導体層よりも
屈折率の小さい第2導電型の第3半導体層と、前記第1
半導体層と同じ屈折率を有する第2導電型の第4半導体
層とを順次積層して成るストライプ状の多層構造と;前
記第2半導体層の側面に設けられこの第2半導体層と同
一又は小さい屈折率を有した第2導電型の第5半導体層
と;前記第3、第4半導体層と前記活性層との側面に設
けられこの活性層よりも屈折率の小さい第1導電型の第
6半導体層と;この第6半導体層と前記第4半導体層と
の結晶表面上に設けられ前記活性層よりも屈折率の小さ
い第2導電型の第7半導体層とを備えたことを特徴とす
る埋め込み型半導体レーザ。
On a semiconductor substrate of a first conductivity type, at least a first semiconductor layer of a first conductivity type, a second semiconductor layer of a first conductivity type having a higher refractive index than the first semiconductor layer, and a second semiconductor layer of the first conductivity type. an active layer having a refractive index higher than that of the first semiconductor layer; a third semiconductor layer of a second conductivity type having a lower refractive index than the first semiconductor layer;
a striped multilayer structure formed by sequentially laminating a fourth semiconductor layer of a second conductivity type having the same refractive index as the semiconductor layer; a fifth semiconductor layer of a second conductivity type having a refractive index; a sixth semiconductor layer of a first conductivity type provided on a side surface of the third and fourth semiconductor layers and the active layer and having a refractive index smaller than that of the active layer; A semiconductor layer; and a seventh semiconductor layer of a second conductivity type provided on the crystal surfaces of the sixth semiconductor layer and the fourth semiconductor layer and having a refractive index lower than that of the active layer. Embedded semiconductor laser.
JP19998785A 1985-09-09 1985-09-09 Buried type semiconductor laser Pending JPS6260283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19998785A JPS6260283A (en) 1985-09-09 1985-09-09 Buried type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19998785A JPS6260283A (en) 1985-09-09 1985-09-09 Buried type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6260283A true JPS6260283A (en) 1987-03-16

Family

ID=16416905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19998785A Pending JPS6260283A (en) 1985-09-09 1985-09-09 Buried type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6260283A (en)

Similar Documents

Publication Publication Date Title
JPH07112091B2 (en) Method of manufacturing embedded semiconductor laser
US4644551A (en) Buried-type semiconductor laser
JPS5948976A (en) Semiconductor laser
JPS6260283A (en) Buried type semiconductor laser
JPS61284988A (en) Semiconductor laser element
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS5821887A (en) Semiconductor light emitting element
JPH0416033B2 (en)
JPS63269593A (en) Semiconductor laser device and its manufacture
JPS6184888A (en) Buried hetero type semiconductor laser
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
JPS59117287A (en) Semiconductor laser
JPS59117286A (en) Manufacture of semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPS62259490A (en) Buried hetero structure semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPS61264776A (en) Optical semiconductor device
JPS6255988A (en) Buried semiconductor laser
JPH0371796B2 (en)
JPS61272989A (en) Buried type semiconductor laser element
JPS607788A (en) Semiconductor laser
JPS6177383A (en) Buried semiconductor laser
JPS62176182A (en) Semiconductor laser and manufacture thereof
JPS6354234B2 (en)
JPS6266694A (en) Semiconductor laser element and manufacture thereof