JPS6177383A - Buried semiconductor laser - Google Patents

Buried semiconductor laser

Info

Publication number
JPS6177383A
JPS6177383A JP19804084A JP19804084A JPS6177383A JP S6177383 A JPS6177383 A JP S6177383A JP 19804084 A JP19804084 A JP 19804084A JP 19804084 A JP19804084 A JP 19804084A JP S6177383 A JPS6177383 A JP S6177383A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor layer
semiconductor
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19804084A
Other languages
Japanese (ja)
Inventor
Hideo Kawano
川野 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19804084A priority Critical patent/JPS6177383A/en
Publication of JPS6177383A publication Critical patent/JPS6177383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:to enable basic lateral mode oscillation with high efficiency and high- output action by effectively blocking the current flowing through the part except a mesa region by a method wherein the side surface of the second semiconductor layer is equipped with a semiconductor layer of the second conductivity type having a refractive index equal to or smaller than that of the second semiconductor layer, and the side surfaces of the active layer and the third and fourth semiconductor layers are equipped with semiconductor layers of the first conductivity type having a smaller refractive index than that of the active layer. CONSTITUTION:When the expose Al0.11Ga0.89As active layer 14 is etched with an etchant of H2O2+H3PO4+3CH3OH, a constriction 18 is formed. Next, a P-type Al0.4Ga0.6As buried layer 19, and an N-type Al0.4Ga0.6As buried layer 20 are successively formed by the second liquid phase epitaxial growth. Here, because of the constriction 18 on the mesa side surface, the buried layer 19 formed at the first step in the second liquid phase epitaxial growth can necessarily be located at the constriction 18. Therefore, the buried layer 19 can be selectively formed on only the mesa side surfaces of an N-type Al0.4Ga0.6As clad layer 12 and an N-type Al0.35Ga0.65As photo waveguide layer 13.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電流狭窄をほどこしたストライプ埋め込み型
半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a striped buried semiconductor laser with current confinement.

(従来技術とその問題点) 埋め込み型半導体レーザの構造は、活性層領域が低屈折
率物質によりて取シ囲まれ、例えば、QaAa活性層の
場合、 AlGaAs層によって包囲されて、強い光導
波路作用をもたせてbる。しかし、屈折率差が必要以上
に大きくならざるを得す、そのために、ストライプ幅が
2μm以内で基本モード発振するものの、それ以上の広
いストライプ幅になると高次モード発振してしまう。ま
た、ストライプ幅が狭ければ、轟然ながら光出力が数m
W以下と低出力のものしか得られない。こうした埋め込
み型半導体レーザの諸々の欠点、小出力の問題等を改良
する目的から、ストライプ埋め込み型半導体レーザが提
案されている。このストライプ埋め込み構造では以下に
述べる様に活性層と別に光導波層を設け、活性層のみ低
屈折率の半導体層で取)囲み、注入キャリアーの閉じ込
めを完全になし、光は光導波層に伝播させることで光導
波路作用を弱め、高次モード発振を防ぎ、単一モード発
振を大電流領域にわたって維持しようとするものである
(Prior art and its problems) In the structure of a buried semiconductor laser, the active layer region is surrounded by a low refractive index material, for example, in the case of a QaAa active layer, it is surrounded by an AlGaAs layer, which has a strong optical waveguide effect. Let me lean on it. However, the refractive index difference inevitably becomes larger than necessary, and therefore, although fundamental mode oscillation occurs when the stripe width is within 2 μm, higher-order mode oscillation occurs when the stripe width becomes wider than that. Also, if the stripe width is narrow, the light output will be reduced to several meters.
Only low outputs of W or less can be obtained. A striped embedded semiconductor laser has been proposed in order to improve the various drawbacks and problems of low output of the embedded semiconductor laser. In this striped buried structure, as described below, an optical waveguide layer is provided separately from the active layer, and only the active layer is surrounded by a semiconductor layer with a low refractive index, completely confining the injected carriers and allowing light to propagate to the optical waveguide layer. This aims to weaken the optical waveguide effect, prevent higher-order mode oscillation, and maintain single mode oscillation over a large current region.

これまでのストライプ埋め込み型半導体レーザの構造と
しては第2図に示す様な構造が考えられてきた(第30
回応用物理学会(1983)講演番号7a−H−6)。
Until now, the structure shown in Figure 2 has been considered as the structure of a striped buried semiconductor laser (Figure 30).
Japan Society for Applied Physics (1983) Lecture No. 7a-H-6).

すなわち、第2図において、1はn型GaAs基板、2
はn型Alz Gq、y XAsクラッド層(0,3≦
X≦0.35)、3はn型AlyG(Ix−yAs光導
波層(0,23≦y<0.26)、4はAlg、14G
ao、aaAs活性層、5はp型AIWGa 、−wA
s層(0,4<w≦0.45)、6はp型A1.)、2
Ga08As電極層、7はp型Alo、4cao、6A
S埋め込み層、8はn型AI0.40aO,6A8埋め
込み層、9はp型電極、10はn型電極をそれぞれ示す
That is, in FIG. 2, 1 is an n-type GaAs substrate, 2 is
is an n-type Alz Gq, y XAs cladding layer (0,3≦
X≦0.35), 3 is n-type AlyG (Ix-yAs optical waveguide layer (0,23≦y<0.26), 4 is Alg, 14G
ao, aaAs active layer, 5 is p-type AIWGa, -wA
s layer (0,4<w≦0.45), 6 is p-type A1. ), 2
Ga08As electrode layer, 7 is p-type Alo, 4cao, 6A
8 is an n-type AI0.40aO, 6A8 buried layer, 9 is a p-type electrode, and 10 is an n-type electrode.

この構造においてはp型電極9.n型電極1゜K順方向
電圧を印加し、Ano、14Ga、86Al!活性層4
に電流を注入して発光再結合させてレーザ動作を可能に
するものであシ、p型Al(、,4Gao6As埋め込
み層7が電流狭窄層として働らくため、メサ領域以外へ
流れる電流が有効に阻止でき、効率よくメサ部分に電流
注入してレーザ発振の効率を高める様になされている。
In this structure, the p-type electrode 9. A forward voltage of 1°K was applied to the n-type electrode, and Ano, 14Ga, 86Al! active layer 4
The device enables laser operation by injecting a current into the mesa region and recombining it to emit light.Since the p-type Al(,4Gao6As buried layer 7) acts as a current confinement layer, the current flowing to areas other than the mesa region becomes effective. The laser oscillation efficiency is increased by efficiently injecting current into the mesa portion.

また、n型AAyGa、□As光導波層3を設けた結果
、レーザ光は光導波層3側にも大きく浸み出るため、活
性@4の横方向に於ける実効的な屈折率差は小さくなる
が、キャリアの閉じ込めは、従来の埋め込み型と同様、
二次元的な作用を持つ。そのため元の閉じ込め効果は弱
まりストライプ幅の広いレーザでも、安定した基本モー
ド発振が広い電流領域にわたって得られる。
Furthermore, as a result of providing the n-type AAyGa, □As optical waveguide layer 3, the laser light largely seeps into the optical waveguide layer 3 side, so the effective refractive index difference in the lateral direction of active@4 is small. However, the carrier confinement is similar to the conventional embedded type.
It has a two-dimensional effect. Therefore, the original confinement effect is weakened and stable fundamental mode oscillation can be obtained over a wide current range even with a laser with a wide stripe width.

しかしながら、この様な半導体レーザは信頼性の理由か
ら、構造寸法上、活性層4をp型電極9オーミック層か
ら遠ざける必要があシ、plMAIWGa 1−WAB
AsO2さを厚くせざるを得なくなる。
However, for reliability reasons in such a semiconductor laser, it is necessary to keep the active layer 4 away from the p-type electrode 9 ohmic layer due to structural dimensions.
This forces the AsO2 layer to be thicker.

従がって、0.4≦w<0.45とAI組成(W)が比
較的に大きく、層厚が厚込ということで熱抵抗が犬きく
なシ、高出力発振に不利となる。一方、これを防ぐため
Kp型AA!WG& + ヤAS層5を薄くし、p型A
1.)、2Gao、BAs電極層6を厚くすると、メサ
側面に形成されるp型AlO,2Gao、6 As 1
!極層6とn型A16,4 Gao6As埋め込み層8
とのpn接合電位が小さくなりメサ領域以外へ流れる洩
れ電流が増大する欠点がある。
Therefore, since the AI composition (W) is relatively large (0.4≦w<0.45) and the layer thickness is thick, the thermal resistance is low, which is disadvantageous for high-output oscillation. On the other hand, to prevent this, Kp type AA! WG & + YaAS layer 5 is thinned and p-type A
1. ), 2Gao, BAs When the electrode layer 6 is thickened, p-type AlO, 2Gao, 6As 1 formed on the mesa side surface
! Pole layer 6 and n-type A16,4 Gao6As buried layer 8
There is a drawback that the pn junction potential between the two regions becomes smaller, and leakage current flowing to areas other than the mesa region increases.

また、p型All wG a H−WAsAsO2さが
厚いと、2回目の液相エピタキシャル結晶成長工程に先
立ち、An組成の大きい層5が一旦大気にさらされるた
め、その表面が最も酸化されやすくなシ、この酸化膜が
成長を阻害する源となシ、2回目の□液相エピタキシャ
ル結晶成長の均一性、再現性を非常に悪くする。すなわ
ち、埋め込みN7,8をメサ側面部に均一に成長させる
ことが困難となる。
In addition, if the p-type All wG a H-WAsAsO2 is thick, the layer 5 with a high An composition will be exposed to the atmosphere before the second liquid phase epitaxial crystal growth step, so that the surface of the layer 5, which is most likely to be oxidized, will be exposed to the atmosphere. This oxide film becomes a source of growth inhibition, and greatly impairs the uniformity and reproducibility of the second □ liquid phase epitaxial crystal growth. In other words, it becomes difficult to uniformly grow the embeddings N7 and 8 on the side surfaces of the mesa.

(発明の目的) 本発明の目的は、前記従来の半導体レーザの欠点を除去
し、確実な電流狭窄効果を有し、安定した基本横モード
発振でかつ高出力動作を可能にし、製作が容易で再現性
が良好な埋め込み型半導体レーザを提供するものである
(Object of the Invention) The object of the present invention is to eliminate the drawbacks of the conventional semiconductor laser, to have a reliable current confinement effect, to have stable fundamental transverse mode oscillation, to enable high-output operation, and to be easy to manufacture. The present invention provides an embedded semiconductor laser with good reproducibility.

(発明の構成)′ 本発明の半導体レーザは、第1導電壓の半導体基板上に
、少なくとも該第1導電型の第1半導体層と該第1半導
体層よりも屈折率の大きい第1導電型の第2半導体層と
該第2半導体層よりも屈折率の大きい活性層と前記第4
半導体層よりも屈折率の小さい第2導電型の第3半導体
層と前記第1半導体層と同じ屈折率を有する第2導電型
の第4半導体層を順次積層して成るストライプ状の多層
構造を備え、第2半導体層の側面には、該第2半導体層
と同一又は小さい屈折率を有した第2導電型の半導体層
を備え、前記活性層と第3.第4半導体層の側面には前
記活性層よりも屈折率の小さい第1導電型の半導体層を
備えたことに特徴がある。
(Structure of the Invention)' The semiconductor laser of the present invention includes at least a first semiconductor layer of the first conductivity type and a semiconductor laser of the first conductivity type having a higher refractive index than the first semiconductor layer, on a semiconductor substrate of a first conductivity type. a second semiconductor layer, an active layer having a higher refractive index than the second semiconductor layer, and the fourth semiconductor layer.
A striped multilayer structure formed by sequentially laminating a third semiconductor layer of a second conductivity type having a refractive index lower than that of the semiconductor layer and a fourth semiconductor layer of a second conductivity type having the same refractive index as the first semiconductor layer. a second conductivity type semiconductor layer having a refractive index the same as or lower than that of the second semiconductor layer on a side surface of the second semiconductor layer; A feature of the fourth semiconductor layer is that a first conductivity type semiconductor layer having a lower refractive index than the active layer is provided on the side surface of the fourth semiconductor layer.

(発明の実施例) 以下、本発明に係る実施例について図面を参照して説明
する。第1図は本発明に係る一実施例を示す。
(Embodiments of the invention) Examples according to the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment according to the present invention.

先ず、第1の液相エピタキシャル成長工程において、n
型QaAs基板11上に順次、n型Alo4Qa、)、
6Asクラッド層12.n型Alo、3sGao、5s
AS元導波層13 e Alo、tlGao、a9AS
活性層14.p型AJo5Gao5As層15.p型A
AO,4Ga(、,6Asクラッド層16゜p型Al 
o、15 Ga O,85As を極層17を順次形成
する。各層厚は各々、1.5μm*o、sμm、0.0
5μm、0.3μm、1.0μm、0.5μmとした。
First, in the first liquid phase epitaxial growth step, n
On the type QaAs substrate 11, n-type Alo4Qa, ),
6As cladding layer 12. n-type Alo, 3sGao, 5s
AS original waveguide layer 13 e Alo, tlGao, a9AS
Active layer 14. p-type AJo5Gao5As layer 15. p-type A
AO,4Ga(,,6As cladding layer 16°p type Al
The polar layer 17 is sequentially formed of 15GaO, 15GaO, and 85As. The thickness of each layer is 1.5μm*o, sμm, 0.0
They were 5 μm, 0.3 μm, 1.0 μm, and 0.5 μm.

従来の半導体レーザを構成する多層構造と異なる点は、
p型A1wGal−WAS層5とp型A7o、2GaO
,8AS電極層6(第2図)との間にp型Alo、4G
aO,6Asクラッド層16(第1図)を形成している
ことと、p型A/65Ga04AS層15(第2図では
p型klWGaI −wAB 層5に相当する)の層厚
が0.3μmと薄くしていることである。
The difference from the multilayer structure that makes up conventional semiconductor lasers is that
p-type A1wGal-WAS layer 5 and p-type A7o, 2GaO
, 8AS between the p-type Alo, 4G and the electrode layer 6 (Fig. 2).
The aO,6As cladding layer 16 (Fig. 1) is formed, and the layer thickness of the p-type A/65Ga04AS layer 15 (corresponding to the p-type klWGaI-wAB layer 5 in Fig. 2) is 0.3 μm. The reason is that it is thin.

しかる後、H,O,+ H3PO4+ 3 CH!IO
Hエッチャントを用い、n型QaAs基板11に達する
までストライプ状にメサエッチングを行ない、活性領域
を有するメサ部を形成する。次に、HF液を用いて室温
で1分間エツチングすると、p型Ajl!o、sQa、
、As層15のみがメサ側面部から深さ0.3μmだけ
選択的にエツチングされる。さらにH,0,+HsPO
4+ 3CHsOHエツチヤントをm1て露出したA7
1!Q、11Ga(、BgAs活性層14を室温で10
〜20秒間軽くエツチングすると、第1図に示す様にメ
サ側面部に深さ0.3μmのくびれ18が形成される。
After that, H, O, + H3PO4+ 3 CH! IO
Mesa etching is performed in stripes using H etchant until reaching the n-type QaAs substrate 11, thereby forming a mesa portion having an active region. Next, etching with HF solution for 1 minute at room temperature results in p-type Ajl! o,sQa,
, only the As layer 15 is selectively etched to a depth of 0.3 μm from the side surface of the mesa. Furthermore, H,0,+HsPO
A7 exposed with ml of 4+ 3CHsOH etchant
1! Q, 11Ga(, BgAs active layer 14 at room temperature 10
When lightly etched for ~20 seconds, a constriction 18 with a depth of 0.3 μm is formed on the side surface of the mesa, as shown in FIG.

次に、第20液相エピタキシヤル成長工程により上記メ
サ部を包囲する様に、p型A10.4Gao6As埋め
込み層19.n型AA! 6.4 Ga。、6AS埋め
込み層20を順次形成する。ここにおいて、メサ側面部
にくびれ18があるため、第2の液相エピタキシャル成
長工程の一番目に形成するp型A10.4 Gao、6
 As埋め込み層19は、くびれ18よ)上部には成長
せず必らずくびれ18部分に止めることができる。従が
って、第1図に示す様にn型Al。、4GBo6A8ク
ラッド層12とn型ANo、5sGao、a5As光導
波層13のメサ側面部のみに選択的に上記p型AA!(
1,4Gao、6As埋め込み層19を形成できる。こ
れは、くびれを有する各種メサ形状を、種々の過飽和度
を有する成長溶液を用いて結晶成長実験を行なった結果
、くびれ部分にお−て結晶成長が阻止される液相エピタ
キシャル成長工程に特徴的な性質があシ、再現性良く成
長層を形成できることが判った。
Next, in a 20th liquid phase epitaxial growth step, a p-type A10.4Gao6As buried layer 19. n-type AA! 6.4 Ga. , 6AS buried layers 20 are sequentially formed. Here, since there is a constriction 18 on the side surface of the mesa, the p-type A10.4 Gao, 6 formed first in the second liquid phase epitaxial growth step is
The As buried layer 19 does not grow above the constriction 18, but can always remain at the constriction 18. Therefore, as shown in FIG. 1, n-type Al. , 4GBo6A8 cladding layer 12 and the n-type ANo, 5sGao, a5As optical waveguide layer 13, the p-type AA! (
A 1,4 Gao, 6 As buried layer 19 can be formed. As a result of crystal growth experiments using growth solutions with various degrees of supersaturation on various mesa shapes with constrictions, it was found that crystal growth is inhibited at the constrictions, which is characteristic of the liquid phase epitaxial growth process. It was found that the properties were good and that a growth layer could be formed with good reproducibility.

しかる後、p型不純物拡散層21.p型電極22、n型
電極23を形成して本発明に係る埋め込み型半導体レー
ザが形成される。
After that, the p-type impurity diffusion layer 21. A p-type electrode 22 and an n-type electrode 23 are formed to form a buried semiconductor laser according to the present invention.

本構造においては、p型AJo4Gao、6As埋め込
み層19が電流狭窄層として働らき、かつメサ領域にp
壓Alo4Gao6A8クラッド層12が形成されてい
るために、メサ側面に形成されるp型A16.4Ga0
.6A8クラッド層12とn型Al(、,4Gao、6
As埋め込み層20とのpn接合電位が大きいためメサ
部以外に流れる洩れ電流を低減でき、低発振しきい値電
流で高効率のレーザ発振を可能にし、活性層幅が3μm
以上でも基本横モード発振を大電流領域にわたって維持
でき、かつM組成が大きく熱抵抗が大きいp型Al o
、5 cao、、As層15を薄くできるために、放熱
特性も改善され、高出力動作かつ高温下においても容易
にレーザ発振を行なわせることができる。
In this structure, the p-type AJo4Gao,6As buried layer 19 acts as a current confinement layer, and the p-type AJo4Gao,6As buried layer 19 acts as a current confinement layer, and
Since the Alo4Gao6A8 cladding layer 12 is formed, the p-type A16.4Ga0 formed on the mesa side surface
.. 6A8 cladding layer 12 and n-type Al (, , 4Gao, 6
Since the pn junction potential with the As buried layer 20 is large, leakage current flowing outside the mesa portion can be reduced, enabling highly efficient laser oscillation with a low oscillation threshold current, and the active layer width is 3 μm.
Even with the above, p-type Al o can maintain fundamental transverse mode oscillation over a large current region and has a large M composition and high thermal resistance.
, 5cao, , Since the As layer 15 can be made thin, the heat dissipation characteristics are also improved, and laser oscillation can be easily performed even at high output operation and at high temperatures.

また、メサ側面部には、大部分M組成の小さい層が露出
しているために、酸化も少なく埋め込み成長時の不均一
といった問題はなくなシ、埋め込み成長の再現性、均一
性が良好となる。
In addition, since most of the layers with a low M composition are exposed on the side surfaces of the mesa, there is little oxidation and there is no problem of non-uniformity during buried growth, resulting in good reproducibility and uniformity of buried growth. Become.

(発明の効果) 以上、述べた様に、本発明によれば、従来の半導体レー
ザの欠点を除きメサ領域以外へ流れる電流を有効に阻止
でき、高効率、高出力動作でかつ基本横モード発振を可
能とするばかりでなく放熱特性及び再現性、量産性、信
頼性に優れた半導体レーザを形成することができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to eliminate the drawbacks of conventional semiconductor lasers, effectively block current flowing to areas other than the mesa region, achieve high efficiency and high output operation, and achieve fundamental transverse mode oscillation. In addition, it is possible to form a semiconductor laser having excellent heat dissipation characteristics, reproducibility, mass productivity, and reliability.

尚、以上の実施例では、AlGaAs −Ga、As系
半導体をm1た例について述べたが、他の化合物子導体
、例えばInQaAsP−InP系等の半導体をm1て
も良いことは言うまでもない。
In the above embodiments, an example was described in which m1 is an AlGaAs-Ga, As-based semiconductor, but it goes without saying that m1 may be other compound conductors, such as InQaAsP-InP-based semiconductors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例の構造断面図。 第2図は従来の埋め込み型半導体レーザの構造断面図を
それぞれ示す。 図におりて、1.11−n型QaAs基板、2−n型A
lxGa、−xAsクラッド層(0,3≦X<0.35
)。 3−−− n型AlyGa4s光導波層(0,23<y
≦0.26)。 4− AJo、x4Gao、5sAS活性層、5−p型
AIWGal−WAa層(0,4<w<0.45 ) 
、 6− Tl型AJ0.2GaO,8A8電極層、7
.19−p型AJo、4Ga、)、6Aa埋め込み層。 8 、20−n m AJ(、,4Ga(,6As s
め込み層、9.22・・・p型電極、10.23・n型
電極、12・・・n型Al。、4Ga(16Asクラッ
ド層、13・・・n型AlO,35Ga0.65All
光導波層* 14 ”’ AA! 0,11 cao8
gAs活性層、15−p型A1.5Ga、、、A8層、
16・p型All o、4 caO,6A 8クラッド
層、17−・・p型Alo1s Gao、a s AS
電極層。 18・・・くびれ、21・・・p型不純物拡散層、24
・・・sio、膜をそれぞれ示す。 オ 1 図 12、n型A10,4 Goo、6 Asクラッド層1
3、先導波層 14、活性層 15、P型AfL□、5 GOo、5 As層16、P
型Al1o、4 Ga。、6A5クラッド層17、電極
層 18、くびれ
FIG. 1 is a structural sectional view of an embodiment according to the present invention. FIG. 2 shows structural cross-sectional views of conventional buried semiconductor lasers. In the figure, 1.11-n-type QaAs substrate, 2-n-type A
lxGa, -xAs cladding layer (0,3≦X<0.35
). 3--- n-type AlyGa4s optical waveguide layer (0,23<y
≦0.26). 4- AJo, x4Gao, 5sAS active layer, 5-p-type AIWGal-WAa layer (0,4<w<0.45)
, 6- Tl type AJ0.2GaO, 8A8 electrode layer, 7
.. 19-p-type AJo, 4Ga, ), 6Aa buried layer. 8,20-nm AJ(,,4Ga(,6As s
Inset layer, 9.22...p type electrode, 10.23...n type electrode, 12... n type Al. , 4Ga (16As cladding layer, 13...n-type AlO, 35Ga0.65All
Optical waveguide layer * 14 ”' AA! 0,11 cao8
gAs active layer, 15-p type A1.5Ga, , A8 layer,
16-p-type Allo, 4 caO, 6A 8 cladding layer, 17-...p-type Allo1s Gao, a s AS
electrode layer. 18... Constriction, 21... P-type impurity diffusion layer, 24
... sio and membrane are respectively shown. E 1 Figure 12, n-type A10, 4 Goo, 6 As cladding layer 1
3, leading wave layer 14, active layer 15, P type AfL□, 5 GOo, 5 As layer 16, P
Type Al1o, 4 Ga. , 6A5 cladding layer 17, electrode layer 18, constriction

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に、少なくとも該第1導電型
の第1半導体層と該第1半導体層よりも屈折率の大きい
第1導電型の第2半導体層と該第2半導体層よりも屈折
率の大きい活性層と前記第1半導体層よりも屈折率の小
さい第2導電型の第3半導体層と前記第1半導体層と同
じ屈折率を有する第2導電型の第4半導体層を順次積層
して成るストライプ状の多層構造を備え、前記活性層と
第3半導体層の横幅は該ストライプ状の多層構造の横幅
より小さくし、第2半導体層の側面には、該第2半導体
層と同一又は小さい屈折率を有した第2導電型の半導体
層を備え、前記活性層と第3、第4半導体層の側面には
前記活性層よりも屈折率の小さい第1導電型の半導体層
を備えたことを特徴とする埋め込み型半導体レーザ。
On a semiconductor substrate of a first conductivity type, at least a first semiconductor layer of the first conductivity type, a second semiconductor layer of the first conductivity type having a higher refractive index than the first semiconductor layer, and a second semiconductor layer of the first conductivity type having a higher refractive index than the second semiconductor layer. An active layer having a high refractive index, a third semiconductor layer of a second conductivity type having a lower refractive index than the first semiconductor layer, and a fourth semiconductor layer of the second conductivity type having the same refractive index as the first semiconductor layer are sequentially formed. The active layer and the third semiconductor layer have a stripe-like multilayer structure formed by laminating them, and the width of the active layer and the third semiconductor layer is smaller than the width of the stripe-like multilayer structure, and the second semiconductor layer and the second semiconductor layer are arranged on the side surface of the second semiconductor layer. A semiconductor layer of a second conductivity type having the same or lower refractive index is provided, and a semiconductor layer of a first conductivity type having a lower refractive index than the active layer is provided on the side surfaces of the active layer and the third and fourth semiconductor layers. An embedded semiconductor laser characterized by:
JP19804084A 1984-09-21 1984-09-21 Buried semiconductor laser Pending JPS6177383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19804084A JPS6177383A (en) 1984-09-21 1984-09-21 Buried semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19804084A JPS6177383A (en) 1984-09-21 1984-09-21 Buried semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6177383A true JPS6177383A (en) 1986-04-19

Family

ID=16384533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19804084A Pending JPS6177383A (en) 1984-09-21 1984-09-21 Buried semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6177383A (en)

Similar Documents

Publication Publication Date Title
JPH0474877B2 (en)
EP0264225A2 (en) A semiconductor laser device and a method for the production of the same
JPS6218783A (en) Semiconductor laser element
JPS6177383A (en) Buried semiconductor laser
JPH02116187A (en) Semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP3194616B2 (en) Semiconductor laser device
JPH05226774A (en) Semiconductor laser element and its production
JP2804533B2 (en) Manufacturing method of semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPS62179790A (en) Semiconductor laser
JPS6392078A (en) Semiconductor laser element
JPS60189986A (en) Semiconductor laser
JPS63287082A (en) Semiconductor laser element
JPH0195583A (en) Buried-type semiconductor laser device
JPS6112399B2 (en)
JPH01166592A (en) Semiconductor laser element
JPS60134489A (en) Semiconductor laser device
JPH0233988A (en) Semiconductor laser
JPS63181488A (en) Burried semiconductor laser element
JPS63181392A (en) Buried semiconductor laser element
JPS6262577A (en) Semiconductor laser
JPS6226883A (en) Semiconductor laser device
JPS60127777A (en) Manufacture of semiconductor laser
JPS6180884A (en) Buried type semiconductor laser