JPS6259894B2 - - Google Patents

Info

Publication number
JPS6259894B2
JPS6259894B2 JP57024579A JP2457982A JPS6259894B2 JP S6259894 B2 JPS6259894 B2 JP S6259894B2 JP 57024579 A JP57024579 A JP 57024579A JP 2457982 A JP2457982 A JP 2457982A JP S6259894 B2 JPS6259894 B2 JP S6259894B2
Authority
JP
Japan
Prior art keywords
cdse
film
electrode
photoconductive
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57024579A
Other languages
Japanese (ja)
Other versions
JPS58142567A (en
Inventor
Kazumi Komya
Minoru Kanzaki
Mitsuhiko Tashiro
Nobuki Ibaraki
Yoshiko Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Toshiba Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Telegraph and Telephone Corp filed Critical Toshiba Corp
Priority to JP57024579A priority Critical patent/JPS58142567A/en
Publication of JPS58142567A publication Critical patent/JPS58142567A/en
Publication of JPS6259894B2 publication Critical patent/JPS6259894B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】 本発明は、セレン化カドミウム(CdSe)もし
くはCdSeを母材とした光導伝膜をセンサー材料
として用いた画像読取り素子の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an image reading element using a photoconductive film having cadmium selenide (CdSe) or CdSe as a base material as a sensor material.

光導伝膜をセンサーとして用いた画像読取り装
置は、一般に画像、すなわち光情報に応じた光導
伝膜の抵抗変化によつて画像を電気信号に変換す
る装置である。この装置のセンサー素子部は、複
数の対向電極対を所望の解像度に合せて配列し、
対向電極間を光導伝膜で接続することにより形成
される。その回路構成の一例を第1図に示す。同
図において1は直流電源、2は負荷抵抗、31〜
3nは光導伝膜センサーアレイ、41〜4nはス
イツチング素子アレイである。原稿からの反射光
をセルフオツクレンズ、オプテイカルフアイバー
等を通して光導伝膜センサーアレイ31〜3n上
に導入し、スイツチ41〜4nを順次切換えて光
導伝膜の抵抗を読むことにより、光情報を時系列
に読み出すことができる。なお、第1図からわか
る通り、この構成例は複数の対向電極対の片側が
共通に接続されている例を示している。
An image reading device using a photoconductive film as a sensor is generally a device that converts an image into an electrical signal by changing the resistance of the photoconductive film in accordance with the image, that is, optical information. The sensor element section of this device has a plurality of opposing electrode pairs arranged in accordance with a desired resolution,
It is formed by connecting opposing electrodes with a photoconductive film. An example of the circuit configuration is shown in FIG. In the same figure, 1 is a DC power supply, 2 is a load resistance, and 31 to
3n is a photoconductive film sensor array, and 41 to 4n are switching element arrays. Light reflected from the original is introduced onto the photoconductive film sensor arrays 31 to 3n through a self-cleaning lens, optical fiber, etc., and the switches 41 to 4n are sequentially switched to read the resistance of the photoconductive film, thereby transmitting optical information. It can be read out in series. As can be seen from FIG. 1, this configuration example shows an example in which one side of a plurality of opposing electrode pairs is connected in common.

第2図は第1図の構成のセンサー素子周辺のパ
ターン構成例である。5は複数の対向電極対の片
側を共通に接続した共通電極、61〜6nは共通
電極5に個別に対向する個別電極である。すなわ
ち、共通電極5と個別電極61〜6nの間が複数
の対向電極対をなしている。これらのパターン
は、いずれも蒸着、スパツタ、写真蝕刻法による
エツチング等、通常の薄膜プロセスにより形成さ
れる。
FIG. 2 is an example of a pattern configuration around the sensor element having the configuration shown in FIG. Reference numeral 5 designates a common electrode in which one side of a plurality of opposing electrode pairs is commonly connected, and reference numerals 61 to 6n designate individual electrodes that individually oppose the common electrode 5. That is, the common electrode 5 and the individual electrodes 61 to 6n form a plurality of opposing electrode pairs. All of these patterns are formed by ordinary thin film processes such as vapor deposition, sputtering, and photoetching.

CdSeもしくはCdSeを母材とする化合物、例え
ばCdSe1-xTex、CdSe1-xSxは、物理的性質とし
て光電導度が大きく同時に蒸着又はスパツタによ
り容易に薄膜が形成できるため、画像読取り素子
用光導伝膜として適している。
CdSe or CdSe-based compounds, such as CdSe 1-x Tex and CdSe 1-x Sx, have high photoconductivity as a physical property and can be easily formed into thin films by vapor deposition or sputtering, so they are suitable for use in image reading devices. Suitable as a photoconductive film.

しかし、一方、蒸着又はスパツタにより形成し
たCdSeもしくはCdSeを母材とする化合物薄膜
は、結晶性が悪く、画像読取り素子として充分な
特性を得るためには、500〜600℃の熱処理による
活性化が必要である。又、CdSeもしくはCdSeを
母材とする化合物薄膜は耐薬品性が悪く、金属電
極を蝕刻するためのほとんどのエツチング液に腐
蝕されるという欠点を有している。
However, CdSe or CdSe-based compound thin films formed by vapor deposition or sputtering have poor crystallinity and must be activated by heat treatment at 500 to 600°C in order to obtain sufficient characteristics as image reading elements. is necessary. Furthermore, CdSe or a compound thin film based on CdSe has poor chemical resistance and has the disadvantage of being corroded by most etching solutions for etching metal electrodes.

CdSeもしくはCdSeを母材とする化合物薄膜を
光導伝膜として使用し、画像読取り素子を形成す
る場合、前述のように光導伝膜の高温処理が必要
である。しかるに、通常電極材料として用いる金
属薄膜は単層、多層いずれの構成にしても、光導
伝膜の処理温度(500〜600℃)では、酸化、固相
拡散、剥離等が生じ、電極材料としての機能、特
性が維持できないと同時に、光導伝膜との界面で
拡散等の固相反応が生じ光導伝膜の特性をも維持
できない。従つて対向電極材料に金属薄膜を用い
る場合CdSeもしくはCdSeを母材とする化合物薄
膜よりなる光導伝膜を先に形成熱処理し、然る後
に金属薄膜による対向電極を形成しなければなら
ない。このような構成とした場合の素子部のX−
X′断面の例を第3図に示す。ここで3はCdSeも
しくはCdSeを母材とする化合物薄膜よりなる光
導伝膜、5は共通電極、6は個別電極である。
When forming an image reading element using CdSe or a compound thin film containing CdSe as a base material as a photoconductive film, the photoconductive film must be subjected to high-temperature treatment as described above. However, regardless of whether the metal thin film normally used as an electrode material has a single-layer or multilayer structure, oxidation, solid phase diffusion, peeling, etc. occur at the photoconductive film processing temperature (500 to 600°C), making it difficult to use as an electrode material. Functions and properties cannot be maintained, and at the same time solid phase reactions such as diffusion occur at the interface with the photoconductive film, making it impossible to maintain the properties of the photoconductive film. Therefore, when a metal thin film is used as the counter electrode material, a photoconductive film made of CdSe or a compound thin film having CdSe as a base material must first be formed and heat-treated, and then a counter electrode made of the metal thin film must be formed. X- of the element section in such a configuration
An example of the X' cross section is shown in Figure 3. Here, 3 is a photoconductive film made of a thin film of CdSe or a compound having CdSe as a base material, 5 is a common electrode, and 6 is an individual electrode.

通常、共通電極5と個別電極6の間隙は、画像
読取りの解像度を上げるため数10〜100μm程度
が要求される。この値は、メタルマスク等を使用
したマスク蒸着では制御不可能の範囲であり、写
真蝕刻法によるエツチングあるいはリフト・オフ
法を用いなければならない。然るに、前述のよう
にCdSeもしくはCdSeを母材とする化合物薄膜
は、耐薬品性が極めて悪く、通常電極材料として
用いられるAl、Au、Cu、Ni、Mo、W、Cr等い
ずれの金属に対するエツチング液にも腐蝕され
る。これらのことから電極材料の選択には制限が
多い。電極材料としては、外部回路との接続、あ
るいはスイツチング素子のボンデイング等、それ
ぞれの要求を満足する材料を選択できる自由度が
必要とされる。
Normally, the gap between the common electrode 5 and the individual electrodes 6 is required to be about several tens to 100 μm in order to increase the resolution of image reading. This value is in a range that cannot be controlled by mask evaporation using a metal mask or the like, and photolithographic etching or lift-off must be used. However, as mentioned above, CdSe or CdSe-based compound thin films have extremely poor chemical resistance and cannot be etched against any of the metals normally used as electrode materials, such as Al, Au, Cu, Ni, Mo, W, and Cr. It is also corroded by liquids. For these reasons, there are many restrictions on the selection of electrode materials. As for the electrode material, it is necessary to have a degree of freedom in selecting a material that satisfies each requirement, such as connection with an external circuit or bonding of a switching element.

一方、リフトオフ法は、フオト・レジスト上に
金属層を形成し、然る後、レジスト剥離という工
程をとるため、レジスト剥離工程での制約からレ
ジスト硬質化温度(〜150℃)以下の温度で金属
膜を形成しなければならず、基板との充分な付着
力を得ることが困難で、歩留り低下、信頼性低下
の原因となる。
On the other hand, in the lift-off method, a metal layer is formed on the photoresist, and then the resist is stripped off. Due to constraints in the resist stripping process, the metal layer is formed at a temperature below the resist hardening temperature (~150℃). A film must be formed, and it is difficult to obtain sufficient adhesion to the substrate, resulting in a decrease in yield and reliability.

本発明の目的は、かかる電極材料選択上の制限
及び歩留り低下、信頼性低下の恐れのない画像読
取り素子の製造方法を提供するにある。
An object of the present invention is to provide a method for manufacturing an image reading element that is free from such limitations on electrode material selection and from the risk of lowering yield and reliability.

すなわち、酸化スズ(SnO2)、インジウム・ス
ズ酸化物(ITO)等の透明伝導膜は、光導伝膜の
熱処理温度(500〜600℃)でも充分安定であり、
且つCdSeもしくはCdSeを母材とする化合物薄膜
の光導伝特性を劣化させない。従つて、これら透
明伝導膜を対向電極材料として採用し、且つ外部
電極との接続あるいはスイツチング素子とのボン
デイングが必要となる部分には、金属電極を配線
するような構成とすれば良い。
In other words, transparent conductive films such as tin oxide (SnO 2 ) and indium tin oxide (ITO) are sufficiently stable even at the heat treatment temperature of photoconductive films (500 to 600°C).
Moreover, the photoconductive properties of CdSe or a compound thin film having CdSe as a base material are not deteriorated. Therefore, such a structure may be adopted that these transparent conductive films are used as the counter electrode material, and that metal electrodes are wired in areas where connection with external electrodes or bonding with switching elements is required.

第4図に、本発明による素子部の断面X−
X′の構成例を示す。3はCdSeもしくはCdSeを母
材とする光導伝膜、5,6は金属薄膜で形成され
た共通電極及び個別電極、7,8は透明導伝膜で
形成された共通電極及び個別電極である。
FIG. 4 shows a cross section of the element portion according to the present invention.
An example of the configuration of X′ is shown below. 3 is a photoconductive film made of CdSe or CdSe as a base material; 5 and 6 are common electrodes and individual electrodes formed of metal thin films; and 7 and 8 are common electrodes and individual electrodes formed of transparent conductive films.

以下、第5図a〜dに示す実施例によつて本発
明を説明する。
The present invention will be explained below with reference to the embodiments shown in FIGS. 5a to 5d.

まず、ガラス基板上に蒸着によりSnO2膜を0.3
μm形成し、フロン12ガスを使用してドライエツ
チングを行い、共通電極7、及び個別電極81〜
8nのパターンを得る(第5図a)。次いで、電
極上にCdSe膜3を約1μm蒸着で形成し、少量
の酸素雰囲気中で600℃15分の熱処理を行つて
CdSe膜の光導伝特性の改善を行う(第5図b)。
この時、SnO2膜は600℃の熱処理に対しても劣化
が見られず、又、CdSe膜3の光導伝特性にも悪
影響を与えない。
First, a 0.3% SnO 2 film was deposited on a glass substrate by vapor deposition.
μm is formed, dry etching is performed using Freon 12 gas, and the common electrode 7 and individual electrodes 81 to 81 are formed.
A pattern of 8n is obtained (Fig. 5a). Next, a CdSe film 3 of approximately 1 μm thickness was formed on the electrode by vapor deposition, and heat treatment was performed at 600°C for 15 minutes in a small amount of oxygen atmosphere.
The photoconductive properties of the CdSe film are improved (Figure 5b).
At this time, the SnO 2 film shows no deterioration even after heat treatment at 600° C., and also does not adversely affect the photoconductive properties of the CdSe film 3.

次いで、CdSe膜3をエツチングし、センサー
素子部31〜3nを形成する(第5図c)。エツ
チング液は硝酸とりん酸の混合液を用いれば良
い。なお、CdSe膜3の熱処理及びエツチングの
工程は、どちらを先に行つてもよい。
Next, the CdSe film 3 is etched to form sensor element parts 31 to 3n (FIG. 5c). A mixed solution of nitric acid and phosphoric acid may be used as the etching solution. Note that either of the heat treatment and etching steps for the CdSe film 3 may be performed first.

その後、CdSe膜3で形成されるセンサー素子
部31〜3n上には析出せず且つ透明導伝膜で形
成されている共通電極7及び個別電極81〜8n
上の一部には析出する形状の蒸着マスクを使用し
て、金属電極材料、例えばCr0.1μm、Au1μm
を順次蒸着、積層し、所望のパターンでエツチン
グして電極5,61〜6nを形成する(第5図
d)。ここでは、CdSe膜3上に、金属電極材料を
析出させないことが肝要である。すなわち、
CdSe膜3上に金属がないことにより、金属層を
エツチングして電極を形成する際、フオトレジス
ト膜でCdSe膜3を保護できるからである。
Thereafter, the common electrode 7 and the individual electrodes 81 to 8n, which are not deposited on the sensor element parts 31 to 3n formed by the CdSe film 3 and are formed by a transparent conductive film,
A metal electrode material, e.g. Cr0.1μm, Au1μm
are sequentially deposited and laminated, and etched in a desired pattern to form electrodes 5, 61 to 6n (FIG. 5d). Here, it is important that the metal electrode material not be deposited on the CdSe film 3. That is,
This is because since there is no metal on the CdSe film 3, the CdSe film 3 can be protected by the photoresist film when etching the metal layer to form an electrode.

以上述べた製造方法をとることにより、本発明
では電極材料の選択上の制限が大巾に緩和され、
必要な特性を有する金属材料を自由に選択するこ
とが可能となる。
By adopting the manufacturing method described above, in the present invention, restrictions on the selection of electrode materials are greatly relaxed,
It becomes possible to freely select a metal material having the necessary properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の画像読取り装置のセンサー素子
部の回路構成図、第2図は第1図のパターン構成
図、第3図は第2図のX−X′線で切断した時の
断面図、第4図は第3図に対応して示した本発明
のセンサー素子部の断面図、第5図a〜dは本発
明の実施例を説明するために示した製造工程の平
面図である。 3……光導伝膜、5……金属薄膜で形成された
共通電極、6……金属薄膜で形成された個別電
極、7……透明導電膜で形成された共通電極、8
……透明導電膜で形成された個別電極。
Fig. 1 is a circuit configuration diagram of a sensor element section of a conventional image reading device, Fig. 2 is a pattern configuration diagram of Fig. 1, and Fig. 3 is a sectional view taken along the line X-X' in Fig. 2. , FIG. 4 is a sectional view of the sensor element portion of the present invention shown corresponding to FIG. 3, and FIGS. 5 a to 5 d are plan views of the manufacturing process shown for explaining the embodiment of the present invention. . 3... Photoconductive film, 5... Common electrode formed of a metal thin film, 6... Individual electrode formed of a metal thin film, 7... Common electrode formed of a transparent conductive film, 8
...Individual electrodes made of transparent conductive film.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板上に透明導伝膜よりなる複数の対向
電極対を形成する第1の工程と、この対向電極間
を接続するようにセレン化カドミウム(CdSe)
もしくはCdSeを母材とする光導伝膜を形成する
第2の工程と、この光導伝膜を熱処理する第3の
工程と、前記光導伝膜上には金属層が付着せず、
且つ前記透明導伝膜で形成された共通電極及び個
別電極上の一部には金属層が付着する形状のマス
クを用いて金属層を析出させる第4の工程と、こ
の金属層を所望のパターンにエツチングし、金属
電極を形成する第5の工程とからなることを特徴
とする画像読取り素子の製造方法。
1. The first step is to form a plurality of opposing electrode pairs made of transparent conductive films on an insulating substrate, and cadmium selenide (CdSe) is formed to connect the opposing electrodes.
Alternatively, a second step of forming a photoconductive film using CdSe as a base material, a third step of heat-treating the photoconductive film, and no metal layer is attached on the photoconductive film;
and a fourth step of depositing a metal layer using a mask shaped so that the metal layer adheres to a portion of the common electrode and individual electrodes formed of the transparent conductive film, and forming the metal layer into a desired pattern. A method for manufacturing an image reading element, comprising a fifth step of etching to form a metal electrode.
JP57024579A 1982-02-19 1982-02-19 Manufacture of image reading element Granted JPS58142567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57024579A JPS58142567A (en) 1982-02-19 1982-02-19 Manufacture of image reading element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024579A JPS58142567A (en) 1982-02-19 1982-02-19 Manufacture of image reading element

Publications (2)

Publication Number Publication Date
JPS58142567A JPS58142567A (en) 1983-08-24
JPS6259894B2 true JPS6259894B2 (en) 1987-12-14

Family

ID=12142070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024579A Granted JPS58142567A (en) 1982-02-19 1982-02-19 Manufacture of image reading element

Country Status (1)

Country Link
JP (1) JPS58142567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528799B2 (en) * 1985-12-30 1993-04-27 Tokyo Shibaura Electric Co

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940567A (en) * 1982-08-30 1984-03-06 Nippon Telegr & Teleph Corp <Ntt> Photoelectric transducer
JPH0618260B2 (en) * 1983-09-16 1994-03-09 セイコーエプソン株式会社 Image sensor manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528799B2 (en) * 1985-12-30 1993-04-27 Tokyo Shibaura Electric Co

Also Published As

Publication number Publication date
JPS58142567A (en) 1983-08-24

Similar Documents

Publication Publication Date Title
US4332075A (en) Method of producing thin film transistor array
US4307372A (en) Photosensor
EP0300567A2 (en) Method of applying thin layers of oxidic superconductive material
EP0345047B1 (en) Thermal imaging device
US4766085A (en) Method of manufacturing contact type one-dimensional image sensor
US4803375A (en) Image sensors and methods of manufacturing same including semiconductor layer over entire substrate surface
JPS6190445A (en) Semiconductor device
JPS6259894B2 (en)
US4701997A (en) Method of making photo-electric converting elements
US5739547A (en) Reflection type display
JP2974151B2 (en) Contact sensor
JPS58155758A (en) Optoelectric transducer and manufacture thereof
JPS60161686A (en) Manufacture of thin film non-linear device
JPH0476091B2 (en)
JPS5897860A (en) Photosensor
JPH0153729B2 (en)
JPS62176159A (en) Manufacture of image sensor
JPS6197875A (en) Manufacture of semiconductor device
JPS6163050A (en) Image senser
JPS62119966A (en) Formation of wiring pattern
JPS6113663A (en) Manufacture of image sensor
EP0560531A1 (en) Method for manufacturing a liquid crystal display device
JPH0228975A (en) Manufacture of image sensor
JPS61196281A (en) Substrate for display unit
JPS6218066A (en) Image sensor and manufacture of the same