JPS6259070B2 - - Google Patents

Info

Publication number
JPS6259070B2
JPS6259070B2 JP58046559A JP4655983A JPS6259070B2 JP S6259070 B2 JPS6259070 B2 JP S6259070B2 JP 58046559 A JP58046559 A JP 58046559A JP 4655983 A JP4655983 A JP 4655983A JP S6259070 B2 JPS6259070 B2 JP S6259070B2
Authority
JP
Japan
Prior art keywords
sheet
weight
pulp
ceramic
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58046559A
Other languages
Japanese (ja)
Other versions
JPS59169970A (en
Inventor
Masatoshi Sato
Tosha Tanaka
Nobuyuki Nishio
Kunimasa Takamori
Toshasu Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Chemical Works Ltd
Original Assignee
Meisei Chemical Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Chemical Works Ltd filed Critical Meisei Chemical Works Ltd
Priority to JP58046559A priority Critical patent/JPS59169970A/en
Publication of JPS59169970A publication Critical patent/JPS59169970A/en
Publication of JPS6259070B2 publication Critical patent/JPS6259070B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

セラミツクス焼成シートは、シート内部に有す
る気孔の量により、多孔質シートと緻密シートに
大別できる。前者は過材、断熱材、防音材など
に用いられており、後者はICパツケージ、薄膜
磁性体のほか、セラミツクコンデンサーなどのエ
レクトロセラミツクスの分野で利用されている。 フアインセラミツクスシートの製造工程を第1
図に示す。緻密なセラミツクス焼成シートは、従
来より、ドクターブレード法、押出し法、ロール
法、乾式プレス法により製造されている。これら
の製造方法を大別すると、 (1) セラミツクス原料粉末に、有機溶剤を用い、
有機高分子系結合剤、可塑剤、滑剤との組合せ
によりシートを製造する方法(ドクターブレー
ド法)。 (2) セラミツクス原料粉末に、水溶性有機高分子
あるいは合成樹脂エマルジヨンと、可塑剤、滑
剤とを混合し、シートを製造する方法(押出し
法、ロール法、乾式プレス法)。 以上の2種類の方法がある。しかしながら、従
来のシート製造法では、それぞれの製造方法によ
つて、得られるシートの厚さ、寸法が限定されて
いるため、製造コスト等も考慮して、それぞれの
用途について最も適した製造方法を選択してい
る。 従来の緻密な焼成シートの製造法の要点を以下
に記す。 1 ドクターブレード法 溶剤に、有機高分子、可塑剤、滑剤とセラミツ
クス原料粉末を組合せた湿式法で、スラリーを平
坦なポリエチレンシート上に流し、ドクターブレ
ードで調整することにより一定の厚みの生シート
を得る方法である。この方法は、多量の有機溶剤
を使用するため、製造コスト、溶剤の回収など問
題点が多い。また肉厚のシートを得る場合も、セ
ラミツクス粒子の沈降による生シートの密度の不
均質や乾燥時のシートの反りなどのために、厚さ
1mm以上は実際上不可能である。 2 押出し法 水溶性高分子、可塑剤、滑剤を用いた半湿式成
形法で、所定の形状の平板を押出しする方法であ
る。この方法は、押出し成形機の構造より、幅の
広い形状には限度があり、厚さも0.15〜1.0mm程
度で、有機高分子の添加量も多量を必要とする。 3 ロール法 ロール法による圧延シート方式で、一般に、水
溶性高分子あるいは合成樹脂エマルシヨンと、可
塑剤、滑剤を組合せて、半湿式でシートを成形す
る方法で、0.15〜0.4mm程度の厚みで、加熱ロー
ル方式でロール工程を幾度か繰返して成形するた
め、製造コストが高く、添加する有機高分子材料
も多量を要する。 4 乾式プレス法 一般には、機械式プレスや油圧プレスを用い、
水溶性高分子、可塑剤、滑剤とセラミツクス原料
粉末を混合し、スプレードライヤーを用いて顆粒
状に造粒した粉末を、所定の金型に投入し、
1ton/cm2の成形圧で加圧成形する。この方法は小
形セラミツクスシートの製造に採用されている
が、プレス成形機の最大成形圧力による制限と、
生シートの取扱いなどの製造上の諸問題のため
に、面積の大きいシートの成形には不適である。
また厚みも0.18mm以下の薄いシートは成形不可能
である。 以上、各製造法の要点を記述したが、その特徴
をまとめると、第1表及び第2図に示すことがで
きる。
Fired ceramic sheets can be broadly classified into porous sheets and dense sheets, depending on the amount of pores they have inside the sheet. The former is used for insulation, soundproofing, etc., while the latter is used for IC packages, thin film magnetic materials, and electroceramics such as ceramic capacitors. The first manufacturing process for fine ceramic sheets
As shown in the figure. Dense fired ceramic sheets have conventionally been produced by a doctor blade method, an extrusion method, a roll method, and a dry press method. These manufacturing methods can be roughly divided into: (1) using organic solvents for ceramic raw material powder;
A method of manufacturing sheets by combining an organic polymeric binder, a plasticizer, and a lubricant (doctor blade method). (2) A method of manufacturing a sheet by mixing ceramic raw material powder with a water-soluble organic polymer or synthetic resin emulsion, a plasticizer, and a lubricant (extrusion method, roll method, dry press method). There are the above two methods. However, with conventional sheet manufacturing methods, the thickness and dimensions of the sheet that can be obtained are limited depending on the manufacturing method. Selected. The main points of the conventional method for manufacturing dense fired sheets are described below. 1 Doctor blade method A wet method in which a solvent is combined with an organic polymer, a plasticizer, a lubricant, and ceramic raw material powder. The slurry is poured onto a flat polyethylene sheet and adjusted with a doctor blade to form a raw sheet of a certain thickness. This is the way to get it. Since this method uses a large amount of organic solvent, there are many problems such as manufacturing cost and solvent recovery. Furthermore, when obtaining a thick sheet, it is practically impossible to obtain a thickness of 1 mm or more due to non-uniform density of the green sheet due to sedimentation of ceramic particles and warping of the sheet during drying. 2 Extrusion method This is a semi-wet molding method using a water-soluble polymer, plasticizer, and lubricant to extrude a flat plate of a predetermined shape. Due to the structure of the extrusion molding machine, this method has a limit on the width of the shape, the thickness is about 0.15 to 1.0 mm, and it requires a large amount of organic polymer to be added. 3 Roll method A rolled sheet method using a roll method. Generally, a water-soluble polymer or synthetic resin emulsion, a plasticizer, and a lubricant are combined to form a sheet in a semi-wet process, with a thickness of about 0.15 to 0.4 mm. Since the molding process is repeated several times using a heating roll method, manufacturing costs are high and a large amount of organic polymer material is required. 4 Dry press method Generally, a mechanical press or hydraulic press is used.
A water-soluble polymer, a plasticizer, a lubricant, and ceramic raw material powder are mixed, and the powder is granulated using a spray dryer, and the powder is poured into a designated mold.
Pressure molding is performed at a molding pressure of 1 ton/cm 2 . This method is used to manufacture small ceramic sheets, but it is limited by the maximum molding pressure of the press molding machine,
Manufacturing problems such as handling of the green sheet make it unsuitable for forming large area sheets.
Furthermore, thin sheets with a thickness of 0.18 mm or less cannot be formed. The main points of each manufacturing method have been described above, and the characteristics can be summarized as shown in Table 1 and FIG. 2.

〔実施例 1〕[Example 1]

フアインセラミツクス原料として高純度アルミ
ナ粉末(昭和軽金属製AL−160SG,A2O3含有
率99.5%以上)を用い、同アルミナ100重量部
と、水40重量部を減圧ミキサーに投入し、解膠剤
として、セルナD−305(中京油脂株式会社、ア
クリル系オリゴマーのアンモニウム塩、有効成分
40%)を0.3重量部(固形分換算)と、消泡剤と
してホームレスP−46(明成化学工業株式会社、
脂肪酸エステル系誘導体)を添加して、撹拌混合
し、アルミナスラリーを調製した。 一方、パルプは、一般製紙用天然パルプ
(NBKP/LBKP−2/8配合パルプ)を用い、ア
ルミナ粉末100重量部に対して、パルプ0.5重量部
(絶乾重量)と水5重量部を、試験用叩解機(熊
谷理器製、PFIミル)に投入し、更に、パルプの
叩解を促進するために分散剤としてデイスパー
TLN(明成化学工業株式会社、β−ナフタリン
スルホン酸ホルマリン縮合物アンモニウム塩)を
0.02重量部(固形分換算)添加して、20分間、減
圧下で叩解処理を行い、水度(c.s.f.)70mlの
パルプを得た。このパルプに水155重量部を加え
て希釈した。 先に得たアルミナスラリーとパルプスラリーを
減圧容器中で撹拌混合してアルミナ−パルプ系の
均一なスラリーとした後、M−1430(明成化学工
業株式会社、アニオン系ポリアクリルアマイド部
分加水分解物、有効成分10%)0.5重量部(固形
分換算)を添加し、5分間撹拌した。 次いで、RC−104(明成化学工業株式会社、カ
チオン系ポリアクリルアマイド樹脂、有効成分15
%)0.3重量部(固形分換算)を添加、同上撹拌
を行なつた。 このスラリーをTAPPIスタンダード角型シー
トマシン(東洋精器製)により吸引脱水、抄造し
て、縦250mm、横200mm、厚さ2.6mmのセラミツク
ス生シートを得た。 生シートは、湿潤状態で10Kg/cm2の圧力で30分
間脱水プレスし、オーブンで60℃,60分間一次乾
燥した。続いて、線圧100Kgでロールプレスによ
り半湿式加圧(加工速度5m/分)の後、80℃で
2時間最終乾燥した。 同生シートは、所定の大きさに切断後、高温ガ
ス炉(燃料:LNG)を用いて1600℃で高温焼成
した。焼成条件を第6図に示す。なお、ゼーゲル
錐溶倒度はSK31完倒であつた。 焼成シートを3時間煮沸後、吸水率を測定し
た。吸水率は0.20%であつた。 〔実施例 2〕 実施例1に使用したアルミナ100重量部に、実
施例1と同一の粘状叩解したパルプ(水度50ml
c.s.f.)を1.0重量部(絶乾重量)を加え、実施
例1と同様の処理をして、焼成シートを得た。吸
水率は0.35%であつた。 (比較例 1) 実施例2とは異なる水度をもつパルプを用い
て、実施例2と同様にして焼成シートを得た。パ
ルプは、一般製紙に用いられるパルプと同様、
水度(c.s.f.)360mlのパルプを用いた。焼成シー
トの吸水率は、1.61%であつた。 (比較例 2) 実施例2とは異なる水度をもつパルプを用い
て実施例2と同様にして焼成シートを得た。パル
プはやや叩解の程度を進めた水度(c.s.f.)100
mlのパルプを用いた。焼成シートの吸水率は1.30
%であつた。 つぎに薬品の効果を検討したところ、2種類の
有機高分子に加えて合成樹脂エマルシヨンやスチ
レン・ブタジエン共重合体を添加した場合、生シ
ートの強度や柔軟性が向上し、生シートの取扱い
が容易になつた。 〔実施例 3〕 実施例1においてM−1430、RC−104両薬品を
添加したあと、さらにメイカセツトN−100(明
成化学工業株式会社、酢酸ビニル系樹脂、有効成
分40%)4.0重量部(固形分換算)を添加、実施
例1と同様に処理した。焼成シートの吸水率は
0.23%であつた。 〔実施例 4〕 実施例3と同様、ノーガテツクス2001(住友ノ
ーガタツク株式会社、スチレンブタジエン共重合
体、有効成分42%)を4.8重量部(固形分換算)
添加し、シートを作製した。焼成シートの吸水率
は0.30%であつた。
High-purity alumina powder (AL-160SG manufactured by Showa Light Metal Co., Ltd., A 2 O 3 content of 99.5% or more) was used as a raw material for fine ceramics, and 100 parts by weight of the alumina and 40 parts by weight of water were put into a vacuum mixer and peptized. As an agent, Cerna D-305 (Chukyo Yushi Co., Ltd., ammonium salt of acrylic oligomer, active ingredient)
40%) and 0.3 parts by weight (solid content equivalent) of Homeless P-46 (Meisei Chemical Industry Co., Ltd.) as an antifoaming agent.
A fatty acid ester derivative) was added thereto and mixed with stirring to prepare an alumina slurry. On the other hand, the pulp used was natural pulp for general papermaking (NBKP/LBKP-2/8 mixed pulp), and 0.5 parts by weight of pulp (absolutely dry weight) and 5 parts by weight of water were tested for 100 parts by weight of alumina powder. In addition, a dispersant is added as a dispersant to promote pulp beating (Kumagai Riki, PFI Mill).
TLN (Meisei Chemical Industry Co., Ltd., β-naphthalene sulfonic acid formalin condensate ammonium salt)
0.02 parts by weight (in terms of solid content) was added and beaten under reduced pressure for 20 minutes to obtain pulp with a water content (csf) of 70 ml. This pulp was diluted by adding 155 parts by weight of water. The previously obtained alumina slurry and pulp slurry were stirred and mixed in a vacuum container to form a uniform alumina-pulp slurry, and then M-1430 (Meisei Chemical Industry Co., Ltd., anionic polyacrylamide partial hydrolyzate, 0.5 parts by weight (in terms of solid content) of 10% active ingredient was added and stirred for 5 minutes. Next, RC-104 (Meisei Chemical Industry Co., Ltd., cationic polyacrylamide resin, active ingredient 15
%) 0.3 parts by weight (in terms of solid content) was added and stirred as above. This slurry was suction-dehydrated and paper-formed using a TAPPI standard square sheet machine (manufactured by Toyo Seiki) to obtain a raw ceramic sheet with a length of 250 mm, a width of 200 mm, and a thickness of 2.6 mm. The green sheet was dehydrated and pressed under a pressure of 10 kg/cm 2 for 30 minutes in a wet state, and then primarily dried in an oven at 60° C. for 60 minutes. Subsequently, semi-wet pressing was carried out using a roll press (processing speed 5 m/min) with a linear pressure of 100 kg, followed by final drying at 80° C. for 2 hours. After cutting the homogeneous sheet into a predetermined size, it was fired at a high temperature of 1600°C using a high-temperature gas furnace (fuel: LNG). The firing conditions are shown in FIG. The degree of Segel cone collapse was SK31. After boiling the fired sheet for 3 hours, the water absorption rate was measured. The water absorption rate was 0.20%. [Example 2] To 100 parts by weight of the alumina used in Example 1, the same viscous beaten pulp as in Example 1 (water content 50 ml) was added.
1.0 part by weight (absolutely dry weight) of cf) was added, and the same treatment as in Example 1 was carried out to obtain a fired sheet. The water absorption rate was 0.35%. (Comparative Example 1) A fired sheet was obtained in the same manner as in Example 2 using pulp having a water content different from that in Example 2. The pulp is similar to the pulp used in general papermaking.
Pulp with a water content (csf) of 360 ml was used. The water absorption rate of the fired sheet was 1.61%. (Comparative Example 2) A fired sheet was obtained in the same manner as in Example 2 using pulp having a water content different from that in Example 2. The pulp is slightly beaten and has a water content (CSF) of 100.
ml of pulp was used. The water absorption rate of the fired sheet is 1.30
It was %. Next, we investigated the effects of chemicals and found that when a synthetic resin emulsion or styrene-butadiene copolymer was added in addition to two types of organic polymers, the strength and flexibility of the green sheet improved, making it easier to handle the green sheet. It got easier. [Example 3] After adding both M-1430 and RC-104 in Example 1, 4.0 parts by weight (solid) of Meikaset N-100 (Meisei Chemical Co., Ltd., vinyl acetate resin, active ingredient 40%) was added. ) was added and treated in the same manner as in Example 1. The water absorption rate of the fired sheet is
It was 0.23%. [Example 4] As in Example 3, 4.8 parts by weight (solid content equivalent) of Naugatex 2001 (Sumitomo Naugatak Co., Ltd., styrene-butadiene copolymer, active ingredient 42%)
A sheet was prepared. The water absorption rate of the fired sheet was 0.30%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフアインセラミツクスシートの
製造工程を示す工程図、第2図は従来の各種シー
ト製造法によつて製造可能な焼成シートの厚さと
幅の関係を示すグラフ、第3図は従来の各種成形
法によるセラミツクス生成形体の組織構成を示す
グラフ、第4図は本発明によるフアインセラミツ
クスシートの製造工程を示す工程図、第5図は成
形時に添加する有機高分子の熱分解曲線を示すグ
ラフ、第6図は本発明の一実施例におけるアルミ
ナシートの焼成曲線を示すグラフである。
Figure 1 is a process diagram showing the conventional manufacturing process of fine ceramic sheets, Figure 2 is a graph showing the relationship between thickness and width of fired sheets that can be manufactured by various conventional sheet manufacturing methods, and Figure 3 is Graphs showing the structure of ceramics produced by various conventional molding methods, Figure 4 is a process diagram showing the manufacturing process of fine ceramic sheets according to the present invention, and Figure 5 is a thermal decomposition curve of organic polymers added during molding. FIG. 6 is a graph showing the firing curve of an alumina sheet in one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 フアインセラミツクス原料粉末100重量部及
び水度(c.s.f.)95〜10mlの範囲よりなる天然
パルプおよび/または合成パルプ0.5〜2.9重量部
を含有する水性組成物に、定着剤としてカチオン
系およびアニオン系水溶性有機高分子を添加し、
減圧あるいは常圧容器中で脱泡・撹拌混合の後、
抄造法によりセラミツクスシートを抄き上げ、更
に同シートを湿式加圧した後、一般のセラミツク
スと同様の条件で焼成することにより、緻密なフ
アインセラミツクス焼成シートを得ることを特徴
とするセラミツクスシートの製造法。 2 上記水性組成物に結合剤および/または可塑
剤を添加することを特徴とする特許請求の範囲第
1項記載のセラミツクスシートの製造法。
[Scope of Claims] 1. A fixing agent is added to an aqueous composition containing 100 parts by weight of fine ceramic raw material powder and 0.5 to 2.9 parts by weight of natural pulp and/or synthetic pulp having a water content (CSF) in the range of 95 to 10 ml. Adding cationic and anionic water-soluble organic polymers as
After defoaming and stirring and mixing in a reduced pressure or normal pressure container,
A ceramic sheet characterized by forming a ceramic sheet by a paper-making method, wet-pressing the sheet, and then firing it under the same conditions as general ceramics to obtain a dense fine ceramic fired sheet. Manufacturing method. 2. The method for producing a ceramic sheet according to claim 1, which comprises adding a binder and/or a plasticizer to the aqueous composition.
JP58046559A 1983-03-17 1983-03-17 Manufacture of fine ceramic sheet Granted JPS59169970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046559A JPS59169970A (en) 1983-03-17 1983-03-17 Manufacture of fine ceramic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046559A JPS59169970A (en) 1983-03-17 1983-03-17 Manufacture of fine ceramic sheet

Publications (2)

Publication Number Publication Date
JPS59169970A JPS59169970A (en) 1984-09-26
JPS6259070B2 true JPS6259070B2 (en) 1987-12-09

Family

ID=12750679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046559A Granted JPS59169970A (en) 1983-03-17 1983-03-17 Manufacture of fine ceramic sheet

Country Status (1)

Country Link
JP (1) JPS59169970A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295845A (en) * 1990-04-10 1991-12-26 Nozawa Corp Manufacture of green ceramic sheet
JP4653135B2 (en) * 2007-03-29 2011-03-16 株式会社日本触媒 Ceramic sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223657A (en) * 1982-06-17 1983-12-26 本州製紙株式会社 Inorganic sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223657A (en) * 1982-06-17 1983-12-26 本州製紙株式会社 Inorganic sheet

Also Published As

Publication number Publication date
JPS59169970A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
US4737326A (en) Refractory shapes of ceramic fiber-containing material
US4072558A (en) Non-combustible hardboard sheet
US3951735A (en) Process for preparing gypsum board
US4923830A (en) Ceramic bodies formed from partially stabilized zirconia
JP3090462B2 (en) Method for producing sheet from aqueous dispersion
US5023217A (en) Ceramic bodies formed from partially stabilized zirconia
JPS6259070B2 (en)
DE2434445A1 (en) INORGANIC FELT PRODUCTS
JPS6259073B2 (en)
EP0554820B1 (en) Process for forming ceramic sheets
SU1715777A1 (en) Method of manufacturing ceramic products
JPS6140866A (en) Manufacture of ceramic sheet
JPS59165614A (en) Method of molding raw pottery board
JPS62101B2 (en)
USRE22997E (en) Porous refractory
RU1772099C (en) Method of structural ceramics production
JPH01252591A (en) Production of cellular body
SU1658213A1 (en) Method of producing alumochromophosphate binder-modified mica paper
US1744351A (en) Process for the manufacture of refractory acid resisting and other products bonded by means of clay
SU1341313A1 (en) Method of producing technological paper
KR19980044230A (en) Manufacturing method of wallpaper using loess and silica
JPS63303855A (en) Production of low-expansion substrate
JPH0617276B2 (en) Method for manufacturing multi-layer ceramic filter
GB2331517A (en) Binding ceramic materials
JPH03295845A (en) Manufacture of green ceramic sheet