JPS6259073B2 - - Google Patents

Info

Publication number
JPS6259073B2
JPS6259073B2 JP57064020A JP6402082A JPS6259073B2 JP S6259073 B2 JPS6259073 B2 JP S6259073B2 JP 57064020 A JP57064020 A JP 57064020A JP 6402082 A JP6402082 A JP 6402082A JP S6259073 B2 JPS6259073 B2 JP S6259073B2
Authority
JP
Japan
Prior art keywords
water
parts
weight
fatty acid
ceramic molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57064020A
Other languages
Japanese (ja)
Other versions
JPS58181763A (en
Inventor
Yoshiharu Tanizaki
Yoshio Makino
Yutaka Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP57064020A priority Critical patent/JPS58181763A/en
Publication of JPS58181763A publication Critical patent/JPS58181763A/en
Publication of JPS6259073B2 publication Critical patent/JPS6259073B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツク成形体の改良された製造方
法に関し、とくにセラミツク成形体の非常に薄い
ものから極端に厚いものまでを容易に製造する方
法に関する。 セラミツク成形体は、電子回路用多層配線基板
等の絶縁材料、積層コンデンサー等の誘電材料、
圧電ブザー等の圧電材料などに応用されている。
最近とくに注目されている応用例として、電子部
品または回路を小型化するために使用されている
アルミナ質セラミツクの多層配線基板がある。 こうした分野に応用されるセラミツク成形体
は、セラミツク原料をロツド、テープまたは薄い
シート状に成形することによつて得られるが、そ
の代表的な成形法として押出成形法とドクターブ
レードキヤステイング法がある。 前者の押出成形法はセラミツク原料粉末に結合
剤として水溶性ポリマーおよび媒体として水を混
合し、これを高圧または真空押出成形機で成形す
る方法であり、これは水溶性ポリマーとしてポリ
ビニルアルコール、セルローズエーテルなどを使
用し、セラミツク原料に対して必要最低限の水量
で成形することができるため、ち密で寸法安定性
の良い成形品を得ることができる。したがつて特
にコンデンサー等の誘電材料に使われている。し
かし、コンピユーターに使われる多層配線基板用
セラミツクテープの場合は約0.1〜0.3mmのきわめ
て薄いものを必要とするため、前記押出成形法で
は金型の両端と接触する部分がどうしても歪みを
生じ、均一な厚さのテープに成形することが困難
である。 一方、押出成形法以上に広く採用されている方
法がドクターブレードキヤステイング法である。
この方法では結合剤としてフイルム強度の大きい
ポリビニルブチラールが使用され、この媒体とし
てブチルアルコールやクロルエチレン系の溶剤の
使用が必要であり、火災安全上や環境衛生上の問
題があることは避けられない。なお、この方法は
セラミツク原料粉末と結合剤と溶剤とを混合して
得られるスラリーをキヤリアシート上に流し込
み、ドクターブレードにより一定の厚みに引き伸
ばし、乾燥後キヤリアシートより引き剥してテー
プを得る方法である。 したがつて巾の広いテープを容易に得ることが
できるが、スラリー粘度の限界があるためにどう
してもキヤステイング後の粒子沈降が認められ、
厚い均一なテープに成形することができず、一般
に厚さ約1.2mmが限界であるといわれている。 このようなことから、業界では、火災安全上お
よび環境衛生上に問題のない水系で、寸法精度も
高く、任意の形状のセラミツク成形体を得る方法
の確立が強く望まれていた。 本発明はこのような観点から鋭意研究を重ねた
結果到達したもので、セラミツク原料粉末100重
量部、水溶性結合剤1〜10重量部、可塑剤として
ソルビタン脂肪酸エステル0.5〜10重量部および
水5〜30重量部からなる組成物を混和し、押出成
形および/または圧延ロール成形することを特徴
とするセラミツク成形体の製造方法である。 本発明の方法で使用されるセラミツク原料粉末
としてはアルミナ、チタン酸バリウム、チタン酸
ジルコン酸鉛、ジルコニア、酸化チタン、窒化ケ
イ素、炭化ケイ素、窒化ホウ素等があげられる。 水溶性結合剤としては通常用いられている水溶
性樹脂が使用できるが、とくに水溶性ポリビニル
アルコールや水溶性セルローズエーテルの使用が
好ましい。水溶性ポリビニルアルコールのうちで
は、ポリ酢酸ビニルのケン化度が70モル%以上
で、重合度が500以下のものが好ましく、水溶性
セルローズのうちでは、メトキシ基置換度が1.3
〜2.2のメチルセルローズが好ましい。 可塑剤として用いるソルビタン脂肪酸エステル
はソルビタンと炭素数6〜18の脂肪酸とのエステ
ルで、モノ脂肪酸エステル、ジ脂肪酸エステル、
トリ脂肪酸エステルまたはこれらの混合物が使用
でき、とくにHLB値9〜12.5のものが良好な性能
を示す。 ソルビタン脂肪酸エステルを構成する炭素数6
〜18の脂肪酸としては、カプロン酸、カプリル
酸、カプリン酸、ラウリン酸、ミリスチン酸、パ
ルミチン酸、ステアリン酸、2−エチルヘキサン
酸、トリデカン酸、イソステアリン酸、オレイン
酸、リノール酸、リノレン酸、リシノール酸等が
ある。 ソルビタン脂肪酸エステルは非イオン界面活性
剤であり、これを添加することによつて混合の際
の粘度が低下するため、セラミツク原料粉末と水
溶性結合剤の混合が容易となり、均一な分散体が
得られる。また、押出成形する場合にもチクソト
ロピー性が付与されるために金型からの流出が良
好であり、金型の両端と接触する部分のセラミツ
ク成形体の歪みもおこりにくい。さらに離形性も
良好で、テープ成形する際にも混練物が圧延ロー
ルに付着することがなく、成形されたセラミツク
シートの物性もすぐれており、強度とたわみ性の
良好なシートが得られる。 セラミツク原料粉末に対する水溶性結合剤およ
び可塑剤としてのソルビタン脂肪酸エステルの配
合割合は、セラミツク原料粉末100重量部に対し
て水溶性結合剤1〜10重量部、好ましくは3〜8
重量部であり、ソルビタン脂肪酸エステル0.5〜
10重量部、好ましくは3〜6重量部である。ま
た、水の添加量は5〜30重量部である。セラミツ
ク原料粉末の粒度、粒形および水溶性結合剤の種
類により前記の範囲内で最適の添加量は変化する
が、セラミツク原料粉末の見かけ密度が大きく、
また水溶性結合剤の粘性が小さい場合は水の添加
量を少なめに、他方セラミツク原料粉末の見かけ
密度が小さく、また水溶性結合剤の粘性が大きい
場合は水の添加量を多めにすることが必要であ
る。 本発明の製造方法において、原料配合物の混
合、混練および熟成を十分行なう必要がある。セ
ラミツク原料粉末に対する水溶性結合剤、ソルビ
タン脂肪酸エステルおよび水の添加は同時に行な
つても良いが、あらかじめ水溶性結合剤を水に溶
解したものをセラミツク原料粉末に添加したのち
ソルビタン脂肪酸エステルを添加する方法、ある
いは水溶性結合剤とソルビタン脂肪酸エステルを
水に溶解または分散したものをセラミツク原料粉
末に添加する方法が、セラミツク原料粉末の混
合、混練も容易で、均一な分散体が得られる。 本発明の方法では水溶性結合剤を使用した水系
でセラミツク成形体を製造するため、有機溶剤を
使う場合の火災安全上および環境衛生上の問題は
完全に回避される。 本発明の配合を押出成形法により成形する場
合、金型と接触する部分が歪みを受ける影響も少
なくて均一なセラミツク成形体が得られ、また圧
延ロールによるテープ成型ではロール間のクリア
ランスを調整するだけで任意の厚さのテープに成
形できるので、キヤステイング法でしか得られな
かつた0.3mm以下の厚さのテープも容易に成形す
ることができる。しかも、キヤステイング法では
セラミツク原料粉末粒子の沈降の問題から約1.2
mmをこえる厚さのテープを得ることができないの
に対し、このような厚いテープの成形も可能であ
る。 さらに、キヤステイング法では溶媒の蒸発のた
めにどうしてもポーラスなテープが得られるが、
本発明の方法において押出成形等の予備練工程を
経たのちに圧延ロール成形すると、ち密で強度が
大きく、寸法安定性のよいテープが得られる。セ
ラミツクテープは焼結前にパターン印刷を行なう
場合があり、この場合の印刷インキの侵透性が問
題となるが、本発明では結合剤として水溶性ポリ
マーを使用しているので印刷インキのにじみやだ
れがなく、微細な印刷も容易に行なうことができ
る。 つぎに本発明の実施例をあげる。 実施例 1 アルミナ粉末(平均粒径4μ) 100重量部 タルク粉末 6重量部 粘土粉末 2重量部 ポバールUMR−10H 6重量部 (ユニチカ化成(株)製品、ポリ酢酸ビニルのケ
ン化度70〜95モル%、重合度100のポリビニル
アルコール) 可塑剤 4重量部 水 20重量部 上記組成物において、可塑剤として本発明で用
いる非イオン界面活性剤のソルビタン脂肪酸エス
テルのほかに、比較の目的でポリオキシエチレン
系非イオン界面活性剤を用いた。まず、アルミナ
粉末、タルク粉末および粘土粉末の規定量に対
し、あらかじめポバールと可塑剤を水に溶解した
水溶液を添加し、十分混練して真空押出成形機に
かけ、厚さ10mm、巾500mmのシート状に押出し成
形した。その状況とシートの状態を表1に示す。 表1より、可塑剤としてソルビタン脂肪酸エス
テルを用いたものは押出の状況およびシートの状
態ともにすぐれており、HLB9をこえるソルビタ
ン脂肪酸エステルを用いたものはとくにすぐれて
いることが明らかである。 表1のNo.1とNo.2の組成物について、それぞれ
十分混練したのち真空押出成形機にかけ、厚さ10
mm、巾500mmのシート状に押出し、ついでクリア
ランス5mm,2mm,1mmと順次せばめたロールの
間を通しながら最終的に厚さ0.2mmのアルミナテ
ープを得た。テープの表面状態はいずれも均一で
光沢があつた。これらのテープを約1450℃の還元
炎で焼成して得たセラミツクの状態も良好であつ
た。
The present invention relates to an improved method for manufacturing ceramic molded bodies, and more particularly to a method for easily manufacturing ceramic molded bodies ranging from very thin to extremely thick. Ceramic molded bodies are used as insulating materials such as multilayer wiring boards for electronic circuits, dielectric materials such as multilayer capacitors,
It is applied to piezoelectric materials such as piezoelectric buzzers.
An example of an application that has recently attracted particular attention is multilayer wiring boards made of alumina ceramics, which are used to miniaturize electronic components or circuits. Ceramic molded bodies applied in these fields are obtained by molding ceramic raw materials into rods, tapes, or thin sheets, and typical molding methods include extrusion molding and doctor blade casting. . The former extrusion molding method is a method in which ceramic raw material powder is mixed with a water-soluble polymer as a binder and water as a medium, and then molded using a high-pressure or vacuum extruder. Since it is possible to mold the ceramic raw material using the minimum amount of water necessary, it is possible to obtain a molded product that is dense and has good dimensional stability. Therefore, it is especially used in dielectric materials such as capacitors. However, in the case of ceramic tape for multilayer wiring boards used in computers, extremely thin tape of about 0.1 to 0.3 mm is required, so when using the extrusion molding method, the parts that come into contact with both ends of the mold inevitably become distorted, resulting in a uniform It is difficult to form a tape with a certain thickness. On the other hand, a method that is more widely adopted than the extrusion method is the doctor blade casting method.
This method uses polyvinyl butyral, which has a high film strength, as the binder, and requires the use of butyl alcohol or chlorethylene-based solvents as the medium, which inevitably causes problems in terms of fire safety and environmental hygiene. . This method involves pouring a slurry obtained by mixing ceramic raw material powder, a binder, and a solvent onto a carrier sheet, stretching it to a certain thickness with a doctor blade, and then peeling it off from the carrier sheet after drying to obtain a tape. be. Therefore, a tape with a wide width can be easily obtained, but due to the limited viscosity of the slurry, particle sedimentation is inevitably observed after casting.
It cannot be formed into a thick, uniform tape, and it is generally said that the maximum thickness is approximately 1.2 mm. For these reasons, there has been a strong desire in the industry to establish a method for producing ceramic molded bodies of any shape, which is water-based and has high dimensional accuracy without causing any problems in terms of fire safety or environmental hygiene. The present invention was arrived at as a result of extensive research from this point of view, and consists of 100 parts by weight of ceramic raw material powder, 1 to 10 parts by weight of a water-soluble binder, 0.5 to 10 parts by weight of sorbitan fatty acid ester as a plasticizer, and 5 parts by weight of water. This is a method for producing a ceramic molded article, characterized in that a composition comprising up to 30 parts by weight is mixed and extrusion molded and/or roll molded. Ceramic raw material powders used in the method of the present invention include alumina, barium titanate, lead zirconate titanate, zirconia, titanium oxide, silicon nitride, silicon carbide, boron nitride, and the like. As the water-soluble binder, commonly used water-soluble resins can be used, but it is particularly preferable to use water-soluble polyvinyl alcohol and water-soluble cellulose ether. Among water-soluble polyvinyl alcohols, those with a degree of saponification of polyvinyl acetate of 70 mol% or more and a degree of polymerization of 500 or less are preferable, and among water-soluble cellulose, those with a degree of methoxy group substitution of 1.3 are preferable.
~2.2 methylcellulose is preferred. Sorbitan fatty acid ester used as a plasticizer is an ester of sorbitan and a fatty acid having 6 to 18 carbon atoms, and includes monofatty acid ester, difatty acid ester,
Trifatty acid esters or mixtures thereof can be used, and those with HLB values of 9 to 12.5 show particularly good performance. Number of carbon atoms constituting sorbitan fatty acid ester is 6
~18 fatty acids include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, 2-ethylhexanoic acid, tridecanoic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, and ricinol. There are acids etc. Sorbitan fatty acid ester is a nonionic surfactant, and adding it reduces the viscosity during mixing, making it easier to mix the ceramic raw material powder and the water-soluble binder, resulting in a uniform dispersion. It will be done. In addition, when extrusion molding is performed, thixotropy is imparted, so that it flows out easily from the mold, and distortion of the ceramic molded body at the portions that come into contact with both ends of the mold is less likely to occur. Furthermore, the mold releasability is good, and the kneaded material does not adhere to the rolling roll during tape molding, and the physical properties of the molded ceramic sheet are excellent, resulting in a sheet with good strength and flexibility. The blending ratio of sorbitan fatty acid ester as a water-soluble binder and plasticizer to the ceramic raw material powder is 1 to 10 parts by weight, preferably 3 to 8 parts by weight, of the water-soluble binder to 100 parts by weight of the ceramic raw material powder.
Parts by weight, sorbitan fatty acid ester 0.5~
10 parts by weight, preferably 3 to 6 parts by weight. Further, the amount of water added is 5 to 30 parts by weight. The optimum addition amount varies within the above range depending on the particle size and shape of the ceramic raw material powder and the type of water-soluble binder, but the apparent density of the ceramic raw material powder is large,
Also, if the viscosity of the water-soluble binder is low, the amount of water added may be reduced, while if the apparent density of the ceramic raw material powder is low or the viscosity of the water-soluble binder is high, the amount of water added may be increased. is necessary. In the production method of the present invention, it is necessary to thoroughly mix, knead, and ripen the raw material mixture. The water-soluble binder, sorbitan fatty acid ester and water may be added to the ceramic raw material powder at the same time, but the water-soluble binder dissolved in water may be added to the ceramic raw material powder before the sorbitan fatty acid ester is added. Alternatively, a method in which a water-soluble binder and a sorbitan fatty acid ester dissolved or dispersed in water is added to the ceramic raw material powder allows easy mixing and kneading of the ceramic raw material powder, and a uniform dispersion can be obtained. Since the method of the invention produces ceramic molded bodies in an aqueous system using water-soluble binders, the fire safety and environmental health problems associated with the use of organic solvents are completely avoided. When the composition of the present invention is molded by extrusion molding, a uniform ceramic molded product is obtained with less distortion of the part that contacts the mold, and when tape molding is performed using rolling rolls, the clearance between the rolls can be adjusted. Since it can be formed into a tape of any thickness with just a single step, it is also possible to easily form a tape with a thickness of 0.3 mm or less, which could only be obtained by the casting method. Moreover, due to the problem of sedimentation of ceramic raw powder particles in the casting method, the
While it is not possible to obtain tapes with a thickness exceeding mm, it is also possible to form such thick tapes. Furthermore, in the casting method, a porous tape is inevitably obtained due to the evaporation of the solvent;
In the method of the present invention, when the tape is subjected to a pre-kneading step such as extrusion molding and then roll-formed, a dense tape with high strength and good dimensional stability can be obtained. Ceramic tapes are sometimes printed with patterns before sintering, and in this case, the permeability of the printing ink becomes a problem, but in the present invention, a water-soluble polymer is used as the binder, so there is no possibility of bleeding of the printing ink. It is possible to easily perform fine printing without any stains. Next, examples of the present invention will be given. Example 1 Alumina powder (average particle size 4μ) 100 parts by weight Talc powder 6 parts by weight Clay powder 2 parts by weight Poval UMR-10H 6 parts by weight (Unitika Kasei Co., Ltd. product, degree of saponification of polyvinyl acetate 70 to 95 moles) %, polyvinyl alcohol with a degree of polymerization of 100) Plasticizer: 4 parts by weight Water: 20 parts by weight In the above composition, in addition to the sorbitan fatty acid ester, which is a nonionic surfactant used in the present invention, as a plasticizer, polyoxyethylene was added for comparison purposes. A nonionic surfactant was used. First, an aqueous solution of poval and a plasticizer dissolved in water is added to the specified amounts of alumina powder, talc powder, and clay powder, thoroughly kneaded, and passed through a vacuum extrusion molding machine to form a sheet with a thickness of 10 mm and a width of 500 mm. Extrusion molded. Table 1 shows the situation and the condition of the sheet. From Table 1, it is clear that those using sorbitan fatty acid ester as a plasticizer have excellent extrusion conditions and sheet conditions, and those using sorbitan fatty acid ester with an HLB of over 9 are particularly excellent. After thoroughly kneading the compositions No. 1 and No. 2 in Table 1, they were put into a vacuum extrusion molding machine to a thickness of 10 mm.
The alumina tape was extruded into a sheet with a width of 500 mm and then passed between rolls with clearances of 5 mm, 2 mm, and 1 mm in order to obtain an alumina tape with a thickness of 0.2 mm. The surface condition of each tape was uniform and glossy. The ceramics obtained by firing these tapes in a reducing flame at about 1450°C were also in good condition.

【表】【table】

【表】 実施例 2 チタン酸ジルコン酸鉛粉末 100重量部 メトローズSM−4000 3重量部 (信越化学工業(株)製品、メチルセルローズ) 可塑剤 2重量部 水 10重量部 上記組成物において、可塑剤として実施例1と
同様な非イオン界面活性剤を用いた。チタン酸ジ
ルコン酸鉛粉末の規定量に対し、メチルセルロー
ズと可塑剤の水溶液を添加して十分混練したの
ち、フローテスターを用いて棒状に押出成形し
た。押出の状況とロツドの状態を表2に示す。 表2より、可塑剤としてソルビタン脂肪酸エス
テルを用いたものは押出の状況、ロツドの状態と
もにすぐれており、HLB9をこえるものを用いた
場合はとくにすぐれていることが明らかである。 表2のNo.10とNo.11の組成物について、それぞれ
十分混練したのち真空押出成形機にかけ、厚さ10
mm、巾500mmのシート状に押出し、ついでクリア
ランス5mm,2mm,1mmと順次せばめたロールの
間を通しながら最終的に厚さ0.3mmのチタン酸ジ
ルコン酸鉛セラミツクテープを得た。テープの表
面状態はいずれも均一で光沢があつた。これらの
テープを約1450℃の還元炎で焼成して得たセラミ
ツクの状態も良好であつた。
[Table] Example 2 Lead zirconate titanate powder 100 parts by weight Metrose SM-4000 3 parts by weight (Methylcellulose, product of Shin-Etsu Chemical Co., Ltd.) Plasticizer 2 parts by weight Water 10 parts by weight In the above composition, plasticizer The same nonionic surfactant as in Example 1 was used. An aqueous solution of methyl cellulose and a plasticizer was added to a specified amount of lead zirconate titanate powder, thoroughly kneaded, and then extruded into a rod shape using a flow tester. Table 2 shows the extrusion conditions and rod conditions. From Table 2, it is clear that the products using sorbitan fatty acid ester as a plasticizer are excellent in both the extrusion condition and the rod condition, and it is clear that the products using sorbitan fatty acid ester as a plasticizer are particularly excellent. After thoroughly kneading the compositions No. 10 and No. 11 in Table 2, they were put into a vacuum extrusion molding machine to a thickness of 10 mm.
The tape was extruded into a sheet with a width of 500 mm and a width of 500 mm, and then passed between rolls that were sequentially tightened with clearances of 5 mm, 2 mm, and 1 mm, to finally obtain a lead zirconate titanate ceramic tape with a thickness of 0.3 mm. The surface condition of each tape was uniform and glossy. The ceramics obtained by firing these tapes in a reducing flame at about 1450°C were also in good condition.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 セラミツク原料粉末100重量部、水溶性結合
剤1〜10重量部、可塑剤としてソルビタン脂肪酸
エステル0.5〜10重量部および水5〜30重量部か
らなる組成物を混和し、押出成形および/または
圧延ロール成形することを特徴とするセラミツク
成形体の製造方法。 2 水溶性結合剤が水溶性ポリビニルアルコール
または水溶性セルローズエーテルである特許請求
の範囲第1項記載のセラミツク成形体の製造方
法。 3 水溶性ポリビニルアルコールがポリ酢酸ビニ
ルのケン化度70モル%以上で、重合度が500以下
のものである特許請求の範囲第2項記載のセラミ
ツク成形体の製造方法。 4 水溶性セルローズエーテルがメトキシ基置換
度1.3〜2.2のメチルセルローズである特許請求の
範囲第2項記載のセラミツク成形体の製造方法。 5 ソルビタン脂肪酸エステルがソルビタンと
炭素数6〜18の脂肪酸とのエステルである特許請
求の範囲第1項記載のセラミツク成形体の製造方
法。 6 ソルビタン脂肪酸エステルが9〜12.5のHLB
値を有するものである特許請求の範囲第1項また
は第5項記載のセラミツク成形体の製造方法。
[Claims] 1. A composition consisting of 100 parts by weight of ceramic raw powder, 1 to 10 parts by weight of a water-soluble binder, 0.5 to 10 parts by weight of sorbitan fatty acid ester as a plasticizer, and 5 to 30 parts by weight of water, A method for producing a ceramic molded body, characterized by extrusion molding and/or roll molding. 2. The method for producing a ceramic molded article according to claim 1, wherein the water-soluble binder is water-soluble polyvinyl alcohol or water-soluble cellulose ether. 3. The method for producing a ceramic molded article according to claim 2, wherein the water-soluble polyvinyl alcohol has a degree of saponification of polyvinyl acetate of 70 mol% or more and a degree of polymerization of 500 or less. 4. The method for producing a ceramic molded article according to claim 2, wherein the water-soluble cellulose ether is methyl cellulose with a degree of methoxy group substitution of 1.3 to 2.2. 5. The method for producing a ceramic molded article according to claim 1, wherein the sorbitan fatty acid ester is an ester of sorbitan and a fatty acid having 6 to 18 carbon atoms. 6 HLB with sorbitan fatty acid ester from 9 to 12.5
6. The method for producing a ceramic molded article according to claim 1 or 5, wherein the ceramic molded article has a value.
JP57064020A 1982-04-19 1982-04-19 Manufacture of ceramic formed body Granted JPS58181763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57064020A JPS58181763A (en) 1982-04-19 1982-04-19 Manufacture of ceramic formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57064020A JPS58181763A (en) 1982-04-19 1982-04-19 Manufacture of ceramic formed body

Publications (2)

Publication Number Publication Date
JPS58181763A JPS58181763A (en) 1983-10-24
JPS6259073B2 true JPS6259073B2 (en) 1987-12-09

Family

ID=13246054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57064020A Granted JPS58181763A (en) 1982-04-19 1982-04-19 Manufacture of ceramic formed body

Country Status (1)

Country Link
JP (1) JPS58181763A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8607596D0 (en) * 1986-03-26 1986-04-30 Ici Plc Dispersible composition of ceramic
JP2587399B2 (en) * 1986-04-11 1997-03-05 日本合成化学工業株式会社 Ceramic binder
DE68908192T2 (en) * 1988-01-20 1993-12-02 Takeda Chemical Industries Ltd Plastic mixtures of inorganic powders and sintered bodies made from them.
JPH0248454A (en) * 1988-08-05 1990-02-19 Shin Etsu Chem Co Ltd Extrusion molding material
JPH0733013B2 (en) * 1988-09-20 1995-04-12 日本碍子株式会社 Method for manufacturing ceramic honeycomb structure
JP2756081B2 (en) * 1994-04-25 1998-05-25 日本碍子株式会社 Method for manufacturing cordierite-based ceramic honeycomb structure
JP2001179720A (en) * 1999-12-22 2001-07-03 Hitachi Metals Ltd Manufacturing method of cordierite honeycomb structure
JP4161652B2 (en) * 2001-10-10 2008-10-08 株式会社デンソー Method for manufacturing ceramic structure and method for manufacturing ceramic honeycomb structure
JP5081398B2 (en) * 2006-05-31 2012-11-28 積水化学工業株式会社 Laminated glass interlayer film and laminated glass

Also Published As

Publication number Publication date
JPS58181763A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
JP3569785B2 (en) Method for producing surface-modified ceramic powder as nanometer-sized particles
US4752857A (en) Thin tape for dielectric materials
JPS6259073B2 (en)
DE69206645T2 (en) Suspension composition and sintered part made therefrom
EP0408906B1 (en) Water soluble cellulosic binder for ceramic tape casting
DE69213334T2 (en) Process and composition for binding ceramic powder
EP0353523B1 (en) Composition for extrusion molding of green body for sintering
EP0441219B1 (en) Slip for the production of green ceramic sheets and use thereof
JPH02310B2 (en)
JPH01111770A (en) Ceramic material for extrusion molding
JP3385654B2 (en) Method for manufacturing ceramic molded body
JP2651864B2 (en) Molding method of non-plastic material
KR100420930B1 (en) Aqueous ceramic slurry using pvp and gelatin as a binding agent and method for producing a ceramic tape using them
JP3088049B2 (en) Green sheet manufacturing method and alumina substrate
JPH04209747A (en) Ceramic material for single screw type extrusion forming
JPH09169572A (en) Composition for extrusion molding
JPH0331663B2 (en)
JPH01100050A (en) Production of ceramic material for extrusion molding
JPH0450157A (en) Ceramic material for extrusion molding and process for extrusion molding of the material
JP3460156B2 (en) Manufacturing method of aluminum nitride sintered body
JPS6211605A (en) Manufacture of ceramics green sheet
JP2951479B2 (en) Porous sheet-like refractory and method for producing the same
JPS62191458A (en) Manufacture of ceramic formed body
JP2971987B2 (en) Manufacturing method of ceramic substrate
JPS6346026B2 (en)