JPS6259050B2 - - Google Patents

Info

Publication number
JPS6259050B2
JPS6259050B2 JP57129821A JP12982182A JPS6259050B2 JP S6259050 B2 JPS6259050 B2 JP S6259050B2 JP 57129821 A JP57129821 A JP 57129821A JP 12982182 A JP12982182 A JP 12982182A JP S6259050 B2 JPS6259050 B2 JP S6259050B2
Authority
JP
Japan
Prior art keywords
silicon nitride
crystalline silicon
nitrogen
amorphous silicon
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57129821A
Other languages
Japanese (ja)
Other versions
JPS5921507A (en
Inventor
Hideo Nagashima
Norihei Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP12982182A priority Critical patent/JPS5921507A/en
Publication of JPS5921507A publication Critical patent/JPS5921507A/en
Publication of JPS6259050B2 publication Critical patent/JPS6259050B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は結晶質窒化珪素の製造方法に関する。
窒化珪素粉末の焼結特性を結晶質のものと非晶質
のものとで比較すると、結晶質のものの方が常温
及び高温強度、破壊じん性等の優れた焼結体を得
ることができる。また、結晶質窒化珪素のうち、
α相のものとβ相のものを比較するとα相の方が
より良好な焼結体を得ることができる。 このため、近年α相含有率の高い結晶質窒化珪
素の製造方法についての研究が種々なされてい
る。 ところで、従来、結晶質窒化珪素の製造方法と
しては例えば以下のようなものが知られている。 (1) 常温または低温でハロゲン化珪素とアンモニ
アとを反応させ、生成したシリコンジイミド;
Si(NH)2やシリコンテトラアミド; Si(NH24等の含窒素シラン化合物を分離した
後、400〜1200℃で熱分解して非晶質窒化珪素
を生成させ、更に1200℃以上で加熱熟成するこ
とにより結晶質窒化珪素を得る方法。 (2) 気体状のハロゲン化珪素もしくはシランとア
ンモニアとを窒素で稀釈して1000〜1600℃で気
相反応させて非晶質窒化珪素を生成させた後、
1200℃以上で加熱熟成することにより結晶質窒
化珪素を得る方法。 (3) 窒素プラズマ中に液状またはガス状の珪素化
合物を吹込み、プラズマ中の窒素と反応させて
直接に結晶質窒化珪素を得る方法。 上述した(1)及び(2)の方法については、1200〜
1400℃の温度下では非晶質窒化珪素の結晶化速度
が非常に遅いため、一般に1400〜1600℃で加熱熟
成が行われている。しかし、高温下でも結晶化速
度は遅く、かなりの時間加熱熟成しないと非晶質
窒化珪素が残留するため、生産効率が悪く、コス
トが高騰するという欠点がある。しかも、加熱温
度を高くするとβ相の結晶が生成し易くなるた
め、得られる結晶質窒化珪素の品質が悪化すると
いう欠点がある。更に、得られる結晶質窒化珪素
の結晶は針状、繊維状あるいはリボン状等細長い
ものであり、形状及び大きさが一定していないこ
とが確認されている。こうした結晶は、成型密度
が低く、成型しにくいため高品質の焼結体を得る
のが困難である。また、窒化珪素粉末を取扱う作
業者の肺胞内壁につきささつて肺障害を起こし易
いので、環境衛生上も好ましくない。 一方、上述した(3)の方法においては、結晶化速
度は速いものの、反応系外へガスとして失われる
量が多いため収率が低いうえに消費するエネルギ
ーが大きく、コストが高騰するという欠点があ
る。 本発明は上記欠点を解消するためになされたも
のであり、非晶質窒化珪素を低減するかあるいは
全くなくし、α相含有率が高く、しかも結晶の形
状及び大きさの一定した高品質の結晶質窒化珪素
を低コストで製造し得る方法を提供しようとする
ものである。 すなわち、本発明の結晶質窒化珪素の製造方法
は、非晶質窒化珪素あるいは含窒素シラン化合物
に結晶質窒化珪素を添加した後、窒素含有非酸化
性雰囲気中で加熱処理することを特徴とするもの
である。 本発明において、非晶質窒化珪素を得る方法と
しては、シリコンジイミドやシリコンテトラアミ
ド等の含窒素シラン化合物を400〜1200℃で熱分
解する方法、あるいは気体状のハロゲン化珪素も
しくはシランとアンモニアとを窒素で稀釈して
1000〜1600℃で気相反応させる方法等が挙げるこ
とができる。 また、含窒素シラン化合物を得る方法として
は、有機溶媒中にハロゲン化珪素を溶解させた溶
液中にアンモニアガスを供給して反応させる方法
あるいは気体状のハロゲン化珪素とアンモニアガ
スとを不活性雰囲気中で反応させる方法等を挙げ
ることができる。 本発明において非晶質窒化珪素または含窒素シ
ラン化合物に添加される結晶質窒化珪素の添加量
は1〜30重量%であることが望ましい。これは1
重量%未満であると結晶化を促進する効果が小さ
く、30重量%を超えると、非晶質窒化珪素あるい
は含窒素シラン化合物の処理量が少なくなり、経
済的でないからである。 また、添加される結晶質窒化珪素の平均粒度は
1.5μm以下、好ましくは0.8μm以下の微細なも
のが望ましい。これは、平均粒度が1.5μmを超
えると結晶化を促進する効果が小さくなるためで
ある。 なお、含窒素シラン化合物は酸化され易く、吸
湿性があるので、結晶質窒化珪素を添加する際に
も窒素含有非酸化性雰囲気中で行う必要がある。 また、非晶質窒化珪素あるいは含窒素シラン化
合物との混合粉末を造粒すれば、処理量を増加す
ることができる。 また、本発明において加熱処理が行われる窒素
含有非酸化性雰囲気としては、窒素、アンモニア
もしくはこれらの混合ガスまたはこれらと不活性
ガスとの混合ガスを挙げることができる。 また、この際の加熱温度は1200〜1600℃の温度
範囲が適している。 更に、加熱処理はバツチ式の炉、プツシヤー方
式の連続炉、流動層方式あるいは転動方式等のい
ずれで行つてもよい。 以下、本発明方法の実施例を説明する。 実施例1〜6及び比較例1,2 まず、半導体用高純度SiCl4液1容積部を高純
度n−ヘキサン(n−C6H14)液6容積部に溶解
させた溶液を反応容器に入れて−40℃に保持した
後、溶液中に挿入した配管から窒素ガスを吹込ん
で反応容器内を窒素ガスで置換した。次に、前記
配管から窒素ガス及びアンモニアガスを夫々50
c.c./min,20c.c./minの条件で供給し、バブリン
グ状態で下記の反応を生起させ、シリコンジイミ
ドと塩化アンモニウムからなる白色沈殿物を生成
させた。 SiCl4+6NH3→Si(NH)2+4NH4Cl沈殿物が生
成しなくなつた後、アンモニアガスの供給を停止
し、窒素ガスを続けて供給しながら反応容器を50
℃の水に浸し、反応容器内のn−ヘキサンを蒸発
除去した。つづいて、窒素ガスを供給しながら反
応容器を350℃に加熱して塩化アンモニウムを昇
華させて除去した。残存した白色のシリコンジイ
ミドをそのまま600℃で1時間加熱した後、反応
容器から取り出して白色の非晶質窒化珪素を得
た。 得られた非晶質窒化珪素に下記表に示すα相含
有率、平均粒度を有する結晶質窒化珪素を同表に
示す割合で添加した後、窒素雰囲気中において
1450℃、1時間の条件で加熱熟成した。こうして
得られた結晶質窒化珪素の諸特性を下記表に併記
する。なお、下記表中比較例1及び2は非晶質窒
化珪素に結晶質窒化珪素を添加しなかつたもので
あり、加熱熟成の条件は比較例1については1450
℃、1時間、比較例2については1450℃、5時間
である。
The present invention relates to a method for manufacturing crystalline silicon nitride.
Comparing the sintering properties of crystalline and amorphous silicon nitride powders, the crystalline powder yields a sintered body with superior room temperature and high temperature strength, fracture toughness, etc. In addition, among crystalline silicon nitride,
Comparing the α-phase and β-phase, the α-phase yields a better sintered body. Therefore, in recent years, various studies have been conducted on methods for producing crystalline silicon nitride with a high α phase content. By the way, the following methods are conventionally known as methods for producing crystalline silicon nitride. (1) Silicon diimide produced by reacting silicon halide and ammonia at room temperature or low temperature;
After separating nitrogen-containing silane compounds such as Si(NH) 2 and silicon tetraamide; Si(NH 2 ) 4 , they are thermally decomposed at 400 to 1200°C to produce amorphous silicon nitride, and then further decomposed at 1200°C or higher. A method of obtaining crystalline silicon nitride by heating and ripening. (2) After diluting gaseous silicon halide or silane and ammonia with nitrogen and causing a gas phase reaction at 1000 to 1600°C to produce amorphous silicon nitride,
A method of obtaining crystalline silicon nitride by heating and aging at 1200℃ or higher. (3) A method in which a liquid or gaseous silicon compound is injected into nitrogen plasma and reacted with nitrogen in the plasma to directly obtain crystalline silicon nitride. For methods (1) and (2) above, 1200~
Since the crystallization rate of amorphous silicon nitride is extremely slow at a temperature of 1400°C, heat aging is generally performed at 1400 to 1600°C. However, the crystallization rate is slow even at high temperatures, and amorphous silicon nitride remains unless heat-ripened for a considerable period of time, resulting in poor production efficiency and high costs. Moreover, when the heating temperature is increased, β-phase crystals are more likely to be formed, which has the disadvantage that the quality of the obtained crystalline silicon nitride deteriorates. Furthermore, it has been confirmed that the obtained crystalline silicon nitride crystals are elongated in the form of needles, fibers, or ribbons, and are not uniform in shape and size. These crystals have a low molding density and are difficult to mold, making it difficult to obtain a high-quality sintered body. In addition, it is unfavorable from an environmental hygiene point of view, since it tends to stick to the inner walls of the alveoli of workers who handle silicon nitride powder, causing lung damage. On the other hand, in method (3) mentioned above, although the crystallization rate is fast, a large amount is lost as gas to the outside of the reaction system, resulting in low yield, high energy consumption, and high costs. be. The present invention has been made in order to eliminate the above-mentioned drawbacks, and provides a high-quality crystal with a high α-phase content and a constant crystal shape and size by reducing or completely eliminating amorphous silicon nitride. The present invention aims to provide a method for manufacturing high-quality silicon nitride at low cost. That is, the method for producing crystalline silicon nitride of the present invention is characterized by adding crystalline silicon nitride to amorphous silicon nitride or a nitrogen-containing silane compound, and then heat-treating it in a nitrogen-containing non-oxidizing atmosphere. It is something. In the present invention, amorphous silicon nitride can be obtained by thermally decomposing a nitrogen-containing silane compound such as silicon diimide or silicon tetraamide at 400 to 1200°C, or by combining gaseous silicon halide or silane with ammonia. diluted with nitrogen
Examples include a method of carrying out a gas phase reaction at 1000 to 1600°C. In addition, as a method for obtaining a nitrogen-containing silane compound, ammonia gas is supplied to a solution of silicon halide dissolved in an organic solvent to cause a reaction, or gaseous silicon halide and ammonia gas are mixed in an inert atmosphere. Examples include a method in which the reaction is carried out in the reactor. In the present invention, the amount of crystalline silicon nitride added to the amorphous silicon nitride or nitrogen-containing silane compound is preferably 1 to 30% by weight. This is 1
If it is less than 30% by weight, the effect of promoting crystallization will be small, and if it exceeds 30% by weight, the amount of amorphous silicon nitride or nitrogen-containing silane compound to be treated will be small, making it uneconomical. In addition, the average particle size of the added crystalline silicon nitride is
Fine particles of 1.5 μm or less, preferably 0.8 μm or less are desirable. This is because when the average particle size exceeds 1.5 μm, the effect of promoting crystallization becomes smaller. Note that since nitrogen-containing silane compounds are easily oxidized and have hygroscopic properties, it is necessary to add crystalline silicon nitride in a nitrogen-containing non-oxidizing atmosphere. Further, by granulating a mixed powder with amorphous silicon nitride or a nitrogen-containing silane compound, the throughput can be increased. Further, the nitrogen-containing non-oxidizing atmosphere in which the heat treatment is performed in the present invention includes nitrogen, ammonia, a mixed gas thereof, or a mixed gas of these and an inert gas. Moreover, the heating temperature at this time is preferably in the range of 1200 to 1600°C. Further, the heat treatment may be carried out in a batch type furnace, a pusher type continuous furnace, a fluidized bed type, a rolling type, or the like. Examples of the method of the present invention will be described below. Examples 1 to 6 and Comparative Examples 1 and 2 First, a solution in which 1 volume part of high-purity SiCl 4 liquid for semiconductors was dissolved in 6 volume parts of high-purity n-hexane (n-C 6 H 14 ) liquid was placed in a reaction vessel. After the solution was placed in the solution and maintained at -40°C, nitrogen gas was blown into the solution through a pipe inserted into the solution to replace the inside of the reaction vessel with nitrogen gas. Next, 50% each of nitrogen gas and ammonia gas were supplied from the pipes.
cc/min, 20 c.c./min, the following reaction occurred in a bubbling state, and a white precipitate consisting of silicon diimide and ammonium chloride was produced. SiCl 4 +6NH 3 →Si(NH) 2 +4NH 4 After the Cl precipitate stopped forming, the supply of ammonia gas was stopped, and the reaction vessel was heated for 50 minutes while continuously supplying nitrogen gas.
It was immersed in water at a temperature of 0.degree. C., and n-hexane in the reaction container was removed by evaporation. Subsequently, the reaction vessel was heated to 350° C. while supplying nitrogen gas to sublimate and remove ammonium chloride. The remaining white silicon diimide was heated as it was at 600° C. for 1 hour, and then taken out from the reaction vessel to obtain white amorphous silicon nitride. After adding crystalline silicon nitride having the α phase content and average particle size shown in the table below to the obtained amorphous silicon nitride in the proportion shown in the table, it was added in a nitrogen atmosphere.
It was heated and aged at 1450°C for 1 hour. Various properties of the crystalline silicon nitride thus obtained are also listed in the table below. In addition, Comparative Examples 1 and 2 in the table below are those in which crystalline silicon nitride was not added to amorphous silicon nitride, and the heat aging conditions for Comparative Example 1 were 1450
℃ for 1 hour, and for Comparative Example 2, it was 1450℃ for 5 hours.

【表】 上記表から以下の効果が確認された。 (1) 比較例1及び2は非晶質窒化珪素に結晶質窒
化珪素を添加していないため、結晶化速度が遅
く、比較例1の加熱熟成条件(1450℃、1時
間)では非晶質窒化珪素がかなり残留し、比較
例2の加熱熟成条件(1450℃、5時間)でも非
晶質窒化珪素が少し残留した。これに対して実
施例1〜6は非晶質窒化珪素に結晶質窒化珪素
を添加することにより結晶化速度が速くなり
1450℃、1時間の加熱熟成条件で非晶質窒化珪
素は実施例1〜3及び6では全く検知されず、
実施例4ではごく微量だけ残留し、実施例5で
は少し残留した。なお、実施例4及び5で非晶
質窒化珪素が若干残留するのは、添加結晶質窒
化珪素の平均粒度が大きため結晶化を促進する
効果が小さいためであると考えられる。 上述したように、結晶化速度を速くして短時
間で非晶質窒化珪素を低減するかあるいは全く
なくすることができるので、生産効率を向上
し、コストを低減することができる。 (2) 比較例1及び2ではいずれも針状の結晶とな
つたが、実施例1〜6ではいずれも粒状の結晶
が得られ、結晶の大きさもほぼ一定していた。
この結果、得られた結晶質窒化珪素は成型密度
が高く、成型し易くなるため高品質の焼結体を
得ることができる。 (3) 生成した結晶質窒化珪素のα相含有率はいず
れも添加した結晶質窒化珪素のα相含有率より
も高くなつている。したがつて、添加結晶質窒
化珪素のα相含有率により生成結晶質窒化珪素
のα相含有率をある程度制御することができ、
実施例1〜3のようにα相含有率95%の結晶質
窒化珪素を添加すれば、α相含有率がほぼ100
%の高品質の結晶質窒化珪素を得ることができ
る。 (4) 実施例2,4,5及び6を比較すると、添加
結晶質窒化珪素の平均粒度が小さければ小さい
ほど生成結晶質窒化珪素の平均粒度が小さくな
つている。また、実施例1〜3を比較すると添
加量が多くなればなるほど生成結晶質窒化珪素
の平均粒度が小さくなつている。このように、
添加結晶質窒化珪素の平均粒度及び添加量によ
り生成結晶質窒化珪素の平均粒度をある程度制
御することができる。 なお、以上のような効果は添加した結晶質窒
化珪素が核となつて結晶化が進行することによ
り生ずると考えられる。 以上詳述した如く本発明によれば、非晶質窒化
珪素を低減するかあるいは全くなくし、α相含有
率が高く、しかも結晶の形状及び大きさの一定し
た高品質の結晶質窒化珪素を低コストで製造し得
る方法を提供できるものである。
[Table] From the above table, the following effects were confirmed. (1) In Comparative Examples 1 and 2, crystalline silicon nitride was not added to amorphous silicon nitride, so the crystallization rate was slow. A considerable amount of silicon nitride remained, and even under the heat aging conditions of Comparative Example 2 (1450° C., 5 hours), a small amount of amorphous silicon nitride remained. On the other hand, in Examples 1 to 6, the crystallization speed was increased by adding crystalline silicon nitride to amorphous silicon nitride.
No amorphous silicon nitride was detected in Examples 1 to 3 and 6 under heat aging conditions of 1450°C for 1 hour.
In Example 4, only a very small amount remained, and in Example 5, a small amount remained. Note that the reason why some amorphous silicon nitride remains in Examples 4 and 5 is considered to be that the average grain size of the added crystalline silicon nitride is large, so that the effect of promoting crystallization is small. As described above, amorphous silicon nitride can be reduced or completely eliminated in a short time by increasing the crystallization rate, thereby improving production efficiency and reducing costs. (2) In Comparative Examples 1 and 2, needle-shaped crystals were obtained, but in Examples 1 to 6, granular crystals were obtained, and the size of the crystals was almost constant.
As a result, the obtained crystalline silicon nitride has a high molding density and is easy to mold, so that a high quality sintered body can be obtained. (3) The α phase content of the produced crystalline silicon nitride is higher than the α phase content of the added crystalline silicon nitride. Therefore, the α-phase content of the produced crystalline silicon nitride can be controlled to some extent by the α-phase content of the added crystalline silicon nitride,
If crystalline silicon nitride with an α phase content of 95% is added as in Examples 1 to 3, the α phase content will be approximately 100%.
% of high quality crystalline silicon nitride can be obtained. (4) Comparing Examples 2, 4, 5, and 6, the smaller the average grain size of the added crystalline silicon nitride, the smaller the average grain size of the produced crystalline silicon nitride. Further, when comparing Examples 1 to 3, the average particle size of the produced crystalline silicon nitride becomes smaller as the amount added becomes larger. in this way,
The average grain size of the produced crystalline silicon nitride can be controlled to some extent by the average grain size and amount of added crystalline silicon nitride. Note that the above effects are thought to be caused by the progress of crystallization with the added crystalline silicon nitride serving as a nucleus. As detailed above, according to the present invention, amorphous silicon nitride is reduced or completely eliminated, and high-quality crystalline silicon nitride with a high alpha phase content and uniform crystal shape and size is reduced. It is possible to provide a method that can be manufactured at low cost.

Claims (1)

【特許請求の範囲】[Claims] 1 非晶質窒化珪素あるいは含窒素シラン化合物
に結晶質窒化珪素を添加した後、窒素含有非酸化
性雰囲気中で加熱処理することを特徴とする結晶
質窒化珪素の製造方法。
1. A method for producing crystalline silicon nitride, which comprises adding crystalline silicon nitride to amorphous silicon nitride or a nitrogen-containing silane compound, and then heat-treating the mixture in a nitrogen-containing non-oxidizing atmosphere.
JP12982182A 1982-07-26 1982-07-26 Manufacture of crystalline silicon nitride Granted JPS5921507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12982182A JPS5921507A (en) 1982-07-26 1982-07-26 Manufacture of crystalline silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12982182A JPS5921507A (en) 1982-07-26 1982-07-26 Manufacture of crystalline silicon nitride

Publications (2)

Publication Number Publication Date
JPS5921507A JPS5921507A (en) 1984-02-03
JPS6259050B2 true JPS6259050B2 (en) 1987-12-09

Family

ID=15019050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12982182A Granted JPS5921507A (en) 1982-07-26 1982-07-26 Manufacture of crystalline silicon nitride

Country Status (1)

Country Link
JP (1) JPS5921507A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155509A (en) * 1983-08-12 1985-08-15 Agency Of Ind Science & Technol Preparation of fine powder of high-purity silicon nitride of isometric system
JPS61191506A (en) * 1985-02-18 1986-08-26 Toyo Soda Mfg Co Ltd Production of high alpha-type silicon nitride powder
JPS62148309A (en) * 1985-12-23 1987-07-02 Toyo Soda Mfg Co Ltd Preparation of silicon nitride having high content of alpha type silicon nitride
JP2678872B2 (en) * 1993-07-30 1997-11-19 カシオ計算機株式会社 Waveform display method
JP5682779B2 (en) * 2011-02-04 2015-03-11 三菱マテリアル株式会社 Power module substrate with high density and excellent bondability

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102300A (en) * 1977-02-18 1978-09-06 Toshiba Corp Preparation of type silicon nitride powders
JPS5423917A (en) * 1977-07-25 1979-02-22 Hitachi Metals Ltd Small raotating machine
US4145224A (en) * 1974-11-22 1979-03-20 Gte Sylvania Incorporated Method for enhancing the crystallization rate of high purity amorphous Si3 N4 powder, powders produced thereby and products therefrom
JPS54124898A (en) * 1978-03-22 1979-09-28 Toyo Soda Mfg Co Ltd Preparation of silicon nitride
JPS55113603A (en) * 1979-02-19 1980-09-02 Toshiba Corp Manufacture of alpha silicon nitride powder
JPS5644006A (en) * 1979-09-19 1981-04-23 Toyobo Co Ltd Hollow yarn type reverse osmosis apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145224A (en) * 1974-11-22 1979-03-20 Gte Sylvania Incorporated Method for enhancing the crystallization rate of high purity amorphous Si3 N4 powder, powders produced thereby and products therefrom
JPS53102300A (en) * 1977-02-18 1978-09-06 Toshiba Corp Preparation of type silicon nitride powders
JPS5423917A (en) * 1977-07-25 1979-02-22 Hitachi Metals Ltd Small raotating machine
JPS54124898A (en) * 1978-03-22 1979-09-28 Toyo Soda Mfg Co Ltd Preparation of silicon nitride
JPS55113603A (en) * 1979-02-19 1980-09-02 Toshiba Corp Manufacture of alpha silicon nitride powder
JPS5644006A (en) * 1979-09-19 1981-04-23 Toyobo Co Ltd Hollow yarn type reverse osmosis apparatus

Also Published As

Publication number Publication date
JPS5921507A (en) 1984-02-03

Similar Documents

Publication Publication Date Title
CN101891165A (en) Production method of macrocrystalline hexagonal boron nitride
JPS6112844B2 (en)
JPS6259050B2 (en)
JPS6111886B2 (en)
JPH0640713A (en) Method for dehydrating quartz powder
JPS61191506A (en) Production of high alpha-type silicon nitride powder
JPH0535084B2 (en)
JP2004035382A (en) Method of manufacturing polycrystalline silicon
JPS6111885B2 (en)
JPH0647446B2 (en) Boron Nitride Manufacturing Method
JPS62148309A (en) Preparation of silicon nitride having high content of alpha type silicon nitride
EP0385096A1 (en) Process for producing sinterable crystalline aluminum nitride powder
JPH01278404A (en) Method for manufacture of boron nitride
JPH09263402A (en) Production of hexagonal boron nitride powder
JP2852087B2 (en) Method for producing aluminum nitride powder
JPH01197309A (en) Production of granular silicon
JP2639687B2 (en) Method for producing acicular silicon nitride
JPH01176208A (en) Production of fine powder of boron nitride of hexagonal system
JPS621564B2 (en)
JPH0454611B2 (en)
JPS6335566B2 (en)
JPS6132244B2 (en)
JPS6158806A (en) Manufacture of high-purity hexagonal boron nitride powder
JPS61117108A (en) Preparation of fine powdery silicon nitride
JPH01290511A (en) Production of crystalline silicon nitride