JPH0647446B2 - Boron Nitride Manufacturing Method - Google Patents

Boron Nitride Manufacturing Method

Info

Publication number
JPH0647446B2
JPH0647446B2 JP60198981A JP19898185A JPH0647446B2 JP H0647446 B2 JPH0647446 B2 JP H0647446B2 JP 60198981 A JP60198981 A JP 60198981A JP 19898185 A JP19898185 A JP 19898185A JP H0647446 B2 JPH0647446 B2 JP H0647446B2
Authority
JP
Japan
Prior art keywords
boron nitride
boric acid
water
melamine
boric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60198981A
Other languages
Japanese (ja)
Other versions
JPS6259506A (en
Inventor
保夫 吉田
和夫 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60198981A priority Critical patent/JPH0647446B2/en
Publication of JPS6259506A publication Critical patent/JPS6259506A/en
Publication of JPH0647446B2 publication Critical patent/JPH0647446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化ホウ素の製造法に関し、さらに詳しくは六
方晶型結晶の大きく発達した窒化ホウ素の製造法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing boron nitride, and more particularly to a method for producing boron nitride in which hexagonal type crystals are greatly developed.

〔従来の技術〕[Conventional technology]

従来、窒化ホウ素の工業的製造法としては、ホウ酸、無
水ホウ酸或いはホウ砂と、ジシアンジアミド、メラミ
ン、尿素等の熱分解によつてアンモニアを発生する有機
化合物との混合物を加熱するか、またはホウ酸をリン酸
カルシウムのような比表面積の大きい充填剤と共に造粒
し、アンモニア気流中で加熱する方法が行なわれてい
る。この方法は、それぞれの融点以上の温度で窒化され
るホウ酸またはホウ砂の反応表面を保持することが難か
しく、反応率も低いため、製造バツチの大型化が妨げら
れ、また反応が遅いので徐熱が必要で、急熱すると反応
が進まなくなるため急熱により反応時間を短縮すること
が出来ない。さらに、この方法はメラミン等の炭化によ
り、得られる窒化ホウ素が黒化したり、窒化が不均一と
なつたりする問題もある。
Conventionally, as an industrial production method of boron nitride, boric acid, boric anhydride or borax, and a mixture of an organic compound that generates ammonia by thermal decomposition of dicyandiamide, melamine, urea, or the like, or A method in which boric acid is granulated with a filler having a large specific surface area such as calcium phosphate and heated in an ammonia stream is used. In this method, it is difficult to retain the reaction surface of boric acid or borax that is nitrided at a temperature above its melting point, and the reaction rate is low, which prevents the production batch from increasing in size and the reaction is slow. Slow heating is required, and the reaction does not proceed if rapidly heated, so the reaction time cannot be shortened by rapid heating. Further, this method has a problem that the obtained boron nitride is blackened or the nitriding is uneven due to carbonization of melamine or the like.

これに対し、ホウ酸或いは無水ホウ酸とメラミン等を混
合しさらに水を加えて窒化ホウ素前躯体を生成させ、こ
れを不活性雰囲気中で加熱する方法は、前躯体生成中に
メラミンが常温で完全に反応するため、その後の加熱に
よるメラミン炭化がなく、さらに前躯体の加熱残分は窒
化ホウ素のみが残り、他の成分はすべて気散するので、
高収率で高純度の窒化ホウ素が容易に得られることを知
つた。
On the other hand, boric acid or boric anhydride and melamine are mixed and water is further added to form a boron nitride precursor, which is heated in an inert atmosphere. Since it reacts completely, there is no melamine carbonization due to subsequent heating, and the heating residue of the precursor remains only boron nitride, and all other components are vaporized,
It was found that high-purity and high-purity boron nitride can be easily obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

そこで、上記方法について種々研究を行なつたところ、
ホウ酸または無水ホウ酸とNH基を有する有機環状化
合物とのホウ素原子(B)と窒素原子(N)との比(B
/N比)によつて、非酸化性ガス雰囲気下、700〜2
300℃で加熱した後の結晶性に差異が生ずることが判
明した。例えばNH基を有する有機環状化合物がメラ
ミンの場合、ホウ酸或いは無水ホウ酸とメラミンとがB
/N:1/3〜2/1の範囲で混合されるが、B/N:
1/2付近を境として、ホウ酸、或いは無水ホウ酸が多
いと六方晶型の結晶性のよい窒化ホウ素が得られ、メラ
ミンが多いと無定形乱層構造の窒化ホウ素が出来易い。
この無定形乱層構造の窒化ホウ素が多いと、得られた窒
化ホウ素は結晶が小さく、また、不安定なため、水、空
気等と反応し易く、容易に分解酸化してしまう。しか
し、原料の無水ホウ酸量を多くすれば、結晶性は改良さ
れるがボウ素収率が低下し、製品中に残存する酸化ホウ
素を除去しなければならず、経済的に不利となる。
Therefore, after conducting various studies on the above method,
The ratio of the boron atom (B) to the nitrogen atom (N) of boric acid or boric anhydride and the organic cyclic compound having an NH 2 group (B
/ N ratio), in a non-oxidizing gas atmosphere, 700 to 2
It was found that there was a difference in crystallinity after heating at 300 ° C. For example, when the organic cyclic compound having an NH 2 group is melamine, boric acid or boric anhydride and melamine are B
/ N: mixed in the range of 1/3 to 2/1, but B / N:
When the amount of boric acid or anhydrous boric acid is around 1/2, boron nitride having good hexagonal crystallinity can be obtained, and when the amount of melamine is large, an amorphous turbostratic boron nitride can be easily formed.
If there is a large amount of boron nitride having this amorphous disordered layer structure, the obtained boron nitride has a small crystal and is unstable, so that it easily reacts with water, air, etc. and is easily decomposed and oxidized. However, if the amount of boric anhydride as a raw material is increased, the crystallinity is improved but the yield of boron is lowered, and the boron oxide remaining in the product must be removed, which is economically disadvantageous.

この解決策として、従来、窒化ホウ素の結晶化促進剤と
して知られているアルカリ金属酸化物或いはアルカリ土
類金属酸化物を添加することが考えられるが、これらは
メラミン等のNH含有有機環状化合物に比してアルカ
リ性が強く、常温での前躯体生成反応を妨げる。ところ
が、アルカリ金属化合物或いはアルカリ土類金属化合物
を炭酸塩として添加すると、上記反応を妨げることな
く、700〜2300℃の高温で窒化ホウ素の結晶化を
促進することを知見した。
As a solution to this problem, it is conceivable to add an alkali metal oxide or an alkaline earth metal oxide conventionally known as a crystallization accelerator for boron nitride, but these are NH 2 -containing organic cyclic compounds such as melamine. It has stronger alkalinity than that of, and interferes with the precursor formation reaction at room temperature. However, it has been found that addition of an alkali metal compound or an alkaline earth metal compound as a carbonate promotes crystallization of boron nitride at a high temperature of 700 to 2300 ° C. without hindering the above reaction.

本発明は、上記の新たな知見に基づいて完成されたもの
で、ホウ酸または無水ホウ酸とNH基を有する有機環
状化合物から、結晶性のよい、水、空気に対して安定な
窒化ホウ素を製造する方法を提供することを目的とす
る。
The present invention has been completed based on the above new findings, and is derived from boric acid or boric anhydride and an organic cyclic compound having an NH 2 group, and has good crystallinity and is stable to water and air, and is boron nitride. It aims at providing the method of manufacturing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達成するためになされたもので、
その要旨は、ホウ酸、または無水ホウ酸と、NH基を
有する有機環状化合物にアルカリ金属、またはアルカリ
土類金属の炭酸塩および水を加えて混合し、これを乾燥
または仮焼した後、非酸化性ガス雰囲気下、700〜2
300℃で加熱する窒化ホウ素の製造法にある。
The present invention has been made to achieve the above object,
The gist thereof is that boric acid or boric anhydride, an organic cyclic compound having an NH 2 group are mixed with an alkali metal or alkaline earth metal carbonate and water, and the mixture is dried or calcined. 700-2 under non-oxidizing gas atmosphere
It is a method for producing boron nitride which is heated at 300 ° C.

〔発明の具体的構成および作用〕[Specific Structure and Action of Invention]

本発明に用いられるホウ酸或いは無水ホウ酸のうちホウ
酸としてはオルソホウ酸、メタホウ酸、四ホウ酸がいず
れも使用出来る。
Among boric acid or boric anhydride used in the present invention, as orthoboric acid, metaboric acid or tetraboric acid can be used.

また、NH基を有する有機環状化合物は、望ましくは
窒化ホウ素の加熱反応に際して溶融しないものである。
例えばメラミン、アンメリン、アンメリド、メラム、メ
レム、メロン、シアノメラミン、グアニルメラミン、等
である。溶融しないことが望ましい理由は、加熱時発泡
し、分解ガスが逃散し難く、分解不十分により炭化し易
く黒化し、また窒化ホウ素純度が低下するためである。
Moreover, the organic cyclic compound having an NH 2 group is preferably one that does not melt during the heating reaction of boron nitride.
For example, melamine, ammeline, ammelide, melam, melem, melon, cyanomelamine, guanylmelamine, and the like. The reason why it is desirable not to melt is that foaming occurs when heated, the decomposed gas does not easily escape, carbonization easily occurs due to insufficient decomposition, and the purity of boron nitride decreases.

また、アルカリ金属またはアルカリ土類金属の炭酸塩
は、例えば炭酸リチウム、炭酸カルシウムが代表的であ
るが、炭酸水素ナトリウム等の重炭酸塩、ドロマイト
(MgCO・CaCO)等の複炭酸塩でもよい。炭
酸塩は水への溶解度が小さいことが望ましく、溶けた場
合、溶液のpHがNHを有する有機環状化合物の水溶
液のpHより低いことが望ましい。
Typical examples of the alkali metal or alkaline earth metal carbonates include lithium carbonate and calcium carbonate, but bicarbonates such as sodium hydrogen carbonate and double carbonates such as dolomite (MgCO 3 · CaCO 3 ). Good. The carbonate preferably has low solubility in water, and when dissolved, the pH of the solution is preferably lower than the pH of the aqueous solution of the organic cyclic compound having NH 2 .

上記アルカリ金属炭酸塩、或いはアルカリ土類金属炭酸
塩の添加量は、得られる窒化ホウ素に対し、酸化物とし
て0.5wt%以上、特に1.0wt%以上が好まし
い。0.5wt%未満では、効果がない。また、添加量
を増す程効果も増すが、10wt%を越えると添加量増
加分の効果が少なくなり、後工程での添加分の除去の場
合も考えると、経済的でない。
The amount of the above-mentioned alkali metal carbonate or alkaline earth metal carbonate added is preferably 0.5 wt% or more, more preferably 1.0 wt% or more as an oxide with respect to the obtained boron nitride. If it is less than 0.5 wt%, there is no effect. Further, the effect increases as the added amount increases, but if it exceeds 10 wt%, the effect of the added amount decreases, and it is not economical considering the case of removing the added amount in the subsequent process.

今、ホウ酸(HBOまたはHBO)或いは無水ホ
ウ酸(B)とメラミン(C)を用い、
窒化ホウ素を製造する場合について説明する。
Now, using boric acid (H 3 BO 3 or HBO 2 ) or boric anhydride (B 2 O 3 ) and melamine (C 3 N 6 H 6 ),
The case of producing boron nitride will be described.

アルカリ金属炭酸塩、或いはアルカリ土類金属炭酸塩
(以下これら炭酸塩という)を添加するには、これら炭
酸塩を予め粉砕した後、ホウ酸或いは無水ホウ酸粉末と
メラミン粉末および水との混合物に添加するか、また
は、上記成分のいずれかに混合した後、他の成分を加え
て混合してもよい。これら炭酸塩を予め粉砕し、均一混
合することが望ましい。
To add an alkali metal carbonate or an alkaline earth metal carbonate (hereinafter referred to as “carbonate”), these carbonates are crushed in advance and then added to a mixture of boric acid or boric anhydride powder, melamine powder and water. After adding or mixing with any of the above components, other components may be added and mixed. It is desirable to pulverize these carbonates in advance and uniformly mix them.

また、水溶性の酸化物、或いは塩化物をホウ酸、或いは
無水ホウ酸、メラミンおよび水の混合物に添加、溶解
し、これに炭酸ガスを吹込んで炭酸塩としてもよい。
Alternatively, a water-soluble oxide or chloride may be added to and dissolved in boric acid or a mixture of boric anhydride, melamine and water, and carbon dioxide may be blown into the mixture to form a carbonate.

上記混合により、メラミンのNH基の窒素原子とホウ
酸の水素原子とが水素結合したC(NH−H
BOの分子式で示される前駆体が得られる。これ
を乾燥、或いは仮焼した後、非酸化性ガス雰囲気下、7
00〜2300℃の温度で焼成すると、六方晶に富んだ
結晶性のよい水、空気に安定な窒化ホウ素が得られる。
By the above mixing, C 3 N 3 (NH 2 —H 3) in which the nitrogen atom of the NH 2 group of melamine and the hydrogen atom of boric acid are hydrogen-bonded.
A precursor having a molecular formula of BO 3 ) 3 is obtained. After drying or calcining this, it is placed in a non-oxidizing gas atmosphere for 7
By firing at a temperature of 00 to 2300 ° C., water- and boron-stable boron nitride rich in hexagonal crystals and having good crystallinity can be obtained.

焼成温度が700℃未満では、窒化ホウ素が生成しにく
く、2300℃を越えても生成する窒化ホウ素は変らず
経済的でない。
If the firing temperature is lower than 700 ° C., it is difficult to generate boron nitride, and even if it exceeds 2300 ° C., the generated boron nitride does not change and is not economical.

なお、本発明において、上記これら炭酸塩の代りに硝酸
塩、硫酸塩等も考えられるが、これらのうち水に対する
溶解度の低い、例えば硫酸カルシウムを使用すると、結
晶成長効果は認められるが、乾燥、仮焼、または700
℃以上の高温焼成時に腐食性のガスを発生するので好ま
しくない。
Incidentally, in the present invention, nitrates, sulfates and the like may be considered in place of the above carbonates, but of these, the solubility in water is low, for example, when calcium sulfate is used, a crystal growth effect is recognized, but drying, temporary Grilled or 700
Corrosive gas is generated when firing at a high temperature of ℃ or more, which is not preferable.

アルカリ金属又はアルカリ土類金属の炭酸塩を加えるこ
とによつて何故にBNの結晶性がよくなるかは明らかで
ないが、これらの化合物の添加によつて低融点物質が生
成し、それが融解し、それにBNが溶け込み、それが再
結晶するときに大きな結晶に成長するのではないかと推
定される。
It is not clear why the addition of alkali metal or alkaline earth metal carbonates improves the crystallinity of BN, but the addition of these compounds produces a low melting point substance which melts, It is presumed that BN dissolves in it and grows into a large crystal when it recrystallizes.

また、水を添加し、混合することにより、ホウ酸とNH
2基を有する有機環状化合物とが結合した前駆体が得ら
れ、この前駆体を仮焼、焼成するため、ホウ素収率が高
くなって、窒化ホウ素の生成収率が高くなる。
Also, by adding water and mixing, boric acid and NH
A precursor in which an organic cyclic compound having two groups is bonded is obtained, and the precursor is calcined and fired, so that the boron yield is high and the boron nitride production yield is high.

以下実施例、比較例を示して本発明を説明する。The present invention will be described below with reference to Examples and Comparative Examples.

〔実施例〕〔Example〕

ホウ酸粉末:18.6g、メラミン粉末:12.6g、
炭酸カルシウム粉末:3.1gをアルミナポツトに採取
し、さらに水:1を加え、上記アルミナポツトを回転
させて、10時間内容物を混合した。十分混合したスラ
リー状混合物をステンレスパツトにあけ、250℃で乾
燥した。この乾燥固化した混合物を軽く解砕し、アルミ
ナるつぼに入れ、窒素ガスを5/minの流速で流しな
がら、横型環状炉中で1000℃まで加熱し、約1時間
保持した後、冷却した。冷却した試料を取出し、粉砕し
て100メツシユで篩い、一部をX線法で結晶化度(学
振炭素材料117委員に準ずる)Lcを測定し、一部を
空気中で熱重量分析に供した。その結果、結晶化度Lc
=120Å、酸化開始温度は800℃であつた。得られ
た粉末試料に水を添加したが、ガスの発生はなく、アン
モニア臭もなかつた。
Boric acid powder: 18.6 g, melamine powder: 12.6 g,
Calcium carbonate powder: 3.1 g was sampled in an alumina pot, water: 1 was further added, and the alumina pot was rotated to mix the contents for 10 hours. The well-mixed slurry-like mixture was poured into a stainless steel plate and dried at 250 ° C. The dried and solidified mixture was lightly crushed, put into an alumina crucible, heated to 1000 ° C. in a horizontal annular furnace while flowing nitrogen gas at a flow rate of 5 / min, and held for about 1 hour, and then cooled. The cooled sample was taken out, crushed and sieved with 100 mesh, and part of it was measured for crystallinity (according to Gakshin Carbon Material 117 Committee) Lc by X-ray method, and part was subjected to thermogravimetric analysis in air. did. As a result, the crystallinity Lc
= 120Å, the oxidation starting temperature was 800 ° C. Water was added to the obtained powder sample, but no gas was generated and no ammonia odor was observed.

〔比較例〕[Comparative example]

炭酸カルシウムを添加しなかつた外は、実施例と同じに
した。
Same as Example except that no calcium carbonate was added.

冷却した試料を空気中で粉砕したところ、アンモニア臭
があり、水を添加することによりガス発生が認められ
た。また、結晶化度Lc=60Å、酸化開始温度は70
0℃で、実施例に比して窒化ホウ素の結晶が未発達で、
水、空気(酸素)に対して不安定なことを示した。
When the cooled sample was ground in air, it had an ammonia odor and gas generation was observed by adding water. Also, the crystallinity Lc = 60Å, the oxidation start temperature is 70
At 0 ° C., the crystal of boron nitride was undeveloped as compared with the examples,
It was shown to be unstable to water and air (oxygen).

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明の方法は、ホウ酸、或いは無水
ホウ酸とNH基を有する有機環状化合物および水との
混合物を加熱して、高いホウ素収率で、六方晶に富む結
晶性のよい、水、空気に安定な窒化ホウ素を製造するこ
とが出来る優れた方法である。
As described above, according to the method of the present invention, boric acid or a mixture of boric anhydride and an organic cyclic compound having an NH 2 group and water is heated to obtain a high boron yield and a hexagonal-rich crystallinity. It is an excellent method that can produce boron nitride that is stable in water and air.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ホウ酸または無水ホウ酸と、NH基を有
する有機環状化合物にアルカリ金属またはアルカリ土類
金属の炭酸塩および水を加えて混合し、これを乾燥また
は仮焼した後、非酸化性ガス雰囲気下、700〜230
0℃で加熱することを特徴とする窒化ホウ素の製造法。
1. Boric acid or boric anhydride, and an organic cyclic compound having an NH 2 group are mixed with an alkali metal or alkaline earth metal carbonate and water, and the mixture is dried or calcined. 700 to 230 in an oxidizing gas atmosphere
A method for producing boron nitride, which comprises heating at 0 ° C.
JP60198981A 1985-09-09 1985-09-09 Boron Nitride Manufacturing Method Expired - Lifetime JPH0647446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60198981A JPH0647446B2 (en) 1985-09-09 1985-09-09 Boron Nitride Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60198981A JPH0647446B2 (en) 1985-09-09 1985-09-09 Boron Nitride Manufacturing Method

Publications (2)

Publication Number Publication Date
JPS6259506A JPS6259506A (en) 1987-03-16
JPH0647446B2 true JPH0647446B2 (en) 1994-06-22

Family

ID=16400132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60198981A Expired - Lifetime JPH0647446B2 (en) 1985-09-09 1985-09-09 Boron Nitride Manufacturing Method

Country Status (1)

Country Link
JP (1) JPH0647446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129898A4 (en) * 2020-03-27 2024-04-17 Tokuyama Corp Method for producing hexagonal boron nitride powder

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825686A (en) * 1994-07-11 1996-01-30 Canon Inc Image forming apparatus
JP3461651B2 (en) * 1996-01-24 2003-10-27 電気化学工業株式会社 Hexagonal boron nitride powder and its use
KR100323941B1 (en) * 1996-08-06 2002-02-16 오츠카 유지로 Boron nitride and process for preparing the same
US7341702B2 (en) * 2004-12-28 2008-03-11 Momentive Performance Materials Inc. Process for producing boron nitride
JP5137428B2 (en) 2007-03-13 2013-02-06 キヤノン株式会社 Optical scanning device and image forming apparatus using the same
JP5026389B2 (en) * 2008-10-21 2012-09-12 電気化学工業株式会社 Method for producing hexagonal boron nitride
CN105967156B (en) * 2016-05-04 2018-08-24 莱芜亚赛陶瓷技术有限公司 A kind of dedicated h-BN powders of synthesis c-BN and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151202A (en) * 1983-08-25 1985-08-09 Yuka Meramin Kk Manufacture of boron nitride
JPS6172606A (en) * 1984-09-14 1986-04-14 Kawasaki Steel Corp Production of hexagonal boron nitride with good sintering properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129898A4 (en) * 2020-03-27 2024-04-17 Tokuyama Corp Method for producing hexagonal boron nitride powder

Also Published As

Publication number Publication date
JPS6259506A (en) 1987-03-16

Similar Documents

Publication Publication Date Title
Capron et al. Strontium dialuminate SrAl4O7: Synthesis and stability
JPH0647446B2 (en) Boron Nitride Manufacturing Method
JPS60122797A (en) Production of aluminum nitride single crystal
US3713803A (en) Production of phosphate fertilizers
JPS62100404A (en) Production of pulverous hexagonal boron nitride having high purity
US2733132A (en) patewo
JPH0524849B2 (en)
JPH0476356B2 (en)
JPH08290905A (en) Hexagonal boron nitride powder and its production
JPH09263402A (en) Production of hexagonal boron nitride powder
JPS6259050B2 (en)
JPS60260410A (en) Manufacture of beta-sialon powder
Wani et al. Fluorination of Vanadium Oxides
CA1040385A (en) Large particle hexagonal boron nitride
JPS62148309A (en) Preparation of silicon nitride having high content of alpha type silicon nitride
JPH01176208A (en) Production of fine powder of boron nitride of hexagonal system
RU2180890C1 (en) Method for production of high-condensed ammonium polyphosphate
JP3116084B2 (en) Turbulent structure boron nitride (αtBN) and method for producing the same
JP2706883B2 (en) Manufacturing method of aluminum borate whisker
JPS594398B2 (en) Kankousei Karihiryou no Seizouhouhou
RU2091304C1 (en) Method of preparing wollastonite
RU2181697C2 (en) Method of production of nitrates of alkaline- earth metals
RU2038299C1 (en) Method of ammonium bifluoride producing
US785161A (en) Process of making nitrogen compounds.
JPS6158806A (en) Manufacture of high-purity hexagonal boron nitride powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term