JPS6257063B2 - - Google Patents

Info

Publication number
JPS6257063B2
JPS6257063B2 JP11621681A JP11621681A JPS6257063B2 JP S6257063 B2 JPS6257063 B2 JP S6257063B2 JP 11621681 A JP11621681 A JP 11621681A JP 11621681 A JP11621681 A JP 11621681A JP S6257063 B2 JPS6257063 B2 JP S6257063B2
Authority
JP
Japan
Prior art keywords
sample
magnetic pole
objective lens
pole piece
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11621681A
Other languages
Japanese (ja)
Other versions
JPS5825049A (en
Inventor
Katsushige Tsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP11621681A priority Critical patent/JPS5825049A/en
Publication of JPS5825049A publication Critical patent/JPS5825049A/en
Publication of JPS6257063B2 publication Critical patent/JPS6257063B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Description

【発明の詳細な説明】 本発明は試料面に対して垂直方向の磁場を印加
し、対物レンズをデイフオーカスした状態で試料
の磁区構造観察を行うための所謂ローレンツ電子
顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called Lorentz electron microscope for observing the magnetic domain structure of a sample while applying a magnetic field perpendicular to the sample surface and keeping an objective lens in defocus.

磁性薄膜試料にその表面に垂直方向の磁場を印
加して、試料の磁区構造を観察するための所謂ロ
ーレンツ電子顕微鏡においては、対物レンズの磁
界を試料を磁化するために用いているが、従来に
おいては対物レンズを結像レンズとして使用し、
試料に印加する磁場の強さは試料を光軸に沿つて
移動させることによつて行つているため、速い速
度で印加磁場の強さを変えることはできなかつ
た。又このような従来装置においては試料に数
100ガウス以下の磁場を印加するためには試料を
対物レンズの外まで移動されねばならず、試料に
印加される磁場の強さを零から連続的に増加させ
ることはできない。又試料に印加される磁場の強
さを変化させるため試料を数センチ以上も光軸に
沿つて移動させねばならず、従つて試料ホルダー
としてトツプエントリー型のものを用いざるを得
ず、その為試料の傾斜、加熱等を容易に行うこと
ができない。
In the so-called Lorentz electron microscope, which applies a magnetic field perpendicular to the surface of a magnetic thin film sample to observe the magnetic domain structure of the sample, the magnetic field of the objective lens is used to magnetize the sample. uses the objective lens as an imaging lens,
Because the strength of the magnetic field applied to the sample was determined by moving the sample along the optical axis, it was not possible to change the strength of the applied magnetic field rapidly. In addition, in such conventional equipment, the number of samples is
In order to apply a magnetic field of 100 Gauss or less, the sample must be moved outside the objective lens, and the strength of the magnetic field applied to the sample cannot be continuously increased from zero. Furthermore, in order to change the strength of the magnetic field applied to the sample, the sample must be moved along the optical axis by more than a few centimeters, which necessitates the use of a top-entry type sample holder. It is not possible to easily tilt or heat the sample.

本発明はこのような従来装置の欠点を解決し、
試料に印加する磁場の強さを零から連続的に増加
することができ、又印加磁場強度の変化も速やか
に行い得、試料の傾斜及び加熱を行つた状態で磁
区観察できるローレンツ型電子顕微鏡を提供する
ことを目的としている。
The present invention solves the drawbacks of such conventional devices,
We have developed a Lorentz electron microscope that can continuously increase the strength of the magnetic field applied to the sample from zero, can quickly change the strength of the applied magnetic field, and can observe magnetic domains while tilting and heating the sample. is intended to provide.

そのため本発明は、上磁極片5aと下磁極片5
bより成る対物レンズ4と、該対物レンズの励磁
電流を変化させるための励磁電源7が備えられて
おり、下磁極片5bの頂面の近傍にあつて光軸に
対して直角方向を成す貫通孔9が前記下磁極片5
bに穿たれており、該貫通孔9を通して磁性体試
料11を光軸上に配置するための試料ホルダー1
0が設けられており、該貫通孔9を穿つことによ
つて残された下磁極片5bの部分のうち上磁極片
5aに対向する部分Mは前記対物レンズの磁極間
隙に形成される磁界から前記試料をシールドする
と共に前記励磁電源から前記対物レンズに供給さ
れる励磁電流が増加すると磁気飽和を起して漏洩
したレンズ磁場が試料に印加されるようにその厚
さが選ばれており、該試料を透過した電子線に基
づく像を蛍光板14上に結像するためのレンズ1
2,13が備えられていることを特徴としてい
る。
Therefore, the present invention provides an upper magnetic pole piece 5a and a lower magnetic pole piece 5a.
b, and an excitation power source 7 for changing the excitation current of the objective lens. The hole 9 is the lower magnetic pole piece 5.
a sample holder 1 for placing a magnetic sample 11 on the optical axis through the through hole 9;
Of the portion of the lower magnetic pole piece 5b left by drilling the through hole 9, the portion M facing the upper magnetic pole piece 5a is protected from the magnetic field formed in the magnetic pole gap of the objective lens. The thickness is selected so that the sample is shielded and when the excitation current supplied from the excitation power source to the objective lens increases, magnetic saturation occurs and leaked lens magnetic field is applied to the sample. A lens 1 for forming an image on the fluorescent screen 14 based on the electron beam transmitted through the sample
It is characterized by being equipped with 2 and 13.

以下図面に基づき本発明の一実施例を詳述す
る。
An embodiment of the present invention will be described in detail below based on the drawings.

第1図は本発明の一実施例の概略を示すための
もので、図中1は電子銃であり、2,3は第1、
第2の収束レンズである。4は対物レンズであ
り、5aは対物レンズの上磁極、5bは対物レン
ズの下磁極であり、6は対物レンズの励磁コイル
であり、該励磁コイル6には電源7より励磁電流
が供給される。前記下磁極片5bにはその頂面近
傍にあつて光軸に対して直角方向を成す貫通孔9
が穿たれており、該貫通孔9を穿つた結果残つた
部分Mの厚さは対物レンズの励磁電流が一定値以
上になると磁気飽和を起こし、上磁極5aと下磁
極5bとの間に形成される主磁界が漏洩して試料
11に試料面とは垂直な磁場が印加されるように
選ばれている。該貫通孔9には非磁性材料で形成
されたサイドエントリー型の試料ホルダー10が
自由に挿入できるようになつており、該試料ホル
ダー10には薄膜磁性試料11が装着されてい
る。12は中間レンズ、13は投影レンズ、14
は螢光板である。
FIG. 1 is for showing the outline of one embodiment of the present invention. In the figure, 1 is an electron gun, 2 and 3 are a first,
This is the second converging lens. 4 is an objective lens, 5a is an upper magnetic pole of the objective lens, 5b is a lower magnetic pole of the objective lens, 6 is an excitation coil of the objective lens, and an excitation current is supplied to the excitation coil 6 from a power source 7. . The lower magnetic pole piece 5b has a through hole 9 located near its top surface and perpendicular to the optical axis.
is formed between the upper magnetic pole 5a and the lower magnetic pole 5b due to magnetic saturation when the excitation current of the objective lens exceeds a certain value. The magnetic field is selected so that the main magnetic field applied to the sample 11 leaks and a magnetic field perpendicular to the sample surface is applied to the sample 11. A side entry type sample holder 10 made of a non-magnetic material can be freely inserted into the through hole 9, and a thin film magnetic sample 11 is mounted on the sample holder 10. 12 is an intermediate lens, 13 is a projection lens, 14
is a fluorescent plate.

このような構成において、レンス電源7より対
物レンズ4の励磁コイル6の励磁電流を供給すれ
ば、対物レンズ4の光軸8に沿う磁場強度は電源
7から励磁コイル6に供給される電流の大きさに
よつて第2図に示す如きものとなる。第2図にお
いて横軸は光軸に沿つて取られた位置を表わして
おり、同図において細線Oで示された位置は試料
位置、破線Aで示された位置は上磁極と下磁極の
間隙の中心位置を表わしており、又Bで示された
位置は下磁極5bの刳り貫かれて残つた上磁極5
aに対向する部分Mの位置に対応している。第2
図の縦軸は磁場強度を表わしている。第2図から
明らかなように励磁コイル6に供給する電流が一
定量ずつ変化すると光軸8に沿う磁場は電流値が
多い順に第2図においてイ,ロ,ハ,ニ,ホで示
すようになる。第2図から明らかなように第1図
における下磁極5bの部分Mは磁気シールド部材
として働き、励磁コイル6に供給される励磁電流
が一定値より小さい場合には試料11は上磁極5
aと下磁極5bとの間隙に形成される磁界から該
部分Mによつてシールドされる。しかしながら電
源7から励磁コイル6に供給される電流が増大し
て磁界の強さが一定強度以上になると前記部分M
が磁気飽和を起こし漏洩した光軸方向の磁界が試
料11に印加される。従つて上磁極5aと下磁極
5bとの間隙に形成される主磁界は試料11より
上部に形成されるため、対物レンズは試料11に
対して結像レンズとしては働かず照射レンズとし
てのみ働く。従つて対物レンズの励磁電流は結像
条件によつて規定される一定値に固定する必要は
なく、その値を変化させることができる。そこ
で、対物レンズを照射レンズとして考えた場合、
対物レンズの励磁電流と試料11上に照射される
電子線のビームスポツト径との関係は第3図のよ
うな関係となる。この図より第3図において斜線
を施こした励磁電流の領域では、ビームスポツト
径が小さいことから電子線の平行性が悪いため像
はぼけてしまい透過像を観察するには適さない
が、それ以外の励磁電流強度は任意に設定できる
ことが明らかである。
In such a configuration, if the excitation current for the excitation coil 6 of the objective lens 4 is supplied from the lens power supply 7, the magnetic field strength along the optical axis 8 of the objective lens 4 will be equal to the magnitude of the current supplied from the power supply 7 to the excitation coil 6. Depending on the situation, the result will be as shown in FIG. In Figure 2, the horizontal axis represents the position taken along the optical axis; in the figure, the position indicated by thin line O is the sample position, and the position indicated by broken line A is the gap between the upper and lower magnetic poles. The position indicated by B represents the center position of the upper magnetic pole 5 that remains after the lower magnetic pole 5b has been hollowed out.
This corresponds to the position of portion M facing a. Second
The vertical axis of the figure represents the magnetic field strength. As is clear from Fig. 2, when the current supplied to the excitation coil 6 changes by a certain amount, the magnetic field along the optical axis 8 changes as shown by A, B, C, D, and E in Fig. 2 in descending order of current value. Become. As is clear from FIG. 2, the portion M of the lower magnetic pole 5b in FIG.
The portion M shields the magnetic field from the magnetic field formed in the gap between the lower magnetic pole a and the lower magnetic pole 5b. However, if the current supplied from the power source 7 to the excitation coil 6 increases and the strength of the magnetic field exceeds a certain level, the portion M
is applied to the sample 11, causing magnetic saturation and leaking a magnetic field in the optical axis direction. Therefore, since the main magnetic field formed in the gap between the upper magnetic pole 5a and the lower magnetic pole 5b is formed above the sample 11, the objective lens does not function as an imaging lens for the sample 11, but only as an irradiation lens. Therefore, the excitation current of the objective lens does not need to be fixed to a constant value defined by the imaging conditions, but can be changed. Therefore, when considering the objective lens as an irradiation lens,
The relationship between the excitation current of the objective lens and the beam spot diameter of the electron beam irradiated onto the sample 11 is as shown in FIG. This figure shows that in the excitation current region shaded in Figure 3, the beam spot diameter is small and the parallelism of the electron beam is poor, resulting in a blurred image and is not suitable for observing transmission images. It is clear that the excitation current intensity other than that can be set arbitrarily.

第4図は対物レンズの励磁電流強度を徐々に増
加させて行つた場合の試料面位置における漏洩磁
場強度を測定したもので、この図より明らかなよ
うに2000ATから対物レンズの励磁強度を連続的
に増加させるに伴い漏洩磁場強度を0から徐々に
増加させることができる。
Figure 4 shows the measurement of the leakage magnetic field strength at the sample surface position when the excitation current strength of the objective lens was gradually increased.As is clear from this figure, the excitation strength of the objective lens was continuously increased from 2000AT. The leakage magnetic field strength can be gradually increased from 0 as the magnetic field is increased.

従つて、本発明における装置においては電子銃
1から発生した電子線EBは第1、2の収束レン
ンズ2,3により収束された後、対物レンズ4に
おいて或る拡き角を有する電子線とされた後試料
11に照射される。試料11を透過した電子線は
対物レンズとして働く中間レンズ12、投影レン
ズ13によつて導かれて螢光板14上に投射さ
れ、螢光板14上には試料の磁区構造を表わす像
が表示されるが、試料に印加される試料面に対し
て垂直な磁場の強度は対物レンズの励磁電流を変
えることにより何ら試料の機械的移動なしに速や
かに且つ容易に変えることができる。又、本発明
における装置においてはサイドエントリー型の試
料ホルダーを使用できるため、試料を傾斜させた
り、加熱した状態での観察を容易に行うことがで
きる。
Therefore, in the apparatus according to the present invention, the electron beam EB generated from the electron gun 1 is converged by the first and second converging lenses 2 and 3, and then converted into an electron beam having a certain divergence angle by the objective lens 4. After that, the sample 11 is irradiated. The electron beam transmitted through the sample 11 is guided by an intermediate lens 12 serving as an objective lens and a projection lens 13, and is projected onto a fluorescent plate 14, and an image representing the magnetic domain structure of the sample is displayed on the fluorescent plate 14. However, the strength of the magnetic field perpendicular to the sample surface applied to the sample can be quickly and easily changed by changing the excitation current of the objective lens without any mechanical movement of the sample. Furthermore, since a side entry type sample holder can be used in the apparatus of the present invention, it is possible to easily tilt the sample or observe the sample in a heated state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略図を示すため
の図、第2図は対物レンズの励磁電流が種々な値
を取る場合における光軸8に沿つた磁場強度を表
わす為の図、第3図は試料に照射される電子線の
プローブ径と対物レンズの励磁強度(AT)との
関係を示すための図、第4図は試料に印加される
垂直磁場強度と対物レンズの励磁強度との関係を
示す図である。 1:電子銃、2:第1の収束レンズ、3:第2
の収束レンズ、4:対物レンズ、5a:上磁極、
5b:下磁極、6:励磁コイル、7:電源、8:
光軸、9:貫通孔、10:試料ホルダー、11:
試料、12:中間レンズ、13:投影レンズ、1
4:螢光板。
FIG. 1 is a diagram showing a schematic diagram of an embodiment of the present invention, FIG. 2 is a diagram showing the magnetic field strength along the optical axis 8 when the excitation current of the objective lens takes various values, Figure 3 is a diagram showing the relationship between the probe diameter of the electron beam irradiated onto the sample and the excitation intensity (AT) of the objective lens, and Figure 4 is a diagram showing the relationship between the vertical magnetic field strength applied to the sample and the excitation intensity of the objective lens. FIG. 1: Electron gun, 2: First converging lens, 3: Second
converging lens, 4: objective lens, 5a: upper magnetic pole,
5b: Lower magnetic pole, 6: Excitation coil, 7: Power supply, 8:
Optical axis, 9: Through hole, 10: Sample holder, 11:
Sample, 12: Intermediate lens, 13: Projection lens, 1
4: Fluorescent plate.

Claims (1)

【特許請求の範囲】[Claims] 1 上磁極片5aと下磁極片5bより成る対物レ
ンズ4と、該対物レンズの励磁電流を変化させる
ための励磁電源7が備えられており、下磁極片5
bの頂面の近傍にあつて光軸に対して直角方向を
成す貫通孔9が前記下磁極片5bに穿たれてお
り、該貫通孔9を通して磁性体試料11を光軸上
に配置するための試料ホルダー10が設けられて
おり、該貫通孔9を穿つことによつて残された下
磁極片5bの部分のうち上磁極片5aに対向する
部分Mは前記対物レンズの磁極間隙に形成される
磁界から前記試料をシールドすると共に前記励磁
電源から前記対物レンズに供給される励磁電流が
増加すると磁気飽和を起して漏洩したレンズ磁場
が試料に印加されるようにその厚さが選ばれてお
り、該試料を透過した電子線に基づく像を蛍光板
14上に結像するためのレンズ12,13が備え
られていることを特徴とする電子顕微鏡。
1 An objective lens 4 consisting of an upper magnetic pole piece 5a and a lower magnetic pole piece 5b, and an excitation power source 7 for changing the excitation current of the objective lens are provided, and the lower magnetic pole piece 5
A through hole 9 is bored in the lower magnetic pole piece 5b near the top surface of the magnetic pole piece 5b and is perpendicular to the optical axis. A sample holder 10 is provided, and of the portion of the lower magnetic pole piece 5b left by drilling the through hole 9, the portion M facing the upper magnetic pole piece 5a is formed in the magnetic pole gap of the objective lens. The thickness of the lens is selected so that when the excitation current supplied from the excitation power source to the objective lens increases, magnetic saturation occurs and leaked lens magnetic field is applied to the sample. An electron microscope characterized in that it is equipped with lenses 12 and 13 for forming an image on a fluorescent screen 14 based on the electron beam transmitted through the sample.
JP11621681A 1981-07-24 1981-07-24 Electron microscope Granted JPS5825049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11621681A JPS5825049A (en) 1981-07-24 1981-07-24 Electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11621681A JPS5825049A (en) 1981-07-24 1981-07-24 Electron microscope

Publications (2)

Publication Number Publication Date
JPS5825049A JPS5825049A (en) 1983-02-15
JPS6257063B2 true JPS6257063B2 (en) 1987-11-28

Family

ID=14681703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11621681A Granted JPS5825049A (en) 1981-07-24 1981-07-24 Electron microscope

Country Status (1)

Country Link
JP (1) JPS5825049A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469213B2 (en) * 2001-03-29 2003-11-25 株式会社日立製作所 Magnetic field applied sample observation system

Also Published As

Publication number Publication date
JPS5825049A (en) 1983-02-15

Similar Documents

Publication Publication Date Title
US6672739B1 (en) Laser beam homogenizer
GB2161018A (en) Electron microscope lenses
JPS6257063B2 (en)
JP6718782B2 (en) Objective lens and transmission electron microscope
JPH05251028A (en) Electron microscope provided with x-ray analyzer
JPH10106466A (en) Magnetic field type objective electron lens
Blackburn et al. Some techniques of transmission Lorentz microscopy
Darlington et al. Imaging of weak Lorentz objects (pn junctions) by high voltage Fresnel TEM and STEM
JPH04324239A (en) Objective lens in electron microscope
JP2839683B2 (en) Foucault electron microscope
US3401261A (en) Apparatus for investigating magnetic regions in thin material layers
US3643191A (en) Electron lens for electron microscope and the like
JPH06283128A (en) Electron microscope
JPS6328518Y2 (en)
Page A compact console-type electron microscope
JPH01312405A (en) Measurement of burying depth
JPS58137949A (en) Method of displaying three-dimensional image by means of scanning electron microscope
JPS6329928B2 (en)
JPS58214257A (en) Magnetic domain observation device for electron microscope and the like
JPH0760656B2 (en) electronic microscope
JPH02197051A (en) Permeation type phase difference electron microscope
JPS589545B2 (en) How to get the most out of your day
JPS5919622B2 (en) electronic microscope
JPS585321Y2 (en) electronic microscope
JPH0562629A (en) Focus adjusting system for electron microscope