JPH0760656B2 - electronic microscope - Google Patents

electronic microscope

Info

Publication number
JPH0760656B2
JPH0760656B2 JP1248794A JP24879489A JPH0760656B2 JP H0760656 B2 JPH0760656 B2 JP H0760656B2 JP 1248794 A JP1248794 A JP 1248794A JP 24879489 A JP24879489 A JP 24879489A JP H0760656 B2 JPH0760656 B2 JP H0760656B2
Authority
JP
Japan
Prior art keywords
focusing lens
focus
depth
objective
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1248794A
Other languages
Japanese (ja)
Other versions
JPH03110742A (en
Inventor
幸 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP1248794A priority Critical patent/JPH0760656B2/en
Publication of JPH03110742A publication Critical patent/JPH03110742A/en
Publication of JPH0760656B2 publication Critical patent/JPH0760656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子ビームを試料表面に集束して照射する電
子顕微鏡等の焦点深度調整装置に関する。
Description: TECHNICAL FIELD The present invention relates to a focal depth adjusting device for an electron microscope or the like that focuses and irradiates an electron beam on a sample surface.

〔従来の技術〕[Conventional technology]

試料に凹凸がある場合、試料に照射する電子ビームの開
き角αを小さくしてその焦点深度を深くしないと、電
子顕微鏡の像はボケて充分な解像力が得られない。第3
図はビームの開き角と試料表面の凹凸との関係を説明す
るための図であり、5は対物レンズ、6は試料面を示
す。図のP1に示すような試料面においてビームの焦点を
合わせても、試料6に凹凸があると、ビームは拡がって
P2に示すようにボケが生ずる。このとき、小さい開き角
のビームB1の場合には、大きい開き角のビームB2よりボ
ケの幅は小さくなる。このように、特に焦点深度が浅い
場合には、照射ビームの径が試料表面の凹凸によって大
きく変化するため、横型の波長分散型分光器やエネルギ
ー分散型分光器(EDS)のように、試料表面の凹凸に強
い(検出されるX線強度の変化が少ない)分光器と共に
用いる場合、それらの特徴を十分に発揮できない。した
がって、電子ビームの開き角αを制御して、所望の焦
点深度を得ることができるものが望まれている。
When the sample has irregularities, the electron microscope image is blurred and a sufficient resolution cannot be obtained unless the aperture angle α 4 of the electron beam with which the sample is irradiated is made small to deepen the depth of focus. Third
The figure is a diagram for explaining the relationship between the divergence angle of the beam and the unevenness of the sample surface. Reference numeral 5 denotes the objective lens, and 6 denotes the sample surface. Even if the beam is focused on the sample surface as shown in P1 in the figure, if the sample 6 has irregularities, the beam will spread.
Blurring occurs as shown in P2. At this time, in the case of the beam B1 having a small opening angle, the blur width is smaller than that of the beam B2 having a large opening angle. In this way, especially when the depth of focus is shallow, the diameter of the irradiation beam changes greatly due to the unevenness of the sample surface, so that the sample surface, such as a horizontal wavelength dispersive spectrometer or energy dispersive spectrometer (EDS) When used in combination with a spectroscope that is highly resistant to unevenness (the change in the detected X-ray intensity is small), these characteristics cannot be sufficiently exhibited. Therefore, it is desired to control the aperture angle α 4 of the electron beam to obtain a desired depth of focus.

ところで、従来電子線を用いる電子顕微鏡等において、
試料に照射する電子ビームの開き角αを制御して焦点
深度を深いモードにするような装置としては、例えば、
透過型の電子顕微鏡に装着する走査像観察装置のよう
に、特定のプローブ電流に対してのみ有効な装置や、特
願昭63−64472号で提案したように、任意のプローブ電
流に対して最も焦点深度が深くなるように対物レンズ等
の焦点距離を調整するものがあった。
By the way, in an electron microscope or the like using a conventional electron beam,
As an apparatus for controlling the aperture angle α 4 of the electron beam with which the sample is irradiated to set the depth of focus to the deep mode, for example,
A device that is effective only for a specific probe current, such as a scanning image observation device that is attached to a transmission electron microscope, or the most suitable for an arbitrary probe current, as proposed in Japanese Patent Application No. 63-64472. Some have adjusted the focal length of the objective lens or the like so that the focal depth becomes deep.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、上記した従来のものにおいては、プロー
ブ電流を変えると、上記の開き角αも変化してしま
い、焦点深度も変化してしまう。
However, in the above-mentioned conventional device, when the probe current is changed, the opening angle α 4 also changes, and the depth of focus also changes.

また、電子顕微鏡の中でも、特に、電子プローブ・マイ
クロ・アナライザ(EPMA)や、オージェ・マイクロ・プ
ローブ(AP)などの分析装置を有するものでは、ブロー
ブ電流を広域に渡って変化させる。このため、このよう
な装置においては、任意のプローブ電流に対して、焦点
深度の深いモードを設定できる必要があるが、上記した
従来の焦点深度を深く調整するものにおいては、対物レ
ンズの励磁を変更しなければならず、その場合、対物レ
ンズを通過する電子ビームの磁場による旋回角の変化に
より、光軸を中心とした顕微鏡像の回転(像回転)角が
変化するため、像回転の補正が複雑になる。そして、特
に倍率が低い領域においては、電子ビームの開き角α
を余り大きくせず、任意に焦点深度を設定できるものが
望まれている。
Further, among electron microscopes, those having an analyzer such as an electron probe micro analyzer (EPMA) or an Auger micro probe (AP) change the probe current over a wide range. Therefore, in such an apparatus, it is necessary to be able to set a mode having a deep depth of focus with respect to an arbitrary probe current. However, in the above-mentioned conventional apparatus for deeply adjusting the depth of focus, the excitation of the objective lens is not performed. It must be changed. In that case, the rotation angle (image rotation) of the microscope image around the optical axis changes due to the change of the turning angle due to the magnetic field of the electron beam passing through the objective lens. Becomes complicated. Then, particularly in a region where the magnification is low, the aperture angle α 4 of the electron beam
It is desired that the depth of focus can be set arbitrarily without making the value too large.

したがって、本発明の目的は、プローブ電流を変化させ
ても焦点深度が変わらず、また、任意のプローブ電流に
対して、プローブ電流を変えることなく焦点深度を広範
に変更することが可能な電子顕微鏡等における焦点深度
調整装置を提供することである。
Therefore, an object of the present invention is to provide an electron microscope capable of widely changing the depth of focus without changing the probe current with respect to an arbitrary probe current even if the probe current is changed. It is to provide a depth-of-focus adjustment device in the above.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の電子顕微鏡は、電子ビームの進行方向に、電子
銃、第1集束レンズ、第2集束レンズ、対物絞り、対物
レンズを順に配置し、プローブ電流を任意に変化させた
際に、対物レンズの焦点距離を変更することなしに、設
定された焦点深度を維持するように、第1集束レンズ及
び第2集束レンズの焦点距離を制御する手段を設けたこ
とを特徴とするものである。この場合、焦点深度の設定
値の変更を、対物絞りの絞り径を変更することによって
行うように構成することができる。
In the electron microscope of the present invention, the electron gun, the first focusing lens, the second focusing lens, the objective diaphragm, and the objective lens are sequentially arranged in the traveling direction of the electron beam, and the objective lens is changed when the probe current is arbitrarily changed. It is characterized in that means for controlling the focal lengths of the first focusing lens and the second focusing lens is provided so as to maintain the set focal depth without changing the focal length of. In this case, the set value of the depth of focus can be changed by changing the aperture diameter of the objective aperture.

さらに、このような装置は、プローブ電流を変えると焦
点深度も変化する通常のモードに切り換え可能に構成す
ることが望ましい。
Further, it is desirable that such a device be switchable to a normal mode in which the depth of focus also changes when the probe current is changed.

〔作用〕[Action]

対物レンズの焦点距離とは独立に第1集束レンズ及び第
2集束レンズの焦点距離を制御可能に構成したので、後
記の(2.13)と(2.14)にしたがってこれらのレンズの
焦点距離を制御することで、任意のプローブ電流に対し
て所定の焦点深度を与えることができる。
Since the focal lengths of the first focusing lens and the second focusing lens can be controlled independently of the focal length of the objective lens, the focal lengths of these lenses should be controlled according to (2.13) and (2.14) below. Thus, a given depth of focus can be provided for any probe current.

〔実施例〕〔Example〕

次に、第1図の構成説明図を参照にして本発明の電子顕
微鏡等における焦点深度調整装置の1実施例について説
明する。
Next, one embodiment of a depth-of-focus adjusting device in an electron microscope or the like of the present invention will be described with reference to the configuration explanatory view of FIG.

この電子顕微鏡は、電子銃1(O)、電子銃1から発射
された開き角αの電子ビームを2段にわたって集束す
る第1集束レンズ2(CL1)、第2集束レンズ3(CL
2)、第2集束レンズ3によって集束された電子ビーム
中に位置する対物絞り4(AP)(この絞りに入射する第
2集束レンズ3から出たビームは必ずしも集束ビームで
ある必要はない。また、対物絞り4は、第2集束レンズ
3の上流近傍に位置していてもよい。)、対物絞り4に
よって制限された電子ビームを受け入れて試料6上に開
き角αで結像させる対物レンズ5(OL)、第1集束レ
ンズ2励磁用電源7、第2集束レンズ3励磁用電源8、
対物レンズ5励磁用電源9、及び、制御部10からなって
いる。なお、符号6は試料を示す。
This electron microscope includes an electron gun 1 (O), a first focusing lens 2 (CL1) that focuses an electron beam emitted from the electron gun 1 with an opening angle α 1 in two steps, and a second focusing lens 3 (CL
2) The objective aperture 4 (AP) located in the electron beam focused by the second focusing lens 3 (the beam emitted from the second focusing lens 3 incident on this aperture is not necessarily a focused beam. , The objective diaphragm 4 may be located in the vicinity of the upstream of the second focusing lens 3.) The objective lens which receives the electron beam limited by the objective diaphragm 4 and forms an image on the sample 6 at an opening angle α 4. 5 (OL), first focusing lens 2 excitation power supply 7, second focusing lens 3 excitation power supply 8,
The objective lens 5 includes an excitation power source 9 and a control unit 10. In addition, the code | symbol 6 shows a sample.

ところで、第1図の示すように、電子銃1と第1集束レ
ンズ2の主面との距離をP、第1集束レンズ2と第2集
束レンズ3の主面間の距離をQ、第2集束レンズ3の主
面と対物絞り4との距離をT、対物絞り4と対物レンズ
5の主面との距離をV、対物レンズ5の主面と試料6と
の距離をWとし、対物絞り4の開口の半径をrAPとす
る。このような前提の下に、本発明の装置の動作原理を
説明する。
By the way, as shown in FIG. 1, the distance between the electron gun 1 and the main surface of the first focusing lens 2 is P, the distance between the main surfaces of the first focusing lens 2 and the second focusing lens 3 is Q, and the second Let T be the distance between the main surface of the focusing lens 3 and the objective diaphragm 4, V be the distance between the objective diaphragm 4 and the main surface of the objective lens 5, and W be the distance between the main surface of the objective lens 5 and the sample 6. The radius of the opening of 4 is r AP . Under such a premise, the operation principle of the device of the present invention will be described.

試料6面に対して許容し得る凹凸量±Δl、あるいは焦
点深度±Δlは、CRT上で許容し得る像のボケの幅r
と、観察倍率Mと、合焦時のプローブ径dPと、試料6へ
入射するビームの開き角αとから、 で求められる。プローブ径dPは、プローブ電流IPとα
の関数であるが、r/Mと比較して十分小さければ、 となる。したがって、対物レンズ5の主面におけるビー
ムの拡がりrP3は、 rP3=α・W ・・・・・・・(2.3) となる。対物絞り4の半径rAPは既に与えられた値なの
で、対物絞り4と第2集束レンズ3の結像点との距離U
が、 rAP/U=rP3/(U−V) ・・(2.4) ∴U=rAP・V/(rAP−rP3) …(2.5) として求められる。したがって、第2集束レンズ3の出
射側の開き角αは、 α=rAP/U ・・・・・・・・(2.6) また、第2集束レンズ3の主面とその結像点との距離Z2
は、 Z2=T+U ・・・・・・・・(2.7) である。上記の(2.6)と(2.7)から、第2集束レンズ
3の主面上におけるビームの拡がりrP2が、 rP2=α・Z2 ・・・・・・・(2.8) で求められる。
The allowable amount of unevenness ± Δl or the depth of focus ± Δl for the six surfaces of the sample is the allowable image blur width r on the CRT.
From the observation magnification M, the probe diameter d P at the time of focusing, and the divergence angle α 4 of the beam incident on the sample 6, Required by. The probe diameter d P is the probe current I P and α 4
, But if it is small enough compared to r / M, Becomes Therefore, the beam divergence r P3 on the main surface of the objective lens 5 is r P3 = α 4 · W ··· (2.3). Since the radius r AP of the objective diaphragm 4 is a value already given, the distance U between the objective diaphragm 4 and the image forming point of the second focusing lens 3 is U.
Is calculated as r AP / U = r P3 /(U−V)··(2.4) ∴U = r AP · V / (r AP− r P3 )… (2.5). Therefore, the opening angle α 3 on the exit side of the second focusing lens 3 is α 3 = r AP / U (2.6) Further, the main surface of the second focusing lens 3 and its imaging point Distance to Z 2
Is Z 2 = T + U ... (2.7). From the above (2.6) and (2.7), the divergence r P2 of the beam on the main surface of the second focusing lens 3 is obtained by r P2 = α 3 · Z 2 ··· (2.8).

一方、電子銃1の輝度をβ、その仮想光源の大きさをd9
とすれば、第1集束レンズ2の入射側のプローブ電流IP
に対応する開き角αは、 で求められるので、IPに対応する第1集束レンズ2の主
面上のビームの拡がりrP1は、 rP1=α・P ・・・・・・・・(2、10) で求められる。この半径のビームが、第1集束レンズ2
と第2集束レンズ3の間で、図示のように、一旦結像
し、第2集束レンズ3の主面で、(2.8)で与える値に
拡がるように、第1集束レンズ2の励磁用電源7の励磁
電流を調節すれば、 (rP1+rP2)/Q=rP1/Z1 ・・・(2.11) ∴ Z1=rP1・Q/(rP1+rP2) ・・・(2.12) したがって、第1集束レンズ2、第2集束レンズ3、対
物レンズ5の焦点距離fCL1、fCL2、fOLは、以上から、 fCL1=PZ1/(P+Z1) ・(2.13) として求められる。
On the other hand, the brightness of the electron gun 1 is β, and the size of its virtual light source is d 9
Then, the probe current I P on the incident side of the first focusing lens 2
The opening angle α 1 corresponding to Therefore, the beam divergence r P1 on the main surface of the first focusing lens 2 corresponding to I P can be calculated by r P1 = α 1 · P ・ ・ ・ ・ ・ ・ (2,10) . The beam of this radius is used by the first focusing lens 2
Power supply for exciting the first focusing lens 2 so that an image is formed once between the second focusing lens 3 and the second focusing lens 3 and then spreads to a value given by (2.8) on the main surface of the second focusing lens 3. If the excitation current of 7 is adjusted, (r P1 + r P2 ) / Q = r P1 / Z 1・ ・ ・ (2.11) ∴ Z 1 = r P1・ Q / (r P1 + r P2 ) ・ ・ ・ (2.12) Therefore, the focal lengths f CL1 , f CL2 , and f OL of the first focusing lens 2, the second focusing lens 3, and the objective lens 5 are f CL1 = PZ 1 / (P + Z 1 ) · (2.13) Is required as.

すなわち、必要な焦点深度Δlが与えられた場合、任意
のIPに対して、制御部10は、第1集束レンズ2励磁用電
源7、第2集束レンズ3励磁用電源8の励磁により、第
1集束レンズ2と第2集束レンズ3の焦点距離を(2.1
3)、(2.14)に基づいて調整するようにすればよい。
そして、fOLの値はIPを変えても不変なので、フォーカ
スの再調整や像回転の補正が不要である。また、対物絞
り4の半径rAPを変えることにより、対物レンズ5の焦
点距離fOLの値を変えないで、焦点深度Δlを変更する
ことができる。したがって、像回転補正をする必要がな
い。さらに、上記のような焦点深度調整モードとは別
に、第1図に点線で示した経路をたどる従来のプローブ
電流を変えると焦点深度も変化する通常のモードになる
ように、制御部10の調整によって、第2集束レンズ3励
磁用電源8、対物レンズ5励磁用電源9により、第2集
束レンズ3と対物レンズ5の焦点距離を変化させるよう
にすると、より多様な観察ができる顕微鏡になる。
That is, when the required depth of focus Δl is given, for any I P, the control unit 10, the first focusing lens 2 exciting power supply 7, the excitation of the second condenser lens 3 exciting power source 8, the Set the focal length of the first focusing lens 2 and the second focusing lens 3 to (2.1
It should be adjusted according to 3) and (2.14).
Further, since the value of f OL does not change even if I P is changed, readjustment of focus and correction of image rotation are unnecessary. Further, by changing the radius r AP of the objective diaphragm 4, the focal depth Δl can be changed without changing the value of the focal length f OL of the objective lens 5. Therefore, it is not necessary to correct the image rotation. Further, in addition to the depth of focus adjustment mode as described above, the control unit 10 is adjusted so as to be in a normal mode in which the depth of focus also changes when the conventional probe current that follows the path shown by the dotted line in FIG. 1 is changed. By changing the focal lengths of the second focusing lens 3 and the objective lens 5 by the power source 8 for exciting the second focusing lens 3 and the power source 9 for exciting the objective lens 5, a microscope capable of more diverse observation can be obtained.

本発明の焦点深度調整装置の作用の理解を助けるため
に、第2図にその電子線の経路を従来のものの経路と比
較して示す。電子銃1から出たプローブ電流10-9Aと10
-6A電子ビームの対物絞り4の開口の縁を通る電子線
は、その直径φに応じて(φ70μm、φ240μm)、図
示のような経路をたどる。図から明らかなように、プロ
ーブ電流が10-9Aから10-6に変わっても、対物絞り4の
径が変わらない限り、開き角αは変化しない。これに
対して、図の右下に描いてある従来のものにおいては、
プローブ電流が10-9Aから10-6に変わると、対物絞り4
の径を変えなくても(図には、最も焦点深度を深くした
場合(φ70μm)と最も焦点深度を浅くした場合(φ24
0μm)とを示してある。)、開き角αが変化してし
まい、焦点深度が変化する。また、本発明においては、
プローブ電流を変えないで(例えば、10-9A)、対物絞
り4の径を変えた場合(φ70μmからφ240μm)、開
き角αは変化し、焦点深度を容易に変化させることが
できる。
In order to help understanding of the operation of the depth-of-focus adjusting device of the present invention, the path of the electron beam is shown in comparison with the path of the conventional one in FIG. Probe current from electron gun 1 10 -9 A and 10
The electron beam passing through the edge of the aperture of the objective aperture 4 of the -6 A electron beam follows the path shown in the figure according to its diameter φ (φ70 μm, φ240 μm). As is apparent from the figure, even if the probe current changes from 10 −9 A to 10 −6 , the opening angle α 4 does not change unless the diameter of the objective diaphragm 4 changes. On the other hand, in the conventional one drawn in the lower right of the figure,
When the probe current changes from 10 -9 A to 10 -6 , the objective aperture 4
Even if the diameter of the lens is not changed (in the figure, when the depth of focus is the deepest (φ70 μm) and when the depth of focus is the shallowest (φ24
0 μm). ), The opening angle α 4 changes, and the depth of focus changes. Further, in the present invention,
When the diameter of the objective aperture 4 is changed (from φ70 μm to φ240 μm) without changing the probe current (for example, 10 −9 A), the opening angle α 4 changes and the depth of focus can be easily changed.

ところで、対物レンズの焦点距離の変化による像回転を
補正する機構を有する装置においては、焦点深度の変更
は、対物絞り4の径を変化させないで(rAPを固定し
て)、その代わりに対物レンズ5の焦点距離fOLを上記
(2.15)に従って変化させることによって行うようにし
てもよい。
By the way, in an apparatus having a mechanism for correcting the image rotation due to the change of the focal length of the objective lens, the change of the depth of focus does not change the diameter of the objective diaphragm 4 (fixing r AP ) but the objective instead. Alternatively, the focal length f OL of the lens 5 may be changed according to the above (2.15).

また、先にも述べたように、対物絞り4は、必ずしも第
2集束レンズ3と対物レンズ5の間にある必要はなく、
第2集束レンズ3の上流近傍に位置していてもよい。
Further, as described above, the objective diaphragm 4 does not necessarily have to be between the second focusing lens 3 and the objective lens 5, and
It may be located near the upstream side of the second focusing lens 3.

さらに、上記の実施例においては、第1集束レンズ2と
第2集束レンズ3の間に第1集束レンズ2の結像点が存
在しているが、この用件は必ずしも必要なものではな
く、この間に結像点がなくともよく、また、第2集束レ
ンズ3と対物レンズ5の間に第2集束レンズ3の結像点
があるようにしてもよい。
Further, in the above embodiment, the image forming point of the first focusing lens 2 exists between the first focusing lens 2 and the second focusing lens 3, but this requirement is not always necessary, There may be no image forming point between them, and there may be an image forming point of the second focusing lens 3 between the second focusing lens 3 and the objective lens 5.

〔発明の効果〕〔The invention's effect〕

本発明においては、任意のプローブ電流IPに対して、対
物レンズ5の励磁を変えることなしに、焦点深度を一定
に維持できるようにしたので、次のような効果を奏す
る。
In the present invention, the depth of focus can be maintained constant without changing the excitation of the objective lens 5 with respect to an arbitrary probe current I P , so that the following effects can be obtained.

(a)焦点合わせの再調製が不要になった(EPMA等で
は、分析点の基準点が光学顕微鏡等によって定められて
いるので、再焦点合わせが必要であると、操作が煩雑に
なる)。
(A) The readjustment of focusing is not necessary (in EPMA and the like, the reference point of the analysis point is determined by an optical microscope or the like, and thus the operation becomes complicated if refocusing is necessary).

(b)任意のプローブ電流IPに対し、像回転補正が不要
になった。
(B) Image rotation correction is not necessary for any probe current I P.

(c)焦点深度は対物絞りの半径rAPで決めることがで
きるので、焦点深度を変更しても、上記(a)、(b)
のメリットが生かされる。
(C) Since the depth of focus can be determined by the radius r AP of the objective aperture, even if the depth of focus is changed, the above (a) and (b)
The merit of is utilized.

(d)本発明の装置とエネルギー分散型X線分光器(ED
S)、又は、横型の波長分散型分光器を組み合わせるこ
とにより、凹凸の激しい試料を像のボケやX線強度の誤
差なしに分析できる。
(D) The apparatus of the present invention and an energy dispersive X-ray spectrometer (ED
By combining S) or a horizontal wavelength dispersive spectroscope, a sample with severe irregularities can be analyzed without image blurring or X-ray intensity error.

(e)従来の、焦点深度は浅いが、プローブ径は細くな
る複数個の絞り径を持つモードを持つものと組み合わせ
ることにより、少数の絞りの個数で広範な焦点深度の調
整ができる(第2図参照)。
(E) A wide range of depth of focus can be adjusted with a small number of diaphragms by combining it with a conventional one having a mode with a plurality of diaphragm diameters in which the probe diameter is shallow but the probe diameter becomes small (second See figure).

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電子顕微鏡等における焦点深度調整装
置の1実施例の構成説明図、第2図は第1図の焦点深度
調整装置の電子線の経路を従来のものの経路と比較して
示す図、第3図はビームの開き角と試料表面の凹凸との
関係を説明するための図である。 1:電子銃(O)、2:第1集束レンズ(CL1)、3:第2集
束レンズ(CL2)、4:対物絞り(AP)、5:対物レンズ(O
L)、6:試料、7:第1集束レンズ励磁用電源、8:第2集
束レンズ励磁用電源、9:対物レンズ励磁用電源、10:制
御部
FIG. 1 is a structural explanatory view of one embodiment of a depth of focus adjustment device in an electron microscope or the like of the present invention, and FIG. 2 compares the electron beam path of the depth of focus adjustment device of FIG. 1 with that of a conventional one. FIG. 3 and FIG. 3 are views for explaining the relationship between the divergence angle of the beam and the unevenness of the sample surface. 1: electron gun (O), 2: first focusing lens (CL1), 3: second focusing lens (CL2), 4: objective aperture (AP), 5: objective lens (O
L), 6: sample, 7: first focusing lens excitation power supply, 8: second focusing lens excitation power supply, 9: objective lens excitation power supply, 10: control unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電子ビームの進行方向に、電子銃、第1集
束レンズ、第2集束レンズ、対物絞り、対物レンズを順
に配置し、プローブ電流を任意に変化させた際に、対物
レンズの焦点距離を変更することなしに、設定された焦
点深度を維持するように、第1集束レンズ及び第2集束
レンズの焦点距離を制御する手段を設けたことを特徴と
する電子顕微鏡。
1. An electron gun, a first focusing lens, a second focusing lens, an objective diaphragm, and an objective lens are sequentially arranged in a traveling direction of an electron beam, and a focus of the objective lens is obtained when a probe current is arbitrarily changed. An electron microscope comprising means for controlling the focal lengths of the first focusing lens and the second focusing lens so as to maintain the set depth of focus without changing the distance.
【請求項2】焦点深度の設定値の変更を、対物絞りの絞
り径を変更することによって行うように構成したことを
特徴とする請求項1記載の電子顕微鏡。
2. The electron microscope according to claim 1, wherein the setting value of the depth of focus is changed by changing the aperture diameter of the objective aperture.
【請求項3】プローブ電流を変えると焦点深度も変化す
る通常のモードに切り換え可能に構成したことを特徴と
する請求項1又は2記載の電子顕微鏡。
3. The electron microscope according to claim 1, wherein the electron microscope is configured so that it can be switched to a normal mode in which the depth of focus also changes when the probe current is changed.
JP1248794A 1989-09-25 1989-09-25 electronic microscope Expired - Fee Related JPH0760656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1248794A JPH0760656B2 (en) 1989-09-25 1989-09-25 electronic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248794A JPH0760656B2 (en) 1989-09-25 1989-09-25 electronic microscope

Publications (2)

Publication Number Publication Date
JPH03110742A JPH03110742A (en) 1991-05-10
JPH0760656B2 true JPH0760656B2 (en) 1995-06-28

Family

ID=17183498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1248794A Expired - Fee Related JPH0760656B2 (en) 1989-09-25 1989-09-25 electronic microscope

Country Status (1)

Country Link
JP (1) JPH0760656B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138600A (en) * 1994-11-04 1996-05-31 Shimadzu Corp Charged particle optical system
KR100562509B1 (en) * 2003-12-12 2006-03-21 삼성전자주식회사 Apparatus of automated focusing and method for automated focussing using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159943A (en) * 1987-12-15 1989-06-22 Jeol Ltd Electron beam opening angle control device in electron microscope
JPH01236563A (en) * 1988-03-17 1989-09-21 Jeol Ltd Multi-purpose opening angle control device of electron microscope

Also Published As

Publication number Publication date
JPH03110742A (en) 1991-05-10

Similar Documents

Publication Publication Date Title
US4983832A (en) Scanning electron microscope
JP2868536B2 (en) Method of irradiating object in transmission electron microscope and electron microscope therefor
KR950019946A (en) Electron Beam System for Writing Patterns on Wafers
JPS61240553A (en) Device for drawing picture by the use of ion beam
JP2001357811A (en) Scanning type charged particle microscope, method of focusing it and method of compensating its astigmatism
JPH0613280A (en) Particle, especially ion optical describing apparatus
TW574720B (en) An apparatus and method of focusing
JP2007504606A (en) Particle optics device
JPH0760656B2 (en) electronic microscope
US4194116A (en) Electron microscope or the like and method of use
US5134289A (en) Field emission electron device which produces a constant beam current
JP3896150B2 (en) Spherical aberration correction device for electron microscope
JPH07302564A (en) Scanning electron microscope
JP3112546B2 (en) Particle beam device
JPH10214587A (en) Scanning transmission electron microscope for stereoscopic observation and stereoscopic image forming system
JP2020008667A (en) Microscopic observation device, fluorescence detector, and microscopic observation method
JPH0562629A (en) Focus adjusting system for electron microscope
JPS61277141A (en) Magnetic field type energy filter
KR940000867A (en) Secondary ion mass spectrometer
JPS61250950A (en) High accuracy focusing apparatus for electron microscope
JPS59108250A (en) Electron beam device
JPS609660B2 (en) Electron beam figure projection device
SU1243046A1 (en) Electron microscope
JPS60193248A (en) Method for irradiating electron rays in electron ray device
JPH05258700A (en) Scanning image observing method and scanning electron microscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees