JPS60193248A - Method for irradiating electron rays in electron ray device - Google Patents

Method for irradiating electron rays in electron ray device

Info

Publication number
JPS60193248A
JPS60193248A JP4812484A JP4812484A JPS60193248A JP S60193248 A JPS60193248 A JP S60193248A JP 4812484 A JP4812484 A JP 4812484A JP 4812484 A JP4812484 A JP 4812484A JP S60193248 A JPS60193248 A JP S60193248A
Authority
JP
Japan
Prior art keywords
focusing lens
electron beam
lens
stage
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4812484A
Other languages
Japanese (ja)
Inventor
Takashi Yanaka
谷中 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTERNATL PRECISION Inc
Original Assignee
INTERNATL PRECISION Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTERNATL PRECISION Inc filed Critical INTERNATL PRECISION Inc
Priority to JP4812484A priority Critical patent/JPS60193248A/en
Publication of JPS60193248A publication Critical patent/JPS60193248A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To vary the angle at which electron rays are irradiated upon a sample by installing a movable diaphragm between a final stage focusing lens and focusing lens which is installed in front of the final stage focusing lens and by correcting the excitation of said final stage focusing lens with that of said focusing lens. CONSTITUTION:A movable diaphragm 13 is installed in an arbitrary position located between a second stage focusing lens 11 and a final stage focusing lens 5. The degree of the excitation of the second stage focusing lens 11 can be varied so that the actual image of point (P) is imaged upon an arbitrary position located between points (Q1) and (On) which are in the back of the lens 11 and on the optical axis. The final stage focusing lens 5 diffracts electron rays 6 the orbits of which are altered by the excitational change of the second stage focusing lens 11. The thus diffracted electron rays 6 are then imaged upon the focus of a front objective 2 by the effect of the front objective 2 which is a part of an objective 1. Accordingly it is possible to vary and control the angle at which electron rays are irradiated while maintaining the focus of an electron probe to be located on a sample 7.

Description

【発明の詳細な説明】 本発明は電子線装置におりる電子線の照射方法、特に対
物レンズの励磁強度を一定に保ったままで試料に入射す
る照射電子線の集束角度を連続的に可変できるようにし
た電子線の照射方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an electron beam irradiation method that enters an electron beam apparatus, and in particular, allows the convergence angle of the irradiated electron beam incident on a sample to be continuously varied while keeping the excitation intensity of the objective lens constant. The present invention relates to an electron beam irradiation method as described above.

近年、新材料の開発研究等において、当該材料の組成を
観察するのに集束電子線回折法という手法が採用されて
いる。
In recent years, in research and development of new materials, a method called focused electron diffraction has been adopted to observe the composition of the materials.

このような観察法では試料に入射する電子線束の集束角
を種々変化させて回折像を得、試料の内部構造を調べよ
うとするものであるが、前記のように集束角を制御しな
がら試料に照射し、当該試料を観察する方法は、結晶の
高分解能像を′iqる場合も有用である。
In this type of observation method, the diffraction image is obtained by varying the convergence angle of the electron beam incident on the sample, and the internal structure of the sample is investigated. The method of irradiating and observing the sample is also useful for obtaining high-resolution images of crystals.

かかる電子線の照射方法を使用する為の照射系の従来例
を第1図に示す。この照射系は、前方対物レンズ体2及
び後方対物レンズ体3から構成された対物レンズ1の前
方に1又は複数個の集束レンズ4.5を配置し、これら
の集束レンズ4.5を通った照射電子11!i16を、
前方対物レンズ体2と後方対物レンズ休3との間すなわ
ち、対物レンズ1ギヤツプ内に設置された試料7上へ集
束させるように構成されてなる。さらに、最終段集束レ
ンズ5の近傍には絞り8が配設され、対物レンズ体1の
励磁強度を一定に保った状態で試料7に入射する照射電
子線6の集束角を可変するよになっている。すなわち、
第1図に示す電子線照射系では電子線源の実像を集束レ
ンズ4によってまず電子線軸(以下、便宜上光軸という
)0上の、点Pに結像し、次いで最終段集束レンズ5に
よって点Pと共役な点Qに結像した後、前方対物レンズ
休2によって試料7上の点Rに所定の集束角でもって結
像するようになっている。試料7に入射する照射電子線
6の集束角を可変する場合には、絞り8の孔径を第1図
中実線で示す大きさから、他の大きさへと変化させるこ
とによって行なう。このような集束角の可変を行なうた
めに、絞り8には通常3〜4個の孔列を設けた可動絞り
が用いられ、その時々必要に応じて光軸0に合わせた孔
を入れ換えることになっている。
A conventional example of an irradiation system for using such an electron beam irradiation method is shown in FIG. This irradiation system has one or more focusing lenses 4.5 disposed in front of an objective lens 1 consisting of a front objective lens body 2 and a rear objective lens body 3, and the radiation passing through these focusing lenses 4.5. Irradiation electron 11! i16,
It is configured to focus on a sample 7 placed between the front objective lens body 2 and the rear objective lens body 3, that is, within the gap of the objective lens 1. Further, a diaphragm 8 is disposed near the final stage focusing lens 5, and is configured to vary the focusing angle of the irradiated electron beam 6 incident on the sample 7 while keeping the excitation intensity of the objective lens body 1 constant. ing. That is,
In the electron beam irradiation system shown in FIG. After the image is formed at a point Q that is conjugate with P, the image is formed at a point R on the sample 7 by the front objective lens 2 at a predetermined convergence angle. When varying the convergence angle of the irradiated electron beam 6 incident on the sample 7, this is done by changing the aperture diameter of the aperture 8 from the size shown by the solid line in FIG. 1 to another size. In order to vary the focusing angle in this way, a movable diaphragm with three to four rows of holes is usually used for the diaphragm 8, and the holes aligned with the optical axis 0 can be replaced as needed. It has become.

しかしながら、このような従来の電子線の照射方法にあ
っては、試料7に照射する電子線6の集束角を可変する
ために、数個の孔列を設けた可動タイプの絞り8を操作
して行なっていたため、上記電子線6の集束角は段階的
に変化せざるを得ず、連続的な角度変化を起こさせるこ
とはできなかった。しかも集束角の可変段数は絞り8に
形成した孔の数で決まりせいぜい4段までの角度可変し
か行なうことができなかった。
However, in such a conventional electron beam irradiation method, in order to vary the convergence angle of the electron beam 6 irradiated onto the sample 7, a movable aperture 8 provided with several rows of holes is operated. As a result, the convergence angle of the electron beam 6 had to be changed stepwise, and it was not possible to cause a continuous angle change. Moreover, the number of stages in which the focusing angle can be varied is determined by the number of holes formed in the aperture 8, and the angle can only be varied up to four stages at most.

もちろん、絞り8の孔径切り換えをせずに最終段集束レ
ンズ5の励磁強度を変化させても集束角を変化させるこ
とができるが、この場合には、第2図に拡大して示すよ
うに、試料7上にできる電子線照射円の中の外内部から
中心点に力弓ノでの間で、試料7へ入射する電子線6の
入射角度が異なり、例えば結晶の回折像を得ようとして
も正しい回折像が得られないという不具合があった。
Of course, the focusing angle can also be changed by changing the excitation intensity of the final focusing lens 5 without changing the aperture diameter of the aperture 8, but in this case, as shown enlarged in FIG. The angle of incidence of the electron beam 6 entering the sample 7 is different between the outside and inside of the electron beam irradiation circle formed on the sample 7 and the center point, so even if you try to obtain a diffraction image of a crystal, for example, it will not be correct. There was a problem that a diffraction image could not be obtained.

本発明は、このような従来の問題点に鑑みなされたもの
で、その目的は、対物レンズの励磁強度を一定に保った
状態で試料に入射する照射電子線の集束角啓を連続的に
可変づることのできる電子線の照射方法を提供し、上記
従来の問題点を解決することである。
The present invention was developed in view of these conventional problems, and its purpose is to continuously vary the convergence angle of the irradiated electron beam incident on the sample while keeping the excitation intensity of the objective lens constant. It is an object of the present invention to provide an electron beam irradiation method that can be used to irradiate an electron beam, and to solve the above-mentioned conventional problems.

本発明は、上記目的を達成するため、電子光学系の中に
少なくとも3段の集束レンズを配置すると共に、これら
3段の集束レンズの内、電子線源に近い側から第2段の
集束レンズと最終段の集束レンズとの間には可動絞りを
配設し、第1膜束束レンズの励磁を一定に保つ一方、第
2膜束束レンズと最終段集束レンズとの励磁を互いに関
連させ、上記可動絞りによって試料照射角を制限しつつ
最終段集束レンズの結像点を、前方対物レンズ体の物点
にほぼ一致するように固定したことを要旨とするもので
ある。また、係る電子光学系の、第2膜束束レンズとR
終段集束レンズとの間には上記可動絞りに加えて、試料
に入射するビームの軸合せを行なう軸合せコイルを配設
し、この状態で第1膜束束レンズ励磁を一定に保つ一方
、第2膜束束レンズと最終段集束レンズとの励磁を互い
に関連させ、上記可動絞りによって試料照射角を制限し
つつ最終段集束レンズの結像点を、前方対物レンズ休の
物点にほぼ一致するように固定したことが第2の発明の
要旨となっている。このため第2の発明ではR終段集束
レンズの励磁変″化によって照射電子線の光軸がずれよ
うとしても軸合せコイルの作動によって光軸に軸合せさ
れる。さらにまた、R終段集束レンズの励磁変化による
照射電子線の軸のずれを最小限に抑さえるために、第2
膜束束レンズの励磁変化によって変化する結像点に対応
して可動絞りのビーム透過孔の径を可変し、これによっ
て電子線を照射するようにしたことも本発明の大きな特
徴である。
In order to achieve the above object, the present invention arranges at least three stages of focusing lenses in an electron optical system, and among these three stages, the second stage focusing lens is arranged from the side closest to the electron beam source. A movable diaphragm is disposed between the and the final stage focusing lens, and while the excitation of the first film focusing lens is kept constant, the excitation of the second film focusing lens and the final stage focusing lens is related to each other. The gist of the present invention is to fix the imaging point of the final stage focusing lens so as to substantially coincide with the object point of the front objective lens while limiting the sample irradiation angle using the movable diaphragm. Further, in the electron optical system, the second film flux lens and R
In addition to the movable diaphragm, an alignment coil for aligning the axis of the beam incident on the sample is disposed between the final stage focusing lens, and in this state, while keeping the excitation of the first film focusing lens constant, The excitations of the second film focusing lens and the final focusing lens are related to each other, and while the sample irradiation angle is limited by the movable diaphragm, the imaging point of the final focusing lens is almost aligned with the object point of the front objective lens. The gist of the second invention is that it is fixed in such a manner. Therefore, in the second invention, even if the optical axis of the irradiated electron beam is shifted due to the excitation change of the R final stage focusing lens, it is aligned with the optical axis by the operation of the alignment coil. In order to minimize the axis shift of the irradiated electron beam due to excitation changes of the lens, the second
Another major feature of the present invention is that the diameter of the beam transmission hole of the movable diaphragm is varied in response to the imaging point that changes due to changes in the excitation of the film-bundling lens, thereby irradiating the electron beam.

なお、上記第1及び第2の発明において、第2膜束束レ
ンズと最終段集束レンズとの励磁の関連付けは、手動に
よって行なってもよいし、自動的な連動動作によって行
なってもよい。
In the first and second inventions described above, the excitation association between the second film focusing lens and the final stage focusing lens may be performed manually or may be performed by automatic interlocking operation.

以下本発明の実施例を添附の図面を参照して詳細に説明
する。第3図及び第4図は、mlの発明を実施するため
の電子線照射系一実施例を示す図である。この照射系は
、対物レンズ休1の前方位置に電子線源側から順に第1
膜束束レンズ10゜第2膜束束レンズ11及び最終段集
束レンズ5となるように少なくとも3段の集束レンズを
配置し、第2膜束束レンズ11と最終段集束レンズ5と
の間の任意の位置には所定の間口を有する電子線束の断
面規制用の絞り即ち可動絞り13を取り付けてなる。第
1膜束束レンズ10は、電子線源の実像を第3図中光軸
O上の点Pに結像するように励磁設定されている。第2
膜束束レンズ11は、点Pの実像を当該第2段集束レン
ズ11の後方の光軸上の点Q1から点Qnまでの任意の
位置に結像し得るよう励磁可変となっている。最終段集
束レンズ5は、第2膜束束レンズ11の励磁変化によっ
て軌道変更された電子線6を屈折させ、対物レンズ体1
を構成する前方対物レンズ休2と後方対物レンズ体3と
の内、前方対物レンズ休2ど協働して前方対物レンズ休
2の物点上に結像させるようになってし、する。前方対
物レンズ休2と後方対物レンズ体3との間には試料7が
配設されている。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIGS. 3 and 4 are diagrams showing an embodiment of an electron beam irradiation system for carrying out the invention of ml. This irradiation system has a first lens located in front of the objective lens 1 in order from the electron beam source side.
Film-bundling lens 10°: At least three stages of focusing lenses are arranged such that the second film-bundling lens 11 and the final-stage focusing lens 5 are arranged, and the gap between the second film-bundling lens 11 and the final-stage focusing lens 5 is A movable aperture 13 having a predetermined opening for regulating the cross section of the electron beam bundle is attached at an arbitrary position. The first film focusing lens 10 is set to be excited so as to form a real image of the electron beam source at a point P on the optical axis O in FIG. Second
The film focusing lens 11 is variable in excitation so that a real image of the point P can be formed at any position from a point Q1 to a point Qn on the optical axis behind the second stage focusing lens 11. The final stage focusing lens 5 refracts the electron beam 6 whose trajectory has been changed by the excitation change of the second film focusing lens 11, and
Of the front objective lens 2 and the rear objective lens body 3 that constitute the front objective lens 2, the front objective lens 2 cooperates to form an image on the object point of the front objective lens 2. A sample 7 is disposed between the front objective lens holder 2 and the rear objective lens body 3.

前方対物レンズ体2には単焦点レンズが用いられるのが
好ましく、この前方対物レンズ休2と最終段集束レンズ
5とはあたかも一つのレンズのごとく作動し、可変結像
点Qから出た電子線6を試料7上の点Rに集束させこの
位置に電子線源の実像を結像させるべく、前方対物レン
ズ休2は一定の値に励磁設定される一方最終段集束レン
ズ5は可変励磁設定される。第2膜束束レンズ11と最
終段集束レンズ5との間に設けられた可動絞り13には
固定絞りが用いられてもよいし、可動絞りが設けられて
もよい。なお、第1膜束束レンズ10の前方位置に更に
幾つかの集束レンズが配置されていてももちろんよい。
It is preferable to use a single focus lens for the front objective lens body 2, and the front objective lens body 2 and the final stage focusing lens 5 operate as if they were one lens, and the electron beam emitted from the variable focusing point Q is In order to focus the electron beam 6 onto a point R on the sample 7 and form a real image of the electron beam source at this position, the front objective lens 2 is set to a constant excitation value, while the final stage focusing lens 5 is set to variable excitation. Ru. A fixed aperture may be used for the movable aperture 13 provided between the second film convergence lens 11 and the final stage focusing lens 5, or a movable aperture may be provided. Note that, of course, several focusing lenses may be further arranged in front of the first film focusing lens 10.

係る構成を有する照射系において、第1膜束束レンズ1
0によって光軸0上の点Pに集束され、この位置に電子
線源に実像結像した電子線は、第2膜束束レンズ11に
よって当該第2段集束レンズ11と第3膜束束レンズ5
との間の光軸O上の所定範囲の点に集束される。この場
合、第2膜束束レンズ11がその可変範囲内にお1プる
最も弱い励磁に設定された時、電子線は符号6aで示1
ように点Q1に集束する。他方第2段集束レンズ11が
その可変範囲内にお()る最も強い励磁に設定された時
、電子線は符号6bで示す、ように点Qnに集束する。
In the irradiation system having such a configuration, the first film bundle lens 1
The electron beam that is focused at a point P on the optical axis 0 by 0 and formed a real image on the electron beam source at this position is transferred by the second film focusing lens 11 to the second stage focusing lens 11 and the third film focusing lens. 5
It is focused on a predetermined range of points on the optical axis O between the two. In this case, when the second film fluxing lens 11 is set to the weakest excitation within its variable range, the electron beam is
It converges on point Q1 as follows. On the other hand, when the second stage focusing lens 11 is set to the strongest excitation within its variable range, the electron beam is focused at a point Qn as shown by reference numeral 6b.

そしてこの第2以東束レンズ11の励磁を最弱励磁から
最強励磁へと連続しであるい(よ段階的に変えていけば
、電子線の経路は符号6aで示ずbのから符号6bで示
すものにまで変化し、結像点Qは、点Q1から点Qnへ
と変化J°る。
Then, if the excitation of the second and later focusing lenses 11 is changed continuously from the weakest excitation to the strongest excitation (if the excitation is changed stepwise, the path of the electron beam will be shown as 6a and 6b). The imaging point Q changes from point Q1 to point Qn by J°.

次に、最終段集束レンズ5では、その励磁強度が第2以
東束レンズ11の励磁強度に対して関数的に可変し、こ
の最終段集束レンズ5と励磁強度が一定に保lCれた前
方対物レンズ体2との合成作用によってできる電子線源
の結像点が、試料7上の点Rに一致するようになってい
る。
Next, in the final stage focusing lens 5, the excitation intensity is varied functionally with respect to the excitation strength of the second and subsequent east focusing lenses 11, and the excitation intensity is kept constant between the final stage focusing lens 5 and the front The imaging point of the electron beam source formed by the combination with the objective lens body 2 coincides with a point R on the sample 7.

このような電子光学系、特に最終段集束レンズ5の構成
は、近年前方対物レンズ体が単焦点となる対物レンズ体
モードの採用に伴って出現したもので、利用価値に種々
あるが、本発明ではこの最終段集束レンズ5と前方対物
レンズ体2との合成縮小率が二十分の−より大きくなら
なし1よう制限する目的に使用している。そして、この
ような電子光学系で試料照射角を効率よく小さく制限す
る点ではビーム断面制限絞り即ち可動絞り13をビーム
断面の最大となる位置に設【)るのが最適である。すな
わち、ビーム断面が最大となる位置に可動絞り13を配
置ずれば、可動絞りの同一の径を有する孔に対して試料
照射角を最小にすることができる。もっとも最大のビー
ム断面は第1膜束束レンズ10には決して現われず、最
終段集束レンズ5に近い程ビーム断面は大きくなる。し
かし、試料照射角をレンズ作用を利用して制御しようと
する目的に照して考えると、絞り(上記可動絞り13が
相当する)より後方に可変できるレンズが少なくとも1
個以上必要である。本発明では、上記2つの条件を満足
するように、第2以東束レンズ11と最終段集束レンズ
5との間に可動絞り13を配設してなる。
Such an electron optical system, especially the configuration of the final stage focusing lens 5, has emerged in recent years with the adoption of an objective lens mode in which the front objective lens has a single focus, and has various utility values, but the present invention This is used for the purpose of limiting the combined reduction ratio of the final stage focusing lens 5 and the front objective lens body 2 to 1 if it is larger than 20 minutes. In order to efficiently limit the sample irradiation angle to a small value in such an electron optical system, it is optimal to set the beam cross-section limiting aperture, that is, the movable aperture 13, at a position where the beam cross-section is at its maximum. That is, by arranging the movable aperture 13 at a position where the beam cross section is maximized, the sample irradiation angle can be minimized with respect to the apertures of the movable aperture having the same diameter. However, the largest beam cross section never appears at the first film focusing lens 10, and the closer it is to the final stage focusing lens 5, the larger the beam cross section becomes. However, considering the purpose of controlling the sample irradiation angle using lens action, at least one lens that can be varied backwards from the diaphragm (corresponding to the movable diaphragm 13 described above) is required.
More than one is required. In the present invention, a movable diaphragm 13 is disposed between the second and subsequent focusing lenses 11 and the final stage focusing lens 5 so as to satisfy the above two conditions.

上記のような構成を有する電子光学系において上に説明
したような方法で電子線の照射を行なうと、例えば第2
以東束レンズ11をその励磁可変範囲内の最弱励磁にし
て点Q1に結像させた場合、これによって得られた電子
線6aは試料7上に極めて小さな集束角で結像する一方
、第2以東束レンズ11を最強励磁にして点Qnに結像
させた場合には、これによって得られた電子線6bは試
料7上に比較的大きな集束角で結像する。この第2以東
束レンズ11の励磁変化と試料7上における集束角との
関係について詳しく説明する。まず第1膜束束レンズ1
0を強く励磁して第1の縮小点電子線源像を点Pに作る
ど共に、第2膜束束レンズをその励磁範囲の最も弱い励
磁にし、第2の縮小点電子線源像を第2集束レンズ11
と最終段集束レンズ5との間の点Q1につくる。そして
、最終段集束レンズ5と前方対物レンズ体2との合成作
用で試料7上に第3の縮小電子線源像即ち電子プローブ
を形成する。この時の集束角を01とする。次に、第2
膜束束レンズを変化させてその励磁範囲の最も強い励磁
にし、第2の縮小点電子線源像を点Qnに作ると共に、
これに対応して最終段集束レンズ5と、前方対物レンズ
体2との合成作用を再調整して第3の縮小集電子線源像
の結像位置が試料7の面上から外れないようにする。こ
の時の集束角をθnとする。第3図及び第4図からも明
らかになるように、 θ1くθn である。
When electron beam irradiation is performed using the method described above in an electron optical system having the above configuration, for example, the second
If the electron beam 6a thus obtained is focused on the point Q1 with the weakest excitation within its excitation variable range, the electron beam 6a thus obtained will be focused on the sample 7 at an extremely small angle of convergence. When the electron beam 6b obtained by this is imaged at a point Qn with the second or later east focusing lens 11 being most excited, the electron beam 6b thus obtained is imaged on the sample 7 at a relatively large convergence angle. The relationship between the excitation change of the second and subsequent focusing lenses 11 and the focusing angle on the sample 7 will be explained in detail. First, the first film bundle lens 1
0 is strongly excited to create a first reduced point electron beam source image at point P, and at the same time, the second film flux lens is excited to the weakest extent in its excitation range, and the second reduced point electron beam source image is created at point P. 2 focusing lens 11
and the final stage focusing lens 5 at a point Q1. Then, a third reduced electron beam source image, that is, an electron probe is formed on the sample 7 by the combined action of the final stage focusing lens 5 and the front objective lens body 2. The convergence angle at this time is set to 01. Next, the second
Changing the film flux lens to the strongest excitation in its excitation range, creating a second reduced point electron beam source image at point Qn,
Correspondingly, the combining action of the final stage focusing lens 5 and the front objective lens body 2 is readjusted so that the imaging position of the third reduced electron beam source image does not deviate from the surface of the sample 7. do. Let the convergence angle at this time be θn. As is clear from FIGS. 3 and 4, θ1 x θn.

Q点の01からQn移動に対して第3の縮小電子線源像
が常に試料7上にあるようにすることは、先にも述べ1
=ように、前方対物レンズ休2の励磁強度を一定に保ち
、最終段集束レンズ5のみの励磁変化で行なわれるが、
これは前方対物レンズ休2の励磁変化即ち、対物レンズ
1の全体の励磁変化は、螢光スクリーン上の像の焦点が
対物レンズの励磁変化の前後において変化することを意
味するからである。そして最終段集束レンズ5の励磁変
化のみににっても、第3図及び第4図からも明らかなよ
うに、第2の縮小電子線源像の結像点が点Q1から点Q
 nへと変化しても試料7上の電子プローブの焦点が一
定に保たれている。そして、上記結像点が点Q1から点
Qnに変化するに従って試料7上の電子線照射角はθ1
からθnに変化している。従って、電子線照射角がθ1
の場合の第2膜束束レンズ11おより最終段集束レンズ
5の励磁電流値をそれぞれ(I21. 131>とし、
以下順次(122,132)、(123,I 33) 
、・・・(I2n、13n)とする。これらの組は実測
によって容易に得られる。そして第2膜束束レンズ11
の電流値121. I22. I23.・・・(2nに
自動的にI31゜132、I 33. I 3nを対応
させておけば、試料7上に電子プローブの焦点を保った
ままで電子線照射角をθ1.θ2.θ3.・・・Qnの
ように可変制御できる。こうして第1の発明の目的は達
つせられるのである。
As mentioned above, the third reduced electron beam source image is always placed on the sample 7 when the Q point moves from 01 to Qn.
=, the excitation intensity of the front objective lens 2 is kept constant and the excitation of only the final stage focusing lens 5 is changed.
This is because a change in the excitation of the front objective lens 2, that is, a change in the excitation of the entire objective lens 1, means that the focus of the image on the fluorescent screen changes before and after the change in excitation of the objective lens. As is clear from FIGS. 3 and 4, the focusing point of the second reduced electron beam source image changes from point Q1 to point Q even if only due to the excitation change of the final stage focusing lens 5.
The focus of the electron probe on the sample 7 is kept constant even if it changes to n. As the image forming point changes from point Q1 to point Qn, the electron beam irradiation angle on the sample 7 changes to θ1.
to θn. Therefore, the electron beam irradiation angle is θ1
In this case, the excitation current values of the second film focusing lens 11 and the final stage focusing lens 5 are respectively (I21.131>,
The following sequentially (122, 132), (123, I 33)
,...(I2n, 13n). These sets can be easily obtained through actual measurements. and a second film bundle lens 11
The current value of 121. I22. I23. ...(If I31゜132, I33.I3n are automatically made to correspond to 2n, the electron beam irradiation angle can be changed to θ1, θ2, θ3, etc. while keeping the focus of the electron probe on the sample 7. - Variable control is possible like Qn.In this way, the object of the first invention is achieved.

次に、第2の発明について説明する。上記第1の発明で
は対物レンズ1の励磁を一定に保ったままで第2膜束束
レンズ11及び最終段集束レンズ5の励磁を可変するこ
とにより試料7上に電子プローブの焦点を保つ1=まま
で電子線照射角を可変させることができるのであるが、
このような電子線照射角の可変操作という面から見ると
、上記第1の発明には幾分かの足らない点がある。それ
は、確かに第1の発明においては、第2膜束束レンズ1
1と最終段集束レンズ5との励磁変化によって、電子プ
ローブは常に試料7面上に結像してはいるが、その結像
点Rは、最終段集束レンズ5の励磁変化に伴って試料7
面内の光軸Oに垂直な方向へ大きく変位する。この結像
点Rの光軸に垂直な方向への変位は、電磁軸合せコイル
12が最終段集束レンズ5の前方に配置されているため
、最終段集束レンズ5と前方対物レンズ休2との屈折作
用を受けて試料7に最終的に入射する電子線が試料7の
中心に来るように軸合せコイル12の電流を調整する構
成になっているためであり、このような構成では、最終
段集束レンズ5あるいは前方対物レンズ休2鯵(但し本
発明においては前方対物レンズ体2の励磁は一定に保た
れている)のいずれが変化しても軸は狂ってしまう。従
って、軸の狂いをなくすためには、最終段集束レンズ5
の励磁を可変しなければよいが、最終段集束レンズ5の
励磁を可変しないと、試料7に入射する電子線照射角θ
を変化できないという矛盾が生じる。
Next, the second invention will be explained. In the first invention, the focus of the electron probe on the sample 7 is maintained by varying the excitation of the second film focusing lens 11 and the final stage focusing lens 5 while keeping the excitation of the objective lens 1 constant. The electron beam irradiation angle can be varied by
From the viewpoint of such variable operation of the electron beam irradiation angle, the first invention described above has some shortcomings. It is true that in the first invention, the second film bundle lens 1
The electron probe is always imaged on the surface of the sample 7 due to excitation changes between the final stage focusing lens 5 and the final stage focusing lens 5;
It is largely displaced in the direction perpendicular to the optical axis O in the plane. This displacement of the imaging point R in the direction perpendicular to the optical axis is caused by the difference between the final stage focusing lens 5 and the front objective lens 2 because the electromagnetic alignment coil 12 is disposed in front of the final stage focusing lens 5. This is because the configuration is such that the current of the alignment coil 12 is adjusted so that the electron beam that finally enters the sample 7 due to the refraction effect comes to the center of the sample 7. In such a configuration, the final stage If either the focusing lens 5 or the front objective lens 2 (however, in the present invention, the excitation of the front objective lens body 2 is kept constant) changes, the axis will be deviated. Therefore, in order to eliminate the misalignment of the axis, the final stage focusing lens 5
However, if the excitation of the final stage focusing lens 5 is not varied, the electron beam irradiation angle θ incident on the sample 7 will change.
A contradiction arises in that the situation cannot be changed.

係る矛盾を解決する1=めには、最終段集束レンズ5の
励磁は可変するが、この可変幅を極力小さく押える一方
で、最終段集束レンズ5の励磁変化に伴なう試料7に入
射する電子線の照射角の変化幅はできるだけ大ぎくとる
ことが重要である。第2の発明は、係る目的を達成せん
とするものである。
In order to solve this contradiction (1), the excitation of the final stage focusing lens 5 is varied, but while keeping this variable range as small as possible, the excitation of the final stage focusing lens 5 is kept as small as possible. It is important to keep the range of change in the electron beam irradiation angle as wide as possible. The second invention aims to achieve such an object.

上記第1の発明においても説明したが、第2膜束束レン
ズ11の励磁をその可変範囲最弱励磁から最強励磁まで
変化させ、第2の縮小電子線源像の結像点を、点Q1か
ら点Qnまで変化さゼ、これらに対応して試料7に入射
する電子線照射角を01からQnまで変化させたが、係
る操作をするにあたって用いた可動絞り13の孔径は、
当該可動絞り13に開けられた孔列の内、最小孔の径(
これをdとする)であったとする。
As explained in the first invention, the excitation of the second film fluxing lens 11 is varied within its variable range from the weakest excitation to the strongest excitation, and the imaging point of the second reduced electron beam source image is set to the point Q1. Correspondingly, the electron beam irradiation angle incident on the sample 7 was changed from 01 to Qn, but the aperture diameter of the movable aperture 13 used for this operation was
The diameter of the smallest hole in the row of holes drilled in the movable diaphragm 13 (
Let this be d).

そして、 θn/θi=に とする。Qnの値はθ1の値よりも大であるから、上記
θn/θ1の値は1よりも大きくなる。このKに基づい
て、可動絞り13の孔列の径を最小孔から最大孔までd
、kd、に2d、に3d、・・・のように設ける。
Then, θn/θi=. Since the value of Qn is greater than the value of θ1, the value of θn/θ1 is greater than 1. Based on this K, the diameter of the hole row of the movable diaphragm 13 is adjusted from the smallest hole to the largest hole by d.
, kd, 2d, 3d, and so on.

すると、直径dの孔を用いた時の01点に対応する電子
線照射角θの値をθ1とづると、Ql・・・Qn点での
θは、 θ=θ1・・・kd1 となる。次の孔kdでは、Ql・・・Qn、でのθは、
θ=にθ1・・・k2 θ となり、順次孔を小さい径のものから大ぎな径のものへ
と切り換えていけば、θをθ1・・・k+01まで連続
して変えることができる。
Then, if the value of the electron beam irradiation angle θ corresponding to point 01 when using a hole of diameter d is expressed as θ1, then θ at points Ql...Qn becomes θ=θ1...kd1. In the next hole kd, θ at Ql...Qn is
θ=θ1...k2 θ, and by sequentially switching the holes from smaller diameter ones to larger diameter ones, θ can be continuously changed to θ1...k+01.

従って、どんな結晶に対しても最適となる電子線照射角
を上記広範囲のθの中から選択できる。
Therefore, the optimum electron beam irradiation angle for any crystal can be selected from the above-mentioned wide range θ.

またこの0の可変は、QlとQnの間の分割数を多くす
ればするほどθの可変段数は多くなり結晶の観察を細か
い段階で行なうことができる。
Further, as for this variation of 0, the greater the number of divisions between Ql and Qn, the greater the number of variable stages of θ, and the crystal can be observed in finer stages.

−例として可動絞り13の最小孔径dを直径で20ミク
ロン(これは実用的な孔の最小値である)とし、Kを1
.5とするなら、可動絞り13の孔列の径は、20,3
0,45,67.5.・・・ミクロンのようになる。ま
たKを2とすると、孔列の径は20.40.80,16
0.・・・ミクロンのようになる。さらに、Kを3とす
ると孔列の径は、20.60,180,540.・・・
ミクロンのようになる。可動絞り13は、集束レンズ電
子線回折だけの用途でなく、通常の電子顕微鏡像観察の
場合にも用いられる。後者の場合500ミクロンの直径
を越えた孔は通常使われないから、可動絞りの有効活用
を考えると、上記孔列の内に=3とし1〔時の第4列目
の孔が限界である。よって、径は3よりも小さな値にと
ることが望ましい。
- As an example, let the minimum hole diameter d of the movable diaphragm 13 be 20 microns in diameter (this is the minimum value for a practical hole), and K be 1
.. 5, the diameter of the hole row of the movable diaphragm 13 is 20.3.
0,45,67.5. ...becomes like a micron. Also, if K is 2, the diameter of the hole row is 20.40.80,16
0. ...becomes like a micron. Furthermore, if K is 3, the diameters of the hole rows are 20.60, 180, 540. ...
It becomes like a micron. The movable diaphragm 13 is used not only for focusing lens electron beam diffraction, but also for normal electron microscope image observation. In the latter case, holes with a diameter exceeding 500 microns are not normally used, so when considering the effective use of the movable aperture, the limit is the hole in the fourth row when = 3 in the above hole row. . Therefore, it is desirable to set the diameter to a value smaller than 3.

本願にお番プる第1及び第2の発明では、点Qが第2膜
束束レンズ11と最終段集束レンズ5との間に設定され
る場合にについて記述してきた。その理由は、点Qを可
動絞り13から離す程、同じ集束角の変化を得るのに必
要なQlとQnとの隔りが大きくなり、これによって最
終段集束レンズ5の励磁電流変化量が大きくなることを
回避するためである。Ql・・・Qnが可動絞り13に
近い程Q1・・・Qnの隔りが小となり、最終段集束レ
ンズ5の電流変化は小さくてすむようになる。また、Q
点を可動絞り13から離し1=位置に設定してしまうと
、同じ孔径の可動絞り13を用いたとしても、試料7の
上の電子線照射角が、Q点を可動絞り13側に近づけた
場合に比較して大きい方に推移してしまうから、可動絞
り13の孔径を20ミクロンよりもさらに小さく設定す
る必要が生じ実用上の最小孔径を越えてしまい、製作上
の困難性が生じてくるという不利もある。
In the first and second aspects of the present invention, the case where the point Q is set between the second film focusing lens 11 and the final stage focusing lens 5 has been described. The reason for this is that the farther the point Q is from the movable diaphragm 13, the greater the gap between Ql and Qn required to obtain the same change in the focusing angle, and this increases the amount of change in the excitation current of the final stage focusing lens 5. This is to avoid this. The closer Ql...Qn is to the movable diaphragm 13, the smaller the distance between Q1...Qn, and the smaller the current change in the final stage focusing lens 5 becomes. Also, Q
If the point is moved away from the movable aperture 13 and set at position 1, even if the movable aperture 13 with the same hole diameter is used, the electron beam irradiation angle above the sample 7 will cause the Q point to approach the movable aperture 13 side. Therefore, the hole diameter of the movable diaphragm 13 needs to be set even smaller than 20 microns, which exceeds the practical minimum hole diameter, resulting in manufacturing difficulties. There is also a disadvantage.

さらに、上記第1及び第2の発明において、前方対物レ
ンズ2と最終段集束レンズ5との合成縮小率は1/20
以下の範囲(数値の上では1/15.1/10・・・と
いうように大きくなる)で使用することが好ましい。こ
れは、試料7と前方対物レンズ休2との間の距離を離す
ことによって実現し得る。そして、係る措置を施すこと
によって試料7の面の通常の凹凸に対する点Qの位置変
動を小さく押えることができる。またこの点Qの位置変
動に照射系が対応できるよう、第1以東束レーンズ10
、第2膜束束レンズ11または最終段集束レンズ5のい
ずれかに励磁微調整手段を接続し、上記いずれかの集束
レンズをある微小幅で以って可変できるようにすること
が好ましい。
Furthermore, in the first and second inventions, the combined reduction ratio of the front objective lens 2 and the final stage focusing lens 5 is 1/20.
It is preferable to use it within the following range (in terms of numerical values, it increases like 1/15.1/10...). This can be achieved by increasing the distance between the sample 7 and the front objective lens 2. By taking such measures, it is possible to suppress the positional fluctuation of the point Q with respect to the normal unevenness of the surface of the sample 7 to a small level. In addition, in order for the irradiation system to respond to the positional fluctuation of the point Q, the first to
It is preferable to connect an excitation fine adjustment means to either the second film focusing lens 11 or the final stage focusing lens 5, so that either of the above focusing lenses can be varied within a certain minute range.

以上説明したように、本発明によれば、電子線装置の照
射系において、最終段集束レンズとその前方位置に設置
された集束レンズとの間に可動絞りを設け、最終段集束
レンズとその前段の集束レンズとの励磁を互いに関連さ
ぽ、最終段集束レンズと前方対物レンズとによる結像点
が試料上にほぼ一致するようにしたため、対物レンズの
励磁強度を可変することなく、試料に入射する電子線の
照射角を可変することができるようになった。このため
、新材料の開発研究等において採用される集束レンズ電
子線回折法は結晶の高分解能像を得る場合等において、
操作が簡単でしかも細かく角度変化された観察像が得ら
れることになり、観察精度を向上させることができる。
As explained above, according to the present invention, in the irradiation system of an electron beam device, a movable diaphragm is provided between the final stage focusing lens and the focusing lens installed at a position in front of the final stage focusing lens, The excitation with the focusing lens is related to each other, so that the imaging points of the final focusing lens and the front objective lens almost coincide with each other on the sample. It is now possible to vary the irradiation angle of the electron beam. For this reason, the focusing lens electron diffraction method used in research and development of new materials is used to obtain high-resolution images of crystals.
It is easy to operate, and observation images with finely changed angles can be obtained, thereby improving observation accuracy.

またこの角度変化を、集束レンズの励磁変化に伴う軸ず
れを顕著に生じさせることなく電気的な手段と可動絞り
の孔列の切り換えを確実に行なうことができるため、従
来のように・集束レンズの励磁を変えた後軸合せコイル
の調整を行なわなければならないという操°作上の繁雑
さは避けられ、極めて操作性の良い電子線観察を行ない
得る等種々の効果が得られる。
In addition, this angle change can be reliably performed by electrical means and switching of the aperture row of the movable diaphragm without causing significant axis deviation due to changes in excitation of the focusing lens. The operational complexity of having to adjust the alignment coil after changing the excitation of the electron beam can be avoided, and various effects such as extremely easy-to-operate electron beam observation can be obtained.

なお、上の説明では、3段集束レンズ系について説明し
てきたが、第1膜束束レンズの上方(すなわち前方)に
さらに幾つかの集束レンズを追加すれば、第1の縮小電
子線源像の位置をP点に保ったままで、試料上の電子プ
ローブの大きさを当該追加された集束レンズと第1膜束
束レンズとの連動操作によって自由に可変することがで
きる等メリットが加わるので、高性能電子線装置におい
てはより望ましい。
In the above explanation, a three-stage focusing lens system has been described, but if several focusing lenses are added above (that is, in front of) the first film focusing lens, the first reduced electron beam source image can be While maintaining the position of point P at point P, the size of the electron probe on the sample can be freely varied by the interlocking operation of the added focusing lens and the first film focusing lens. This is more desirable in high-performance electron beam equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電子線装置における電子照射系の一従来例を示
す図、第2図は上記従来の照射系にJ)いて最終段集束
レンズの励磁強度を変化させた場合における電子線源の
結像状態を示す図、第3図は第1図の発明の実施滲に使
用する電子線照射系を示ター図、第4図は第3図におけ
る第2段集束レンズと対物レンズとの間における電子線
経路を詳細に示す図、第5図は第2発明の実施に使用す
る電子線照射系を示す図、第6図は上記第1及び第2の
発明において用いられる可動絞りの一例を示す図である
。 1・・・対物レンズ、2・・・前方対物レンズ体3・・
・後方対物レンズ体、5・・・最終段集束レンズ6・・
・電子線、7・・・試料 10・・・第1段集束レンズ 11・・・第2段集束レンズ、12・・・軸合せコイル
、13・・・可動絞り
Figure 1 shows a conventional example of an electron irradiation system in an electron beam device, and Figure 2 shows the result of an electron beam source when the excitation intensity of the final stage focusing lens is changed in the conventional irradiation system described above. FIG. 3 is a diagram showing the electron beam irradiation system used to implement the invention shown in FIG. 1, and FIG. FIG. 5 is a diagram showing the electron beam path in detail, FIG. 5 is a diagram showing the electron beam irradiation system used in implementing the second invention, and FIG. 6 is an example of a movable aperture used in the first and second inventions. It is a diagram. 1... Objective lens, 2... Front objective lens body 3...
・Rear objective lens body, 5...Final stage focusing lens 6...
・Electron beam, 7... Sample 10... First stage focusing lens 11... Second stage focusing lens, 12... Axis alignment coil, 13... Movable aperture

Claims (5)

【特許請求の範囲】[Claims] (1) 電子線源と、前方対物レンズ体及び後方対物レ
ンズ体から構成された対物レンズとを有する試料観察用
の電子線装置の、対物レンズの前方に、電子線源側から
第1段、第2段及び最終段の順に少なくとも3段の集束
レンズを配@すると共に、第2段の集束レンズと第3段
の集束レンズとの間には可動絞りを配置し、第1段集束
レンズの励磁を一定に保つ一方、第2段集束レンズと最
終段集束レンズとの励磁を互いに関連させ、上記可動絞
りによって試料照射角を制限しつつ、R終段集束レンズ
の結像点を、前方対物レンズ体の物点にほぼ一致するよ
うに固定したことを特徴とする電子線装置の電子線照射
方法。
(1) In an electron beam apparatus for sample observation that has an electron beam source and an objective lens composed of a front objective lens body and a rear objective lens body, in front of the objective lens, from the electron beam source side, a first stage, At least three stages of focusing lenses are arranged in the order of the second stage and the final stage, and a movable diaphragm is arranged between the second stage focusing lens and the third stage focusing lens. While keeping the excitation constant, the excitations of the second-stage focusing lens and the final-stage focusing lens are related to each other, and while the sample irradiation angle is limited by the movable diaphragm, the imaging point of the R final-stage focusing lens is set to the front objective. An electron beam irradiation method using an electron beam device, characterized in that a lens body is fixed so as to substantially coincide with an object point.
(2) 第2段集束レンズの励磁変化によって、当該筒
2設集束レンズによる縮小光源像の結像点を、第2段集
束レンズと第3段集束レンズの間で第2段集束レンズに
最も遠い01点から最も近いQn点まで連続して可変さ
せることを特徴とする特許請求範囲第1項記載の電子線
装置の電子線照射方法。
(2) By changing the excitation of the second-stage focusing lens, the focusing point of the reduced light source image by the two-tube focusing lens is set to the closest point to the second-stage focusing lens between the second-stage focusing lens and the third-stage focusing lens. An electron beam irradiation method for an electron beam apparatus according to claim 1, characterized in that the electron beam irradiation method is continuously varied from the farthest point 01 to the nearest point Qn.
(3) 電子線源と、前方対物レンズ体及び後方対物レ
ンズ体から構成された対物レンズとを有する試料観察用
の電子線装置の、対物レンズの前方に、第1段、第2段
及び最終段の順に少なくとも3段の集束レンズを配置す
ると共に、第2段集束レンズと第3段集束レンズとの間
には可動絞りと、試料に入射するビームの軸合せを行な
う軸合せコイルとを配設し、第1段集束レンズの励磁を
一定に保つ一方、第2段集束レンズと最終段集束レンズ
との励磁を互いに関連させ、上記可動絞りによって試料
熱01角を制限しつつ最終段集束レンズの結像点を前方
の対物レンズ体の物点にほぼ一致するように固定したこ
とを特徴とする電子線装置の電子線照射方法。
(3) In an electron beam device for sample observation that has an electron beam source and an objective lens composed of a front objective lens body and a rear objective lens body, a first stage, a second stage, and a final stage are installed in front of the objective lens. At least three stages of focusing lenses are arranged in the order of stages, and a movable diaphragm and an alignment coil for aligning the axis of the beam incident on the sample are arranged between the second stage focusing lens and the third stage focusing lens. While keeping the excitation of the first stage focusing lens constant, the excitation of the second stage focusing lens and the final stage focusing lens are related to each other, and the final stage focusing lens is controlled while limiting the sample heat angle by the movable diaphragm. An electron beam irradiation method for an electron beam device, characterized in that the imaging point of is fixed so as to substantially coincide with the object point of a front objective lens body.
(4) 第2段集束レンズの励磁変化によって、当該筒
2設集束レンズによる縮小光源像の結像点を、第2膜束
束レンズと第3段集束レンズとの間で、第2膜束束レン
ズに最も遠い01点から最も近いQn点まで連続して可
変させ得ることを特徴とする特許請求範囲第3項記載の
電子線装置の電子線照射方法。
(4) By changing the excitation of the second-stage focusing lens, the imaging point of the reduced light source image by the two-tube focusing lens is changed between the second-stage focusing lens and the third-stage focusing lens. 4. An electron beam irradiation method for an electron beam apparatus according to claim 3, characterized in that the electron beam irradiation method can be continuously varied from point 01, which is farthest to the bundle lens, to point Qn, which is closest to the bundle lens.
(5) 可動絞りには複数のビーム透過孔が設けられ、
これらのビーム透過光は、第2膜束束レンズによる縮小
光源像の結像点Q1ないしQnに対応して得られる試料
上のビーム集束角をθ1乃至θnとした時、 θ1/θn=に≦3 の定数とし、 上記結像点Q1に対応する可動絞りのビーム透過孔の径
をdとする時、結像点Ql乃至Qnに対応するビーム透
過孔の径をd、kd、に2d、・・・1名に設定したこ
とを特徴とする特許請求範囲第3項又は第4項記載の電
子線装置の電子線照射方法。
(5) The movable aperture is provided with multiple beam transmission holes,
When the beam convergence angles on the sample obtained corresponding to the focusing points Q1 to Qn of the reduced light source image by the second film focusing lens are θ1 to θn, these transmitted beams have the following relationship: θ1/θn=≦ 3 and the diameter of the beam transmission aperture of the movable diaphragm corresponding to the imaging point Q1 is d, then the diameter of the beam transmission aperture corresponding to the imaging points Ql to Qn is d, kd, and 2d. An electron beam irradiation method using an electron beam apparatus according to claim 3 or 4, characterized in that the number of irradiators is set to one person.
JP4812484A 1984-03-15 1984-03-15 Method for irradiating electron rays in electron ray device Pending JPS60193248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4812484A JPS60193248A (en) 1984-03-15 1984-03-15 Method for irradiating electron rays in electron ray device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4812484A JPS60193248A (en) 1984-03-15 1984-03-15 Method for irradiating electron rays in electron ray device

Publications (1)

Publication Number Publication Date
JPS60193248A true JPS60193248A (en) 1985-10-01

Family

ID=12794578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4812484A Pending JPS60193248A (en) 1984-03-15 1984-03-15 Method for irradiating electron rays in electron ray device

Country Status (1)

Country Link
JP (1) JPS60193248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614142A (en) * 1984-06-16 1986-01-10 Jeol Ltd Illumination lens system in electron microscope or the like
JPS6119046A (en) * 1984-07-04 1986-01-27 Hitachi Ltd Electron microscope for diffracting converged electron rays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124371A (en) * 1975-04-23 1976-10-29 Jeol Ltd Scanning type electron microscope and similar equipment provided with means for controlling opening angle of electron beam for irradiating s amples
JPS5481064A (en) * 1977-12-12 1979-06-28 Jeol Ltd Electron beam equipment with optical microscope
JPS55126951A (en) * 1979-03-23 1980-10-01 Hitachi Ltd Electron microscope
JPS55128243A (en) * 1979-03-28 1980-10-03 Hitachi Ltd Electron microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124371A (en) * 1975-04-23 1976-10-29 Jeol Ltd Scanning type electron microscope and similar equipment provided with means for controlling opening angle of electron beam for irradiating s amples
JPS5481064A (en) * 1977-12-12 1979-06-28 Jeol Ltd Electron beam equipment with optical microscope
JPS55126951A (en) * 1979-03-23 1980-10-01 Hitachi Ltd Electron microscope
JPS55128243A (en) * 1979-03-28 1980-10-03 Hitachi Ltd Electron microscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614142A (en) * 1984-06-16 1986-01-10 Jeol Ltd Illumination lens system in electron microscope or the like
JPH041459B2 (en) * 1984-06-16 1992-01-13 Nippon Electron Optics Lab
JPS6119046A (en) * 1984-07-04 1986-01-27 Hitachi Ltd Electron microscope for diffracting converged electron rays
JPH043620B2 (en) * 1984-07-04 1992-01-23

Similar Documents

Publication Publication Date Title
EP0092090B1 (en) Optical adjustment element
EP0783135B1 (en) Imaging-apparatus and method for manufacture of microdevices
EP0535218A4 (en)
US4526443A (en) Telecentric illumination system
JP2002237272A (en) Phase plate lens system for transmission electron microscope and transmission electron microscope
JPH0279347A (en) Object irradiation method in transmission type electron microscope
JP4502416B2 (en) Energy filter and electron microscope
JPH02289808A (en) Lighting optical system
JPS59211014A (en) Variable power observing device
TW200849331A (en) Optical integrator system, illumination optical apparatus, exposure apparatus, and device manufacturing method
JPS58152535A (en) Optical apparatus having focusing function
JPH041459B2 (en)
JPS60193248A (en) Method for irradiating electron rays in electron ray device
US6140645A (en) Transmission electron microscope having energy filter
US6323485B1 (en) Electron microscope equipped with energy filter
JPH0290119A (en) Condensing optical device for laser drawing machine
JPS5533716A (en) Electron microscope focusing lens system
JPH0161228B2 (en)
JPH0760656B2 (en) electronic microscope
JPS5760648A (en) Electron microscope
EP0756717A1 (en) Illumination system and method for a high definition light microscope
JPS57111936A (en) Astigmatism correcting device for electron microscope
JPS61250950A (en) High accuracy focusing apparatus for electron microscope
JP2839683B2 (en) Foucault electron microscope
KR0129960Y1 (en) Illumination system of tunneling electron microscope