JPS5919622B2 - electronic microscope - Google Patents

electronic microscope

Info

Publication number
JPS5919622B2
JPS5919622B2 JP10568779A JP10568779A JPS5919622B2 JP S5919622 B2 JPS5919622 B2 JP S5919622B2 JP 10568779 A JP10568779 A JP 10568779A JP 10568779 A JP10568779 A JP 10568779A JP S5919622 B2 JPS5919622 B2 JP S5919622B2
Authority
JP
Japan
Prior art keywords
sample
electron beam
scanning
film
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10568779A
Other languages
Japanese (ja)
Other versions
JPS5630243A (en
Inventor
昭成 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP10568779A priority Critical patent/JPS5919622B2/en
Publication of JPS5630243A publication Critical patent/JPS5630243A/en
Publication of JPS5919622B2 publication Critical patent/JPS5919622B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Description

【発明の詳細な説明】 本発明は電子線を試料面上で走査することにより透過電
子顕微鏡像を得るようになした電子顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron microscope that obtains a transmission electron microscope image by scanning an electron beam over a sample surface.

透過型電子顕微鏡において透過電子顕微鏡像を写真撮影
するには、比較的大きいスポット径(数〜数+μm)の
電子線を試料上に照射し、該試料を透過した電子線を対
物レンズ等の結像レンズ系によりフィルム上に拡大結像
させるようになしている。
To photograph a transmission electron microscope image using a transmission electron microscope, an electron beam with a relatively large spot diameter (several to several + micrometers) is irradiated onto the sample, and the electron beam that has passed through the sample is focused through an objective lens, etc. An image lens system is used to form an enlarged image on the film.

一方、電子線を微小径に集束した状態で試料面上を二次
元的に走査し、試料を透過した電子線を拡大レンズ系に
てフィルム上に拡大結像することにより透過電子顕微鏡
像を写真撮影することも周知である。
On the other hand, a transmission electron microscope image is created by scanning the sample surface two-dimensionally with the electron beam focused to a minute diameter, and then magnifying and focusing the electron beam that has passed through the sample onto a film using a magnifying lens system. It is also well known to take pictures.

しかし乍ら斯様な方法において、金属薄膜等の試料を撮
影する際、試料の厚さが一様でない場合や回折条件が異
なる場合には撮影視野内で像の明るさにムラが生じる。
However, in such a method, when photographing a sample such as a thin metal film, if the thickness of the sample is not uniform or the diffraction conditions are different, uneven brightness of the image will occur within the photographic field of view.

そのため焼付の段階で「おおい焼き」をして明るさのム
ラをなくす必要があり、文明るさのムラが大きい場合に
は一視野について露出を変えた多数の写真撮影を行う必
要がある。
Therefore, it is necessary to perform ``oiyaki'' at the printing stage to eliminate unevenness in brightness, and if the unevenness in brightness is large, it is necessary to take multiple photographs with different exposures for one field of view.

従って写真撮影に時間がかかると共に取扱いが非常に厄
介である。
Therefore, it takes time to take a photograph and is very difficult to handle.

又、試料が厚い部分からの信号は信号量そのものが小さ
くなることから、試料の微細構造に関する正味の信号部
分のS/Nが小さくなり、露出を変えた多数回の写真撮
影を行なわなければ試料の微細構造の様子を充分把握す
ることはできなかった。
In addition, since the signal amount itself from the thick part of the sample becomes small, the S/N of the net signal part related to the fine structure of the sample becomes small, and unless the photograph is taken multiple times with different exposures, the sample It was not possible to fully understand the state of the microstructure.

本発明は斯様な不都合を解決することを目的とするもの
で、以下図面に基づき詳説する。
The present invention aims to solve such inconveniences, and will be explained in detail below with reference to the drawings.

第1図は本発明の一実施例を示す構成略図であり、1は
透過型電子顕微鏡の鏡体である。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and 1 is a mirror body of a transmission electron microscope.

2は該鏡体1の上部におかれた電子銃で、該電子銃で発
生した電子線3は集束レンズ4により直径が例えば0.
1〜0.2μm程度の径小径に集束されて試料5上に照
射される。
Reference numeral 2 denotes an electron gun placed above the mirror body 1, and the electron beam 3 generated by the electron gun is focused by a focusing lens 4 to a diameter of, for example, 0.
The sample 5 is irradiated with the beam being focused to a small diameter of about 1 to 0.2 μm.

6は偏向コイルで、走査電源7からの走査信号が走査速
度制御回路8を介して供給されることにより電子線3を
試料5上で二次元的に走査する。
A deflection coil 6 scans the electron beam 3 two-dimensionally over the sample 5 by being supplied with a scanning signal from a scanning power source 7 via a scanning speed control circuit 8 .

9は対物レンズ及び投影レンズ等からなる結像レンズ系
で、試料5を透過した電子線を拡大結像するためのもの
である。
Reference numeral 9 denotes an imaging lens system consisting of an objective lens, a projection lens, etc., which is used to enlarge and image the electron beam that has passed through the sample 5.

10はこの結像面におかれたフィルムで、該フィルムは
適宜な送り機構により未撮影ケース11から撮影位置に
移動せられ、該位置から撮影済ケース12内に移動せら
れる。
Reference numeral 10 denotes a film placed on this imaging plane, and the film is moved from the unphotographed case 11 to the photographing position by an appropriate feeding mechanism, and from this position into the photographed case 12.

今偏向コイル6によって照射電子線3を実線で示す如く
偏向せしめて試料5上の点Pを照射した場合、該点Pよ
り透過した電子は結像レンズ系9によりフィルム10上
の点P′に結像する。
Now, when the irradiation electron beam 3 is deflected by the deflection coil 6 as shown by the solid line to irradiate a point P on the sample 5, the electrons transmitted from the point P are directed to a point P' on the film 10 by the imaging lens system 9. Form an image.

又偏向コイル6により点線で示す如く試料5上のY点に
電子線を照射しているときは、該Y点からの透過電子は
フィルム10上の点Y/に結像する。
Further, when the deflection coil 6 is irradiating an electron beam to a point Y on the sample 5 as shown by a dotted line, the transmitted electrons from the point Y are imaged at a point Y/ on the film 10.

そこで偏向コイル6に走査信号を供給して、試料5上の
一定領域を照射電子線3により走査すると、その各点か
らの透過電子が前述の過程に従って結像し、フィルム1
0上に透過電子顕微鏡像が露光される。
Therefore, when a scanning signal is supplied to the deflection coil 6 and a certain area on the sample 5 is scanned by the irradiated electron beam 3, the transmitted electrons from each point form an image according to the process described above, and the film 1 is
A transmission electron microscope image is exposed on the 0.

又フィルム10の上方に螢光板13をセットすれば透過
電子顕微鏡像を肉眼観察できる。
Furthermore, if a fluorescent plate 13 is set above the film 10, the transmission electron microscope image can be observed with the naked eye.

前記フィルム10を保持するカセット14は撮影位置に
セットされた場合、鏡体1に対して電気的に遮断されて
おり、従ってフィルム10に到達した透過電子を検出す
ることができる。
When the cassette 14 holding the film 10 is set at the photographing position, it is electrically isolated from the mirror body 1, so that transmitted electrons that have reached the film 10 can be detected.

該検出された信号は増巾器15により増巾されてフィル
ター回路16に送られる。
The detected signal is amplified by an amplifier 15 and sent to a filter circuit 16.

該フィルター回路16においては検出信号の内、高い周
波数成分をカットして例えば数〜数十Hz程度の比較的
低い周波数成分のみを通過させるものである。
The filter circuit 16 cuts high frequency components of the detection signal and passes only relatively low frequency components of, for example, several to several tens of Hz.

該フィルター回路16からの低周波成分の信号は差動増
巾器17に送られて基準電源18の基準電圧と比較され
る。
The low frequency component signal from the filter circuit 16 is sent to a differential amplifier 17 and compared with a reference voltage of a reference power supply 18.

該差動増巾器17からの出力信号は前記走査速度制御回
路8に送られ、走査電源7からの走査信号の傾むきを変
化せしめて試料5上の電子線の走査速度を変化させる。
The output signal from the differential amplifier 17 is sent to the scanning speed control circuit 8, which changes the slope of the scanning signal from the scanning power source 7, thereby changing the scanning speed of the electron beam on the sample 5.

斯かる構成において、フィルムのカセット14には照射
電子線の走査に従って試料の各点を透過した電子が検出
されるわけであるが、このとき検出された信号には試料
の構造又は組成に基づく情報と試料の厚みに基づく情報
とが含まれている。
In this configuration, the film cassette 14 detects electrons that have passed through each point of the sample as the irradiated electron beam scans, and the signals detected at this time contain information based on the structure or composition of the sample. and information based on the thickness of the sample.

ここで試料の構造又は組成に基づく情報に関しては高い
周波数成分をもち、又試料の厚みに関しては急激な厚み
の変化がないので、普通の撮影時の照射電子線の走査速
度であれば数〜数十Hz程度の比較的低い周波数成分を
もっている。
Information based on the structure or composition of the sample has high frequency components, and there is no sudden change in the thickness of the sample, so if the scanning speed of the irradiated electron beam during normal imaging is used, the number of It has a relatively low frequency component of about 10 Hz.

従ってフィルター回路16より低周波成分を取り出せば
、試料り厚みに対応した信号となり、この信号を差動増
巾器において予じめ設定した基準値と比較することによ
り試料が厚い場合には照射電子線の走査速度を低くし、
又逆に試料が薄い場合には走査速度を高くすれば終像の
各点における電子線量(電子流密度X時間積)を一定に
保つことができる。
Therefore, if the low frequency component is extracted from the filter circuit 16, it will become a signal corresponding to the thickness of the sample, and by comparing this signal with a preset reference value in a differential amplifier, if the sample is thick, the irradiated electron Lower the line scanning speed,
Conversely, if the sample is thin, the electron dose (electron current density x time product) at each point of the final image can be kept constant by increasing the scanning speed.

その結果試料の厚みの変化による明るさのムラを自動的
に補正することができるため、撮影時間の短縮をはかる
ことができると共に取扱いが非常に容易になる。
As a result, it is possible to automatically correct unevenness in brightness due to changes in the thickness of the sample, making it possible to shorten the imaging time and making handling extremely easy.

又、本発明における装置においては、試料が厚いため、
取り出された低周波成分信号値が小さな場合には、電子
線の走査速度が小さくなるように制御しているため、試
料が厚い部分には充分電子線を照射して、S/Nの高め
られた信号を得、この信号に基づいて試料の微細構造を
表わす像を1回の撮影で得ることができる。
Furthermore, in the apparatus of the present invention, since the sample is thick,
When the extracted low-frequency component signal value is small, the scanning speed of the electron beam is controlled to be small, so the thick part of the sample is sufficiently irradiated with the electron beam to increase the S/N. Based on this signal, an image representing the fine structure of the sample can be obtained in one photographing operation.

尚前述の実施例は本発明の例示であり、実施にあたって
は幾多の変形が考えられる。
It should be noted that the above-described embodiments are merely illustrative of the present invention, and many modifications may be made in implementing the present invention.

例えば試料を透過した電子の検出tこあたってはフィル
ムのカセットに流入する電子を検出する場合について述
べたが、これに限定されることなく、例えば透過電子線
の強度に比例するフィルムからの反射電子線を検出して
もよく、又結像レンズ系により絞り(対物絞り等)に流
入する電子線を検出しても前述と同様な効果を得ること
ができる。
For example, the detection of electrons transmitted through a sample has been described above, but this is not limited to the detection of electrons flowing into a film cassette. The same effect as described above can be obtained by detecting the electron beam, or by detecting the electron beam flowing into the aperture (objective aperture, etc.) using an imaging lens system.

又前述の説明では透過電子顕微鏡像を直接フィルムに露
光させたが、電子線通路上に螢光板を設置し、この螢光
板に到達した透過電子を検出してフィルター回路に送っ
て試料の厚さに対応する信号を取り出すことにより照射
電子線の走査速度を制御するように構成すれば、明るさ
のムラのない透過電子顕微鏡像を肉眼観察することがで
きる。
Furthermore, in the above explanation, the transmission electron microscope image was directly exposed to the film, but a fluorescent plate was installed on the electron beam path, and the transmitted electrons that reached this fluorescent plate were detected and sent to a filter circuit to determine the thickness of the sample. If the scanning speed of the irradiated electron beam is controlled by extracting a signal corresponding to , a transmission electron microscope image with uniform brightness can be observed with the naked eye.

更に本発明を透過型電子顕微鏡に実施した場合について
述べたが、第2図で示すように試料5を透過した電子線
を直接検出器19で検出し、検出された映像信号を増巾
器20を介して照射電子線走査と同期した陰極線管21
に導入して走査像を得るようになした走査型電子顕微鏡
に同様に実施することができる。
Furthermore, we have described the case where the present invention is applied to a transmission electron microscope. As shown in FIG. A cathode ray tube 21 synchronized with the irradiated electron beam scanning via
The same method can be applied to a scanning electron microscope in which a scanning electron microscope is installed to obtain a scanning image.

即ち検出器19で検出された映像信号の中にも試料5の
厚みに関する情報が含まれているため、映像信号の一部
を第1図と同様にフィルター回路16に送り比較的低い
周波数成分つまり試料の厚さに対応する信号を取り出す
ことによって照射電子線の走査速度及び陰極線管21の
電子線の走査速度を試料5の厚さの変化に対応して変化
させれば、陰極線管21に明るさのムラのない透過走査
電子顕微鏡像を観察、又はカメラ23によって写真撮影
することができる。
That is, since the video signal detected by the detector 19 also contains information regarding the thickness of the sample 5, a portion of the video signal is sent to the filter circuit 16 in the same way as in FIG. If the scanning speed of the irradiated electron beam and the scanning speed of the electron beam of the cathode ray tube 21 are changed in accordance with the change in the thickness of the sample 5 by extracting a signal corresponding to the thickness of the sample, the cathode ray tube 21 can be brightened. A transmission scanning electron microscope image with no unevenness can be observed, or a photograph can be taken with the camera 23.

尚第2図中第1図と同一番号は同一構成要素を示し、2
2は陰極線管の偏向コイルである。
Note that the same numbers in Figure 2 as in Figure 1 indicate the same components;
2 is a deflection coil of the cathode ray tube.

【図面の簡単な説明】 第1図は本発明を透過型電子顕微鏡に実施した場合の一
実施例を示す構成略図、第2図は本発明を走査型電子顕
微鏡に実施した場合の一実施例を示す構成略図である。 1:鏡体、2:電子銃、3二電子線、4:集束レンズ、
5:試料、6:偏向コイル、7:走査電源、8二走査速
度制御回路、9二結像レンズ系、10:フィルム、11
:未撮影ケース、12:撮影済ケース、13二螢光板、
14:カセット、15及び20:増巾器、16:フィル
ター回路、17:差動増巾器、18二基準電源、19:
検出器、21:陰極線管、22二偏向コイル。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a schematic diagram showing an embodiment of the present invention in a transmission electron microscope, and Fig. 2 is an embodiment of the invention in a scanning electron microscope. FIG. 1: mirror body, 2: electron gun, 3 two electron beams, 4: focusing lens,
5: Sample, 6: Deflection coil, 7: Scanning power supply, 82 Scanning speed control circuit, 92 Imaging lens system, 10: Film, 11
:Unphotographed case, 12:Photographed case, 132 fluorescent plates,
14: Cassette, 15 and 20: Amplifier, 16: Filter circuit, 17: Differential amplifier, 18 Two reference power supplies, 19:
Detector, 21: cathode ray tube, 22 two deflection coils.

Claims (1)

【特許請求の範囲】[Claims] 1 細く集束された電子線を薄膜試料上に照射し、且つ
この電子線を試料面上で2次元的に走査することにより
透過電子顕微鏡像を得るようになした装置において、前
記試料各点を透過した電子を検出する手段と、該手段で
検出された信号の内、低周波成分を取り出すための手段
と、該手段からの出力信号によって前記電子線の走査速
度を制御するための手段とを備えたこさを特徴とする電
子顕微鳥
1. In an apparatus that obtains a transmission electron microscope image by irradiating a thin film sample with a narrowly focused electron beam and scanning the sample surface two-dimensionally with the electron beam, each point of the sample is A means for detecting transmitted electrons, a means for extracting a low frequency component from a signal detected by the means, and a means for controlling the scanning speed of the electron beam using an output signal from the means. Electron microscopic bird characterized by its small size
JP10568779A 1979-08-20 1979-08-20 electronic microscope Expired JPS5919622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10568779A JPS5919622B2 (en) 1979-08-20 1979-08-20 electronic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10568779A JPS5919622B2 (en) 1979-08-20 1979-08-20 electronic microscope

Publications (2)

Publication Number Publication Date
JPS5630243A JPS5630243A (en) 1981-03-26
JPS5919622B2 true JPS5919622B2 (en) 1984-05-08

Family

ID=14414306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10568779A Expired JPS5919622B2 (en) 1979-08-20 1979-08-20 electronic microscope

Country Status (1)

Country Link
JP (1) JPS5919622B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255133A (en) * 2006-03-24 2007-10-04 Maeda Corp Soil cement preparation device having agitating auxiliary blade

Also Published As

Publication number Publication date
JPS5630243A (en) 1981-03-26

Similar Documents

Publication Publication Date Title
JPH07260713A (en) X-ray camera
US4724319A (en) Image focusing method and apparatus for electron microscope
JPS5919622B2 (en) electronic microscope
US5081354A (en) Method of determining the position of electron beam irradiation and device used in such method
JPS5847826B2 (en) Method of imaging poetry at low magnification using a particle beam device
US6078046A (en) Apparatus for measuring electron beam intensity and electron microscope comprising the same
JPS5919408B2 (en) electronic microscope
JPH05325860A (en) Method for photographing image in scanning electron microscope
US2206415A (en) Method of making electronic photomicrographs
Pease The determination of the area of emission of reflected electrons in a scanning electron microscope
JPH06231716A (en) Ion micro beam device
JPS5824900B2 (en) electronic microscope
Parsons et al. Use of fast X‐ray film for low‐fluence biological electron microscopy at 100 kV and 1000 kV
JPS61237354A (en) Correction of astigmatism of electron microscope
JP2002216696A (en) Electron microscope
JPH0210381B2 (en)
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JPS5834679Y2 (en) Scanning electron microscope
JPS63228559A (en) Electron microscope
JPS61193349A (en) Method of irradiating electron ray in electron microscope
JPS6332220B2 (en)
JPS63123000A (en) Alignment of x ray optical system
GB2066618A (en) Electron microscope image recording system
JP2000106123A (en) Transmission electron microscope
JPS61163550A (en) Electron microscope