JPH04324239A - Objective lens in electron microscope - Google Patents

Objective lens in electron microscope

Info

Publication number
JPH04324239A
JPH04324239A JP3119305A JP11930591A JPH04324239A JP H04324239 A JPH04324239 A JP H04324239A JP 3119305 A JP3119305 A JP 3119305A JP 11930591 A JP11930591 A JP 11930591A JP H04324239 A JPH04324239 A JP H04324239A
Authority
JP
Japan
Prior art keywords
sample
current
magnetic flux
magnetic
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3119305A
Other languages
Japanese (ja)
Other versions
JP3117745B2 (en
Inventor
Toshikazu Honda
本田 敏和
Hisayuki Tsuno
津野 久幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP03119305A priority Critical patent/JP3117745B2/en
Publication of JPH04324239A publication Critical patent/JPH04324239A/en
Application granted granted Critical
Publication of JP3117745B2 publication Critical patent/JP3117745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide an objective lens of an electron microscope enabling observation under a condition where a sample is laid at all times in a non-electric field. CONSTITUTION:A current shifted from a positive focus current I is supplied to a main coil current supply circuit 9 from a main coil current designation circuit 8. The signal representing a value of the current is supplied to a compensation coil current supply circuit 10. When the circuit 10 receives the current signal, it controls the current to be supplied to a compensation coil 5 according to the signal. As a result, in the vicinity of a sample 3 between a magnetic pole pieces 4a and 4c, magnetic flux capable of cancels the leak magnetic flux in the vicinity of the sample 3 is generated, and thus the sample 3 can be observed while the sample 3 is laid under non-magnetic condition at all times.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】  本発明は、磁性体試料をレン
ズ磁界からシールドするようにした電子顕微鏡の対物レ
ンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens for an electron microscope that shields a magnetic sample from a lens magnetic field.

【0002】0002

【従来の技術】  図3は従来の透過電子顕微鏡の対物
レンズを示したものである。図において、1はヨーク、
2は主コイル、3は試料、4a,4b,4cは磁極片、
5は補正コイル、6は主コイル電流供給回路、7は補正
コイル電流供給回路である。
2. Description of the Related Art FIG. 3 shows an objective lens of a conventional transmission electron microscope. In the figure, 1 is a yoke;
2 is the main coil, 3 is the sample, 4a, 4b, 4c are the magnetic pole pieces,
5 is a correction coil, 6 is a main coil current supply circuit, and 7 is a correction coil current supply circuit.

【0003】この様な電子顕微鏡の対物レンズにおいて
、試料像を蛍光板(図示せず)上に結像するのに必要な
電流I1 が前記主コイル電流供給回路6から主コイル
2に供給される。該電流I1 は、前記試料3と蛍光板
間の距離が定まっているため、この距離に応じた特定の
値となる。この電流の供給により、ヨーク1、磁極片4
a,4bを磁路とする磁束が発生する。そして、前記試
料3の周りには図3に示すような方向の漏洩磁束が発生
する。この漏洩磁束は、前記磁極片4aの先端付近の磁
気抵抗が大きい為に発生する。この漏洩磁束により、試
料が鉄鋼などの強磁性体である場合には、電子線照射に
関しては、ビームシフト、傾斜並びに非点収差の発生が
あり、又結像に関しては像の逃げ、光軸のずれ並びに非
点収差による像のぼけを生ずる。そこで、前記補正コイ
ル電流供給回路7から補正コイル5に、該漏洩磁束を相
殺するための電流I2 が供給される。この電流I2 
は、予め実験的に求められた一定の電流である。この電
流の供給により、前記磁極片4aと4c間に前記漏洩磁
束を相殺するのに必要な磁束が発生し、試料近傍が無磁
界となる。その結果、試料が強磁性体であっても、前述
した不具合は生ぜず、良質な像を観察することができる
In the objective lens of such an electron microscope, a current I1 necessary for forming a sample image on a fluorescent screen (not shown) is supplied to the main coil 2 from the main coil current supply circuit 6. Since the distance between the sample 3 and the fluorescent screen is fixed, the current I1 has a specific value depending on this distance. By supplying this current, the yoke 1, the magnetic pole piece 4
A magnetic flux with magnetic paths a and 4b is generated. Then, leakage magnetic flux in the direction shown in FIG. 3 is generated around the sample 3. This leakage magnetic flux is generated because the magnetic resistance near the tip of the magnetic pole piece 4a is large. Due to this leakage magnetic flux, when the sample is a ferromagnetic material such as steel, beam shift, tilt, and astigmatism may occur in electron beam irradiation, and image deviation and optical axis deviation may occur in imaging. This causes blurring of the image due to misalignment and astigmatism. Therefore, a current I2 for canceling out the leakage magnetic flux is supplied from the correction coil current supply circuit 7 to the correction coil 5. This current I2
is a constant current determined experimentally in advance. By supplying this current, magnetic flux necessary to cancel out the leakage magnetic flux is generated between the magnetic pole pieces 4a and 4c, and the vicinity of the sample becomes free of magnetic field. As a result, even if the sample is a ferromagnetic material, the above-mentioned problems do not occur, and a high-quality image can be observed.

【0004】0004

【発明が解決しようとする課題】  さて、前記試料3
の磁区を観察する場合は、試料像の焦点を正焦点から少
し外す事が行われる(ローレンツ顕微鏡法)。該操作は
前記主コイル2に流す電流を正焦点の電流I1 からず
らせばよい。しかし、該電流I1 をずらす事によって
、前記漏洩磁束の強度も変化する。この為、前記補正コ
イル5に前記のように一定の電流I2 を供給しても、
該漏洩磁束を打ち消すような磁束を前記磁極片4aと4
c間に発生させる事はできない。
[Problem to be solved by the invention] Now, the sample 3
When observing magnetic domains, the focus of the sample image is moved slightly away from the positive focus (Lorentz microscopy). This operation can be done by shifting the current flowing through the main coil 2 from the current I1 at the positive focus. However, by shifting the current I1, the intensity of the leakage magnetic flux also changes. Therefore, even if a constant current I2 is supplied to the correction coil 5 as described above,
The magnetic flux that cancels out the leakage magnetic flux is applied to the magnetic pole pieces 4a and 4.
It cannot occur between c.

【0005】本発明はこの様な点に鑑みて成されたもの
で、対物レンズの励磁強度を種々の要請により変化させ
ても、常に試料を無磁界の中に置いた状態で観察するこ
とを可能にする電子顕微鏡の対物レンズを実現すること
を目的としている。
The present invention has been developed in view of these points, and it is possible to observe the sample while always placing it in a non-magnetic field even if the excitation intensity of the objective lens is changed according to various requirements. The aim is to create an objective lens for an electron microscope that makes it possible.

【0006】[0006]

【課題を解決するための手段】  その為に本発明は、
第1,第2の磁極片と、該第1,第2の磁極片間にレン
ズ磁界を形成するための主コイルと、該第1,第2の磁
極片間の外側に配置された試料と、前記レンズ磁界が電
子線通過孔を介して前記試料側に漏洩するのを抑えるた
め前期第1の磁極片に形成された細い電子線通過孔と、
第1の磁極片から試料近傍に漏洩してくる磁束と逆向き
の磁束を生じさせるため前記試料を挾んで第1の磁極片
と対向して設けられた第3の磁極片と、前記逆向きの磁
束を発生するための補正コイルと、前記逆向きの磁束が
前記漏洩磁束と試料近傍において相殺するように前記補
正コイルに供給される励磁電流を前記主コイルへ供給さ
れる励磁電流に応じて制御するための手段を具備した電
子顕微鏡の対物レンズ具備した電子顕微鏡の対物レンズ
を特徴としている。
[Means for solving the problem] To that end, the present invention
first and second magnetic pole pieces, a main coil for forming a lens magnetic field between the first and second magnetic pole pieces, and a sample disposed outside between the first and second magnetic pole pieces. , a thin electron beam passage hole formed in the first magnetic pole piece to suppress leakage of the lens magnetic field to the sample side through the electron beam passage hole;
In order to generate a magnetic flux in the opposite direction to the magnetic flux leaking from the first magnetic pole piece to the vicinity of the sample, a third magnetic pole piece is provided to sandwich the sample and face the first magnetic pole piece, and a third magnetic pole piece is provided in the opposite direction. a correction coil for generating a magnetic flux; and an excitation current supplied to the correction coil in accordance with an excitation current supplied to the main coil so that the magnetic flux in the opposite direction cancels out the leakage magnetic flux near the sample. The present invention features an electron microscope objective having means for controlling the electron microscope objective.

【0007】[0007]

【実施例】  図2は本発明者が実験を何回か繰り返し
行い、主コイル2に流す電流Iと、前記試料3の周りの
洩れ磁束の密度Bとの関係を求めたものである。該漏れ
磁束の密度Bは電流Iの関数B=f(I)として表わさ
れる。
EXAMPLE FIG. 2 shows the relationship between the current I flowing through the main coil 2 and the leakage magnetic flux density B around the sample 3 after repeated experiments by the present inventor several times. The density B of the leakage magnetic flux is expressed as a function B=f(I) of the current I.

【0008】図1は本発明の一実施例として示した透過
電子顕微鏡の対物レンズを示したものである。図中前記
図3と同一番号を付したものは同一構成要素を示す。8
は主コイル電流指定回路、9は主コイル電流供給回路、
10は補正コイル電流供給回路である。補正コイル5は
磁極片4aと4c間に前記漏洩磁束と反対向きの磁束を
発生させるものである。ここで、該補正コイル電流供給
回路10は、前記反対向きの磁束が前記漏洩磁束と試料
近傍で相殺し合うのに必要な電流を補正コイル5の供給
するための回路である。補正コイル電流供給回路10は
、前記関数に基づいて作成された補正コイル電流指定デ
ータを記憶したテーブルを内蔵している。  さて、前
記試料3の磁区を観察する場合、前記主コイル電流指定
回路8から主コイル電流供給回路9に、前記正焦点の電
流I1 からずれた電流を表わす指定信号が供給される
。 そして、主コイル電流供給回路9から主コイル2に該信
号に基づいた電流が供給される。又、該信号は前記補正
コイル電流供給回路10に送られる。該補正コイル電流
供給回路10は、該電流信号を受けると、この電流信号
に基づいて前記テーブルのアドレスを指定し、指定され
たアドレスのデータを読み出す。補正コイル電流供給回
路10は、このデータに基づいて補正コイル5に所定の
励磁電流を供給する。その結果、この場合の試料近傍に
おける漏洩磁束を丁度相殺するだけの磁束が前記磁極片
4aと4c間に発生する。そのため、試料の磁区を観察
する等の場合において、対物レンズの励磁強度を通常の
場合から変化させても、常に試料を無磁界の中において
観察することができる。そのため、磁性試料であっても
常に良質の像を観察することができる。
FIG. 1 shows an objective lens of a transmission electron microscope shown as an embodiment of the present invention. In the figure, the same numbers as in FIG. 3 indicate the same components. 8
9 is the main coil current specification circuit, 9 is the main coil current supply circuit,
10 is a correction coil current supply circuit. The correction coil 5 generates a magnetic flux in the opposite direction to the leakage magnetic flux between the magnetic pole pieces 4a and 4c. Here, the correction coil current supply circuit 10 is a circuit for supplying the correction coil 5 with a current necessary for the magnetic flux in the opposite direction to cancel out the leakage magnetic flux near the sample. The correction coil current supply circuit 10 has a built-in table that stores correction coil current designation data created based on the function. Now, when observing the magnetic domain of the sample 3, the main coil current designation circuit 8 supplies the main coil current supply circuit 9 with a designation signal representing a current that deviates from the current I1 at the positive focus. Then, a current based on the signal is supplied from the main coil current supply circuit 9 to the main coil 2. Further, the signal is sent to the correction coil current supply circuit 10. When the correction coil current supply circuit 10 receives the current signal, it specifies the address of the table based on the current signal and reads out the data at the specified address. The correction coil current supply circuit 10 supplies a predetermined excitation current to the correction coil 5 based on this data. As a result, magnetic flux is generated between the magnetic pole pieces 4a and 4c just enough to cancel out the leakage magnetic flux near the sample in this case. Therefore, in cases such as observing the magnetic domains of a sample, even if the excitation intensity of the objective lens is changed from the normal case, the sample can always be observed in the absence of a magnetic field. Therefore, high-quality images can always be observed even with magnetic samples.

【0009】尚、上述した実施例においては、補正コイ
ルに供給する電流を主コイルに供給する電流に応じて制
御するため、補正コイル電流指定データを記憶したテー
ブルを用いるようにしたが、前記関数B=f(I)に対
応した演算式から補正コイルに供給する電流を求めるプ
ログラムを記憶させておき、このプログラムにより補正
電流を制御するようにしても良い。
In the above-described embodiment, a table storing correction coil current designation data is used in order to control the current supplied to the correction coil in accordance with the current supplied to the main coil. A program for determining the current to be supplied to the correction coil from an arithmetic expression corresponding to B=f(I) may be stored, and the correction current may be controlled by this program.

【0010】更に又、本発明は、対物レンズの励磁電流
を例えば加速電圧に応じて変化させる場合にも同様に適
用できる。
Furthermore, the present invention can be similarly applied to the case where the excitation current of the objective lens is changed depending on, for example, the accelerating voltage.

【0011】[0011]

【発明の効果】  本発明は、第1,第2の磁極片と、
該第1,第2の磁極片間にレンズ磁界を形成するための
主コイルと、該第1,第2の磁極片間の外側に配置され
た試料と、前記レンズ磁界が電子線通過孔を介して前記
試料側に漏洩するのを抑えるため前期第1の磁極片に形
成された細い電子線通過孔と、第1の磁極片から試料近
傍に漏洩してくる磁束と逆向きの磁束を生じさせるため
前記試料を挾んで第1の磁極片と対向して設けられた第
3の磁極片と、前記逆向きの磁束を発生するための補正
コイルと、前記逆向きの磁束が前記漏洩磁束と試料近傍
において相殺するように前記補正コイルに供給される励
磁電流を前記主コイルへ供給される励磁電流に応じて制
御するための手段を具備するようにしたため、に配置さ
れた試料と、第1の磁極片から試料の近傍に漏洩してく
る磁束と反対向きの磁束を前記第2のギャップ間に発生
させるための補正コイルと、該補正コイルの励磁に基づ
いて発生する磁束が前記漏洩磁束と試料近傍において相
殺するように前記主コイルへ供給される励磁電流に応じ
て前記補正コイルに供給される励磁電流を制御するため
の手段を具備したため、対物レンズの励磁電流を種々変
化させた場合にも、常に試料を無磁界の中に置いて、磁
化の影響のない良質な像を観察することができる。
[Effects of the Invention] The present invention provides first and second magnetic pole pieces;
A main coil for forming a lens magnetic field between the first and second magnetic pole pieces, a sample placed outside between the first and second magnetic pole pieces, and a main coil for forming a lens magnetic field between the first and second magnetic pole pieces, and a main coil for forming a lens magnetic field between the first and second magnetic pole pieces. A thin electron beam passing hole is formed in the first magnetic pole piece to suppress leakage to the sample side through the electron beam, and a magnetic flux is generated in the opposite direction to the magnetic flux leaking from the first magnetic pole piece to the vicinity of the sample. A third magnetic pole piece is provided to sandwich the sample and face the first magnetic pole piece, and a correction coil is provided to generate the magnetic flux in the opposite direction, and the magnetic flux in the opposite direction is connected to the leakage magnetic flux. Since the device is provided with means for controlling the excitation current supplied to the correction coil in accordance with the excitation current supplied to the main coil so as to cancel each other in the vicinity of the sample, the first a correction coil for generating a magnetic flux in the opposite direction to the magnetic flux leaking from the magnetic pole piece to the vicinity of the sample between the second gaps, and a magnetic flux generated based on the excitation of the correction coil that is the leakage magnetic flux. Since the device is equipped with a means for controlling the excitation current supplied to the correction coil according to the excitation current supplied to the main coil so as to cancel each other in the vicinity of the sample, when the excitation current of the objective lens is variously changed, However, by always placing the sample in a non-magnetic field, it is possible to observe high-quality images without the influence of magnetization.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例として示した透過電子顕
微鏡の対物レンズを示したものである。
FIG. 1 shows an objective lens of a transmission electron microscope shown as an embodiment of the present invention.

【図2】  主コイルに流す電流と、試料の周りにでき
る漏洩磁束の関係を示したものである。
FIG. 2 shows the relationship between the current flowing through the main coil and the leakage magnetic flux generated around the sample.

【図3】  従来の透過電子顕微鏡の対物レンズを示し
たものである。
FIG. 3 shows an objective lens of a conventional transmission electron microscope.

【符号の説明】[Explanation of symbols]

1…ヨーク、2…主コイル、3…試料、4a,4b,4
c…磁極片、5…補正コイル、6…主コイル電流供給回
路、7…補正コイル電流供給回路、8…主コイル電流指
定回路、9…主コイル電流供給回路、10…補正コイル
電流供給回路
1... Yoke, 2... Main coil, 3... Sample, 4a, 4b, 4
c... Magnetic pole piece, 5... Correction coil, 6... Main coil current supply circuit, 7... Correction coil current supply circuit, 8... Main coil current specification circuit, 9... Main coil current supply circuit, 10... Correction coil current supply circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  第1,第2の磁極片と、該第1,第2
の磁極片間にレンズ磁界を形成するための主コイルと、
該第1,第2の磁極片間の外側に配置された試料と、前
記レンズ磁界が電子線通過孔を介して前記試料側に漏洩
するのを抑えるため前期第1の磁極片に形成された細い
電子線通過孔と、第1の磁極片から試料近傍に漏洩して
くる磁束と逆向きの磁束を生じさせるため前記試料を挾
んで第1の磁極片と対向して設けられた第3の磁極片と
、前記逆向きの磁束を発生するための補正コイルと、前
記逆向きの磁束が前記漏洩磁束と試料近傍において相殺
するように前記補正コイルに供給される励磁電流を前記
主コイルへ供給される励磁電流に応じて制御するための
手段を具備した電子顕微鏡の対物レンズ。
Claim 1: First and second magnetic pole pieces;
a main coil for forming a lens magnetic field between the magnetic pole pieces of the
The sample is placed outside between the first and second magnetic pole pieces, and the lens is formed on the first magnetic pole piece in order to prevent the magnetic field from leaking to the sample side through the electron beam passage hole. a thin electron beam passage hole, and a third magnetic pole piece provided opposite to the first magnetic pole piece to sandwich the sample in order to generate a magnetic flux in the opposite direction to the magnetic flux leaking from the first magnetic pole piece to the vicinity of the sample. a magnetic pole piece, a correction coil for generating the magnetic flux in the opposite direction, and an excitation current supplied to the correction coil to the main coil so that the magnetic flux in the opposite direction cancels out the leakage magnetic flux in the vicinity of the sample. An objective lens for an electron microscope equipped with means for controlling according to an excitation current.
JP03119305A 1991-04-23 1991-04-23 Objective lens in transmission electron microscope Expired - Fee Related JP3117745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03119305A JP3117745B2 (en) 1991-04-23 1991-04-23 Objective lens in transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03119305A JP3117745B2 (en) 1991-04-23 1991-04-23 Objective lens in transmission electron microscope

Publications (2)

Publication Number Publication Date
JPH04324239A true JPH04324239A (en) 1992-11-13
JP3117745B2 JP3117745B2 (en) 2000-12-18

Family

ID=14758140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03119305A Expired - Fee Related JP3117745B2 (en) 1991-04-23 1991-04-23 Objective lens in transmission electron microscope

Country Status (1)

Country Link
JP (1) JP3117745B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162418A (en) * 2014-02-28 2015-09-07 日本電子株式会社 transmission electron microscope
WO2018189850A1 (en) * 2017-04-13 2018-10-18 株式会社 日立ハイテクノロジーズ Electron microscope

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061076A (en) * 2012-09-20 2014-04-10 Showa Gakubuchi Co Ltd Picture frame
KR200480596Y1 (en) 2014-06-03 2016-06-13 이경순 Frame for award

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162418A (en) * 2014-02-28 2015-09-07 日本電子株式会社 transmission electron microscope
WO2018189850A1 (en) * 2017-04-13 2018-10-18 株式会社 日立ハイテクノロジーズ Electron microscope

Also Published As

Publication number Publication date
JP3117745B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
JP6173862B2 (en) electronic microscope
JPH04324239A (en) Objective lens in electron microscope
US10224173B2 (en) Objective lens and transmission electron microscope
US6720558B2 (en) Transmission electron microscope equipped with energy filter
WO2019043946A1 (en) Charged particle beam device
JPH03134944A (en) Electron beam device
US4283627A (en) Electron microscope
JPH05251028A (en) Electron microscope provided with x-ray analyzer
US3978338A (en) Illumination system in a scanning electron microscope
JP2005032588A (en) Magnetic field objective lens for electron microscope
JP2011003533A (en) Magnetic domain imaging system
JP4676209B2 (en) Electron lens and charged particle beam apparatus using the same
JP3515273B2 (en) electronic microscope
JP2008053121A (en) Magnetic shield apparatus and magnetic shielding method
JP6473015B2 (en) Electron microscope and sample observation method using the same
JPH05128986A (en) Magnetic field type lens
JPS5825049A (en) Electron microscope
JPS605503Y2 (en) Transmission scanning electron microscope
JP2839683B2 (en) Foucault electron microscope
JPS6324618Y2 (en)
JPS59201352A (en) Recording and displaying device of observation visual-field in electron microscope
JPS589545B2 (en) How to get the most out of your day
JPH04334858A (en) Observation mode switch-over method for transmission type electron microscope
JPS58214257A (en) Magnetic domain observation device for electron microscope and the like
JPH0422054A (en) Objective lens of transmission type electron microscope

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees