JPS6255926A - Forming method of electrode of semiconductor device - Google Patents

Forming method of electrode of semiconductor device

Info

Publication number
JPS6255926A
JPS6255926A JP19633185A JP19633185A JPS6255926A JP S6255926 A JPS6255926 A JP S6255926A JP 19633185 A JP19633185 A JP 19633185A JP 19633185 A JP19633185 A JP 19633185A JP S6255926 A JPS6255926 A JP S6255926A
Authority
JP
Japan
Prior art keywords
film
vapor deposition
region
photoresist
photoresist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19633185A
Other languages
Japanese (ja)
Inventor
Hideaki Nagura
名倉 英明
Takashi Morifuchi
森渕 孝
Masami Yokozawa
横沢 真覩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP19633185A priority Critical patent/JPS6255926A/en
Publication of JPS6255926A publication Critical patent/JPS6255926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To facilitate the removal of an unnecessary metal film and to improve the operability of manufacture by a method wherein the speed of vapor deposition of a metal film is kept high in the former stage and low in the latter stage when the metal film is formed on the region of a semiconductor substrate inside an opening of a photoresist film. CONSTITUTION:A collector region 2 is formed on the back side of an Si substrate 1, and a base region 4 is formed on the front side thereof, while an emitter region 5 is formed inside the region 4. Thereafter an Si oxide film 3 is formed, a photoresist film 7 is stuck thereon, and those portions of the films 3 and 7 corresponding to the regions 4 and 5 respectively are opened to form respective openings 8 and 9. Next, an Al film 10 is formed with vapor deposition on the surface of the film 7 and in the regions 4 and 5 inside the openings 8 and 9. Then, the film 7 is removed, and a base electrode 12 and an emitter electrode 11 are formed. When the film 10 is formed by vapor deposition in the above-stated process, the speed of vapor deposition is expedited in the initial stage of vapor deposition, and thereby it is made possible to impede the nucleation on the substrate 1 and thus to obtain a desired film thickness. The speed of vapor deposition is slowed down in the latter stage of vapor deposition. Thereby the unevenness of the surface of the film 10 is reduced, and thus wire bonding in a process of fabricating a semiconductor element is facilitated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の電極形成方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming electrodes of semiconductor devices.

従来の技術 従来から所定の拡散が終了した半導体基板にホトレジス
トをマスクとして窓明けを行ない、ホトレジストを残し
たままりフトオフ技術によって窓内部の半導体基板に電
極形成を行なっている。
BACKGROUND OF THE INVENTION Conventionally, a window is opened in a semiconductor substrate after a predetermined diffusion process using a photoresist as a mask, and electrodes are formed on the semiconductor substrate inside the window by a lift-off technique while leaving the photoresist.

従来のリフトオフ技術では、ホトレジストを残したまま
一定の蒸着スピード(20人/秒)でAQを蒸着する際
、■レジスト膜厚を厚くしたり、■Aρの蒸着が完了し
た後、アンモニアと水の混合液を70℃にボイルし、形
成した/l膜の一部をエツチングするといった方法でホ
トレジストと不要のへρ膜を容易に除去できるようにし
ていた。
With conventional lift-off technology, when depositing AQ at a constant deposition speed (20 people/second) while leaving the photoresist, it is necessary to: ■ increase the resist film thickness, and ■ add ammonia and water after the deposition of Aρ is completed. The photoresist and unnecessary ρ film were easily removed by boiling the mixed solution at 70° C. and etching a portion of the formed /l film.

発明が解決しようとする問題点 しかしながら■の方法では、ホトレジストを必要以上に
厚くする(〉5μ以上)必要があり、パターン精度が悪
く、近年半導体素子に要求される微細化パターン、高集
積化等には利用できない欠点があった。又、■の方法で
は、へΩ膜の一部をエツチングする際、エツチングのば
らつきが生じ、所定のAρ膜厚を得ることができなかっ
たり、エツチング液にへΩ表面が酸化し、半導体素子の
組立工程において、外部リードに引き出すためのワイヤ
ポンド工程でAAワイヤがうまくボンディングされない
といった欠点を有していた。
Problems to be Solved by the Invention However, in the method (2), it is necessary to make the photoresist thicker than necessary (>5μ or more), resulting in poor pattern accuracy and the need for finer patterns, higher integration, etc., which are required for semiconductor devices in recent years. had the disadvantage of not being available. In addition, in method (2), when a part of the Aρ film is etched, variations in etching occur, making it impossible to obtain a predetermined Aρ film thickness, or the etching solution oxidizes the Aρ surface, causing damage to the semiconductor element. In the assembly process, the AA wire was not properly bonded in the wire bonding process for drawing out to the external lead.

本光明はこのような問題点を解決するもので、リフトオ
フ性の向上を図り、且つ製造作業性の向上を図ることを
目的とづるものである。
The present invention is intended to solve these problems, and aims to improve lift-off properties and improve manufacturing workability.

問題点を解決するための手段 この問題点を解決するために本発明は、半導体基板に所
望の形のPN接合を形成した後、前記半導体基板の表面
にホトレジスト膜を付着し、このホトレジスト膜の前記
PN接合を形成する夫々の導電型領域に対応づる部分の
一部を開孔し、前記ホトレジスト膜面上と前記開孔内部
の半導体基板上に金属膜を蒸着し、その後ホトレジスト
膜面上の金属膜をホトレジスト膜を蝕刻すると共に除去
し、前記開孔内部の半導体基板に金R膜を形成する際に
、前記金属V!蒸看工程を2つ以上の段階に分け、金l
i%膜の黒石速度を萌段階で大きくし、後段階で小さく
するものである。
Means for Solving the Problem In order to solve this problem, the present invention forms a PN junction of a desired shape on a semiconductor substrate, then attaches a photoresist film to the surface of the semiconductor substrate, and then deposits a photoresist film on the surface of the semiconductor substrate. A hole is formed in a portion corresponding to each conductivity type region forming the PN junction, a metal film is deposited on the photoresist film surface and on the semiconductor substrate inside the hole, and then a metal film is deposited on the photoresist film surface and on the semiconductor substrate inside the hole. When removing the metal film by etching the photoresist film and forming a gold R film on the semiconductor substrate inside the opening, the metal V! Dividing the steaming process into two or more stages,
The black stone velocity of the i% film is increased in the budding stage and decreased in the later stage.

作用 この構成により、半導体基板への電極形成の作業性の向
上を図ることができる。
Function: With this configuration, it is possible to improve the workability of forming electrodes on a semiconductor substrate.

実施例 以上、本発明の一実施例について、図面に基づいて説明
する。
Embodiment An embodiment of the present invention will now be described based on the drawings.

第1図にnpnパワートランジスタの電極形成方法の実
施例を示し、先ず(a)図に示すようにシリコン基板1
の裏面側よりN”層を拡散してコレクタ領域2を形成し
、次に表面側よりP“層を拡散してベース領域4を形成
し、このベース領域4内とシリコン基板1内にN”層を
拡散してエミッタ領域5とチャンネルストッパ領域6を
形成する。
FIG. 1 shows an example of a method for forming electrodes of an npn power transistor. First, as shown in FIG.
A collector region 2 is formed by diffusing an N'' layer from the back side of the substrate, a base region 4 is formed by diffusing a P'' layer from the front side, and an N'' layer is diffused into this base region 4 and into the silicon substrate 1. The layers are diffused to form emitter regions 5 and channel stop regions 6.

このようにしてnpnパワートランジスタに必要なPN
接合を形成した後、シリコン基板1の表面にPN接合保
護用のシリコン酸化膜3を形成し、その上にホトレジス
ト膜7を付着し、ベース領域4及びエミッタ領域5に夫
々対応するシリコン酸化膜3とホトレジストv7の一部
を開孔する。8゜9は開孔部である。次に(b)図に示
すように、ホトレジスト膜7の向上と開孔部8,9の内
部のベース領域4とエミッタ領域5上に真空黒石法でへ
ρ膜10を蒸着する。次に(C)図に示すように、ホト
レジスト膜7の面上のAn膜10をホトレジスト膜7を
蝕刻すると共に除去し、ベース電極12とエミッタ電極
11を形成し、更に前記=ルクタ領域2の裏面に金属膜
を付着してコレクタ電極13を形成する。−F記のベー
ス電極12と1ミツタ電#111を形成するAΩΩ蒸成
膜蒸着速度の負形的なプログラムは第2図(a)に示す
ように2段階になっており、従ってその30000人の
膜厚の構造も第2図(b)に示すように28000人と
2000人の2層構造になっている。即ち、AQ蒸着の
初期は蒸rJ速度を60人/秒と早くすることにより、
基板上での核生成を妨げ、所望のAQ膜厚を得る。へΩ
蒸者の後期は熱着速度を遅くすることでAU膜表面の凹
凸を減少し、半導体素子の組立工程におけるAρのワイ
ヤボンドを容易にづる。Aρ蒸菅の初期では基板上での
核生成を妨げることで、シリコン酸化膜、ホトレジスト
とシリコン基板間の段差部のステップカバレージが悪化
し、リフトオフ技術(ホトレジストと不要なAR映を硝
酸d=1.52で同時に除去する技術)が容易になる。
In this way, the PN required for an npn power transistor is
After forming the junction, a silicon oxide film 3 for protecting the PN junction is formed on the surface of the silicon substrate 1, a photoresist film 7 is attached thereon, and the silicon oxide film 3 is formed on the base region 4 and the emitter region 5, respectively. Then, a part of the photoresist v7 is opened. 8°9 is an opening. Next, as shown in FIG. 3B, a ρ film 10 is deposited on the photoresist film 7 and on the base region 4 and emitter region 5 inside the openings 8 and 9 by vacuum Kuroishi method. Next, as shown in FIG. A collector electrode 13 is formed by attaching a metal film to the back surface. - The negative program of the AΩΩ vapor deposition rate to form the base electrode 12 and the 1 Mitsuta electrode #111 described in F is in two stages as shown in Fig. 2(a), and therefore the 30,000 people The film thickness structure is also a two-layer structure of 28,000 and 2,000 layers, as shown in FIG. 2(b). That is, at the beginning of AQ deposition, by increasing the evaporation rate to 60 people/second,
Nucleation on the substrate is prevented to obtain the desired AQ film thickness. ToΩ
The latter stage of the evaporation process reduces the unevenness of the AU film surface by slowing down the heat deposition rate, making it easier to wire bond Aρ in the semiconductor device assembly process. In the early stage of Aρ vaporization, step coverage of the stepped portion between the silicon oxide film, photoresist and silicon substrate is deteriorated by preventing nucleation on the substrate, and lift-off technology (removal of photoresist and unnecessary AR images with nitric acid d = 1 .52 technology for simultaneous removal) becomes easier.

即ち、第1図(b)に示すステップカバレージ部14を
更に詳細に示した第4図において、(b)図に示す従来
法ではステップカバレージ特性が良好なためにホトレジ
ストWA7のエツジが/l膜10で覆われているため、
ホトレジスト膜7のエツチング液が浸入し難く、リフト
オフし難いのに対して、(a)図に示ず本発明の方法で
はステップカバレージ特性が悪いためにホトレジスト膜
7のエツジの一部がへρ膜10で覆われずに露出してい
るためにホトレジスト膜7のエツチング液が浸入し易く
、リフトオフし易い。
That is, in FIG. 4, which shows the step coverage section 14 shown in FIG. 1(b) in more detail, in the conventional method shown in FIG. 1(b), the edge of the photoresist WA7 is Because it is covered by 10,
The etching solution of the photoresist film 7 is difficult to penetrate and is difficult to lift off, whereas (a) (not shown in the figure) in the method of the present invention, a part of the edge of the photoresist film 7 becomes a ρ film due to poor step coverage characteristics. Since the photoresist film 7 is exposed without being covered with the photoresist film 10, the etching solution for the photoresist film 7 easily penetrates into the photoresist film 7, making it easy to lift off.

リフトオフ技術に必要な蒸着条件を第3図に示す。即ち
、初期の蒸着速度によって決まり、第3図には3μlの
AΩ膜厚を形成する際の蒸着速度に対するリフトオフの
容易性と組立ワイせボンド性(10人/秒を100とし
た)を示した。図かられかるように、蒸着速度を大きく
すればリフトオフ性は良化−ケるが、組立ワイヤボンド
性が悪くなる。
The deposition conditions necessary for the lift-off technique are shown in Figure 3. In other words, it is determined by the initial deposition rate, and Figure 3 shows the ease of lift-off and assembly-width bondability (10 people/second is taken as 100) against the deposition rate when forming an AΩ film thickness of 3 μl. . As can be seen from the figure, increasing the deposition rate improves lift-off properties, but deteriorates assembly wire bonding properties.

そこで蒸着初期の蒸着速度を早くすることでリフトオフ
技術を容易にし、一定の厚みをjqる。その後は組立工
程におけるワイヤボンド性を良くするために、蒸着速度
を小さり(10人/秒)しC1所望の膜厚を得るごとに
本発明の特徴がある。前述の実施例ではAΩΩ看者2段
階に分けて説明したが、3段階又は4段階に分け、初段
階の蒸着速度を大きく、後段階の蒸着速度を小さくして
も同様の効果が得られる。
Therefore, by increasing the deposition rate at the initial stage of deposition, the lift-off technique is facilitated and a constant thickness can be achieved. Thereafter, in order to improve wire bonding properties in the assembly process, the deposition rate is reduced (10 people/sec) to obtain the desired film thickness of C1, which is a feature of the present invention. In the above-mentioned embodiment, the AΩΩ viewer was explained in two stages, but the same effect can be obtained by dividing the AΩΩ monitor into three or four stages, increasing the deposition rate in the first stage and decreasing the deposition rate in the latter stage.

光明の効果 以上のJ、うに本発明によれば、第1図に示づ−ような
npnパワートランジスタに適用した場合、一定の蒸着
速度で蒸着した従来法に比べ、ホトレジスト、シリコン
酸化膜とシリコン基板間のステップカバレージを悪化さ
せ、リフトオフ性は一段と向上する。又、本弁明法とA
IQの一部をエツチングしてす71−オフ技術を容易に
して形成し、た従来法によるパワートランジスタのエミ
ッタ・ベース間の逆方向耐ff分布を第5図に示してお
り、同図から明らかなように、本発明法によれば不要な
へΩ税の除去が容易になり、製造歩留の向1−伎び製造
プロセスの簡素化等を図ることができる。
According to the present invention, when applied to an NPN power transistor as shown in FIG. 1, the photoresist, silicon oxide film and silicon Step coverage between substrates is deteriorated, and lift-off performance is further improved. Also, this defense law and A
Figure 5 shows the reverse resistance ff distribution between the emitter and base of a power transistor formed by etching a part of the IQ to facilitate the 71-off technology, and it is clear from the figure. As described above, according to the method of the present invention, it is possible to easily eliminate unnecessary Ω taxes, improve manufacturing yield, and simplify the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図(a)〜
(C)は本発明法によるnpnパワートランジスタの製
造工程図、第2図(a)及び(b)はAρ蒸蒸着度のプ
ログラム図及び蒸着層の断面図、第3図はリフトオフの
容易性及びワイヤボンド性と蒸@速度との関係を示すグ
ラフ、第4図(a)及び(b)は段差部にAρ蒸菅を形
成した場合の本発明と従来例の形状比較図、第5図はエ
ミッタ・ベース間の逆方向耐圧分布の本発明と従来例の
比較図である。 1・・・シリコン基板、2・・・コレクタ領域、3・・
−シリコン酸化膜、4・・・ベース領域、5・−・エミ
ッタ領域、6・・・チャンネルストッパ領域、7・・・
ホトレジスト膜、8.9・・・開孔部、10・・・Aρ
膜、11・・・エミッタ電極、12・・・ベース電極、
13・・・コレクタ電極、14・・・ステップカバレー
ジ部 代理人   森  本  義  弘 II1図 第2図 Ctl−’)       (b) 第3図 第4図 第S図
The drawings show one embodiment of the present invention, and FIGS.
(C) is a manufacturing process diagram of an npn power transistor according to the method of the present invention, FIGS. 2(a) and (b) are a program diagram of the Aρ deposition degree and a cross-sectional view of the deposited layer, and FIG. 3 is a diagram showing the ease of lift-off and A graph showing the relationship between wire bonding properties and steaming speed. Figures 4 (a) and (b) are shape comparison diagrams of the present invention and a conventional example when an Aρ steaming tube is formed at the stepped portion. Figure 5 is a graph showing the relationship between wire bonding properties and steaming speed. FIG. 3 is a comparison diagram of the reverse breakdown voltage distribution between the emitter and base of the present invention and a conventional example. 1... Silicon substrate, 2... Collector region, 3...
- silicon oxide film, 4... base region, 5... emitter region, 6... channel stopper region, 7...
Photoresist film, 8.9... Opening part, 10... Aρ
film, 11... emitter electrode, 12... base electrode,
13... Collector electrode, 14... Step coverage department representative Yoshihiro Morimoto II 1 Figure 2 Ctl-') (b) Figure 3 Figure 4 Figure S

Claims (1)

【特許請求の範囲】 1、半導体基板に所望の形のPN接合を形成した後、前
記半導体基板の表面にホトレジスト膜を付着し、このホ
トレジスト膜の前記PN接合を形成する夫々の導電型領
域に対応する部分の一部を開孔し、前記ホトレジスト膜
面上と前記開孔内部の半導体基板上に金属膜を蒸着し、
その後ホトレジスト膜面上の金属膜をホトレジスト膜を
蝕刻すると共に除去し、前記開孔内部の半導体基板に金
属膜を形成する際に、前記金属膜蒸着工程を2つ以上の
段階に分け、金属膜の蒸着速度を前段階で大きくし、後
段階で小さくする半導体装置の電極形成方法。 2、金属蒸着膜がAlであり、前段階のAl蒸着速度を
50Å/秒以上にした特許請求の範囲第1項記載の半導
体装置の電極形成方法。
[Claims] 1. After forming a PN junction in a desired shape on a semiconductor substrate, a photoresist film is attached to the surface of the semiconductor substrate, and each conductivity type region of the photoresist film where the PN junction is formed is A hole is formed in a part of the corresponding portion, and a metal film is deposited on the surface of the photoresist film and on the semiconductor substrate inside the hole,
Thereafter, the metal film on the surface of the photoresist film is removed by etching the photoresist film, and when forming a metal film on the semiconductor substrate inside the opening, the metal film deposition process is divided into two or more stages, and the metal film is removed by etching the photoresist film. A method for forming electrodes for semiconductor devices in which the deposition rate is increased in the first step and decreased in the second step. 2. The method of forming an electrode for a semiconductor device according to claim 1, wherein the metal vapor deposition film is Al, and the Al vapor deposition rate in the previous step is 50 Å/sec or more.
JP19633185A 1985-09-05 1985-09-05 Forming method of electrode of semiconductor device Pending JPS6255926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19633185A JPS6255926A (en) 1985-09-05 1985-09-05 Forming method of electrode of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19633185A JPS6255926A (en) 1985-09-05 1985-09-05 Forming method of electrode of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6255926A true JPS6255926A (en) 1987-03-11

Family

ID=16356046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19633185A Pending JPS6255926A (en) 1985-09-05 1985-09-05 Forming method of electrode of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6255926A (en)

Similar Documents

Publication Publication Date Title
JPS62160763A (en) Manufacture of semiconductor device in which metal film withthick contact electrode is provided on semiconductor
JPS6255926A (en) Forming method of electrode of semiconductor device
JPS5912021B2 (en) Manufacturing method of semiconductor device
JPS641064B2 (en)
JP2554339B2 (en) Semiconductor device and manufacturing method thereof
JPS5933271B2 (en) Manufacturing method of semiconductor device
JPS61296741A (en) Manufacture of semiconductor device
JPS63208270A (en) Semiconductor device and manufacture thereof
JPS6125217B2 (en)
JPS5910274A (en) Mis type semiconductor device
JP2688609B2 (en) Method for manufacturing semiconductor device
JPS6084812A (en) Manufacture of transistor
JPS5984468A (en) Semiconductor device
JPS643068B2 (en)
JPS6255927A (en) Forming method of electrode wiring of semiconductor device
JPS5923101B2 (en) Manufacturing method of semiconductor device
JPH01244667A (en) Manufacture of gallium arsenide field effect transistor
JPS5910260A (en) Integrated injection logical circuit
JPS61108162A (en) Semiconductor device and manufacture thereof
JPS59145571A (en) Manufacture of semiconductor device
JPS6184831A (en) Manufacture of semiconductor device
JPS6212663B2 (en)
JPH05235018A (en) Manufacture of semiconductor device
JPS6294980A (en) Formation of schottky electrode
JPS62118582A (en) Manufacture of semiconductor device