JPS61296741A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61296741A
JPS61296741A JP13872085A JP13872085A JPS61296741A JP S61296741 A JPS61296741 A JP S61296741A JP 13872085 A JP13872085 A JP 13872085A JP 13872085 A JP13872085 A JP 13872085A JP S61296741 A JPS61296741 A JP S61296741A
Authority
JP
Japan
Prior art keywords
oxide film
silicon
nitride film
silicon nitride
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13872085A
Other languages
Japanese (ja)
Inventor
Takayuki Kamiya
孝行 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13872085A priority Critical patent/JPS61296741A/en
Publication of JPS61296741A publication Critical patent/JPS61296741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To keep the intrusion of the bird's beak short without producing defective crystal by making the thickness of the silicon oxide film buffer layer thinner at the circumference of an active layer smaller than that at the internal section. CONSTITUTION:After the first silicon oxide film buffer layer 2 and the first silicon nitride film 3 are formed on an N-type silicon substrate 1, the first silicon nitride film 3 where a separation oxide film is to be formed is removed, and the silicon oxide film 2 is wet-etched to side-etch the first silicon nitride film, which is left in a insular-shape, from the end to the outside. The surface of the exposed silicon substrate 1 is oxidized again to form the second silicon oxide film buffer layer 4. The second cilicon nitride film 5 is deposited on the whole surface, and then only the second silicon nitride film 5 that is exposed on the flat surface is removed by anisotropy dray etching method. At this time, the silicon oxide film buffer layer is thin around the active layer and thick inside. If a separation oxide film 6 is formed approx. 1mum in this state, the intrusion of the bird's beak can be kept within 5,000Angstrom .

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明に酸化膜絶縁分離を用いる高集積度の半導体装置
に関し、特に1μ惧程度の比較的厚い分離酸化膜を形成
するバイポーラ型集積回路装置の製造方法に関する。。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to highly integrated semiconductor devices using oxide film isolation, particularly bipolar integrated circuit devices in which a relatively thick isolation oxide film of about 1 μm is formed. Relating to a manufacturing method. .

〔従来の技術〕[Conventional technology]

現在、バイポーラS積回路においてに、酸化膜分離方法
が絶縁分離VC要する面積がpn接合分離に比べて少な
く、素子の高集積化に有利であるため、絶縁分離手段と
して多用されている。従来、この酸化膜分離の形成技術
としては第2図に示す方法が通常である。すなわち第2
図(5)に示す如く、シリコン基板1の主面上にシリコ
ン酸化膜バッファ層2及び窒化7リコン膜3t−形成し
、写真食刻工程を用いて分離酸化膜を形成すべき領域の
窒化シリコン膜3を除去する。続いて第2図■に示す如
く、活性領域上に島状に残した窒化シリコン膜3をマス
クとして酸化を行ない、分離酸化膜6を形成する。ここ
で、1μ慣の厚さの分離酸化膜6を形成する場合には、
酸化のマスクとして窒化シリコン膜3の厚さは300人
程変心れば良いが、ピンホール等を防ぐために1000
λ程度の膜厚を用いるのが普通である。また高温での酸
化時にシリコン窒化膜3がシリコン基板1に及ぼす応力
を緩和する為にシリコン酸化膜2の膜厚は例えば500
λを用いる。
Currently, in bipolar S-product circuits, the oxide film isolation method is widely used as an isolation means because the area required for isolation VC is smaller than that of pn junction isolation, and it is advantageous for higher integration of elements. Conventionally, the method shown in FIG. 2 has been the usual technique for forming this oxide film separation. That is, the second
As shown in FIG. 5, a silicon oxide film buffer layer 2 and a silicon nitride film 3t are formed on the main surface of a silicon substrate 1, and a silicon nitride film is formed in a region where an isolation oxide film is to be formed using a photolithography process. Remove membrane 3. Subsequently, as shown in FIG. 2 (2), oxidation is performed using the silicon nitride film 3 left in an island shape on the active region as a mask to form an isolation oxide film 6. Here, when forming the isolation oxide film 6 with a thickness of 1μ,
The thickness of the silicon nitride film 3 as a mask for oxidation should be about 300 mm thick, but it should be 1000 mm thick to prevent pinholes etc.
Usually, a film thickness of about λ is used. Furthermore, in order to relieve the stress that the silicon nitride film 3 exerts on the silicon substrate 1 during oxidation at high temperatures, the thickness of the silicon oxide film 2 is, for example, 500 mm.
Use λ.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の形成方法でに、分離酸化を行なう際に「
バーズビーク」と呼ばれる活性領域へのる。例えば、第
2図でシリコン酸化膜バッファ層2の膜厚を500人、
シリコン窒化膜3の膜厚を1000人とし、分離領域i
c1μ慣の厚さの分離酸化膜6を形成した場合には、シ
リコン窒化[3(7)端部から活性領域の側に約1μ溝
の距離までバーズビークが生ずる。
In the conventional formation method described above, when performing separation oxidation,
It climbs onto the active area called "Bird's Beak". For example, in FIG. 2, the thickness of the silicon oxide buffer layer 2 is 500,
The thickness of the silicon nitride film 3 is 1000, and the isolation region i
When the isolation oxide film 6 is formed to have a thickness of c1μ, a bird's beak is formed from the end of the silicon nitride [3(7) to a distance of about 1μ trench toward the active region side.

このバーズビークの食い込み長さに、分離酸化膜の形成
温度、シリコン酸化膜バッファ層の膜厚及びシリコン窒
化膜の膜厚等に依存しており、特にシリコン酸化膜バッ
ファ層を薄くする事でバーズビークを短くする事ができ
る。しかし、単にバッファ層を薄くするだけでは、高温
時にシリコン酸化膜の粘性が低くなる事を利用してシリ
コン窒化膜からの応力を緩和する事ができないので、シ
リコン基板内に欠陥の発生を招き、適当でない。
The length of this bird's beak digging in depends on the formation temperature of the isolation oxide film, the thickness of the silicon oxide film buffer layer, the film thickness of the silicon nitride film, etc. In particular, the bird's beak can be reduced by making the silicon oxide film buffer layer thinner. It can be made shorter. However, simply making the buffer layer thinner does not alleviate the stress from the silicon nitride film by taking advantage of the fact that the viscosity of the silicon oxide film decreases at high temperatures, which leads to the generation of defects within the silicon substrate. It's not appropriate.

また欠陥の発生の無い工う、シリコン窒化膜も同時に薄
くする事に、通常シリコン窒化膜に熱分解を利用した気
相成長法で形成するので、ピンホールの発生が心配され
る。このように従来の分離酸化膜の形成方法でに素子の
歩留りを下げずにバーズビークを短くシ7、高集積化を
進める事に困難である。
In addition, since the silicon nitride film is thinned at the same time and is defect-free, the silicon nitride film is usually formed by a vapor phase growth method that utilizes thermal decomposition, so there is a concern that pinholes may occur. As described above, it is difficult to shorten the bird's beak and promote high integration without lowering the yield of devices using the conventional method of forming an isolation oxide film.

・〔問題点を解決するための手段〕 製 本発明の半導体装置の勢造方法に、シリコン基板上に選
択的に設けた窒化シリコン膜の島状領域をマスクとして
0.5μ鴨以上の膜厚の酸化膜絶縁分離全行なうにあた
り、窒化シリコン膜とシリコン基板との間に設けるシリ
コン酸化膜のバッファ層の膜厚を、上記島状領域の周辺
部で内部に比して薄くなるように形成する事全特徴とす
る。
・[Means for solving the problem] In the method for fabricating a semiconductor device of the present invention, an island-like region of a silicon nitride film selectively provided on a silicon substrate is used as a mask to form a film with a thickness of 0.5 μm or more. When performing complete oxide film insulation isolation, the thickness of the buffer layer of silicon oxide film provided between the silicon nitride film and the silicon substrate is formed so that it is thinner at the periphery of the island region than at the inside. All features.

この方法VCよれば、周辺部でシリコン酸化膜バッファ
層が薄くなっているため、窒化シリコン膜の端部直下に
生ずるバーズビークを短くおさえる事ができる。また、
内部の活性領域として用いる部分では、厚いシリコン酸
化膜バッファ層が、シリコン窒化膜からの応力を充分緩
和するので、結晶欠陥が発生する事なく、厚い分離酸化
膜の形成が可能である。
According to this method VC, since the silicon oxide buffer layer is thinner in the peripheral region, the bird's beak that occurs directly under the edge of the silicon nitride film can be kept short. Also,
In the portion used as the internal active region, the thick silicon oxide film buffer layer sufficiently relieves the stress from the silicon nitride film, so that a thick isolation oxide film can be formed without generating crystal defects.

〔実施例〕〔Example〕

次に本発明の一実施例を図面を用いて説明する。 Next, one embodiment of the present invention will be described with reference to the drawings.

簗1図^〜υに本発明の一実施例の工程を説明する為の
縦断面図である。へ型シリコン基板1の主表面を酸化し
、第1のシリコン酸化膜バッファ層2を約800A形成
し、続いて藁1の窒化シリコン膜3を約1000人堆積
した後、分離酸化膜を形成する領域の第1の窒化シリコ
ン膜3を除去する(第1図(A))。
Figures 1 to 1 are longitudinal sectional views for explaining the steps of an embodiment of the present invention. The main surface of the hexagonal silicon substrate 1 is oxidized to form a first silicon oxide film buffer layer 2 of about 800A, followed by depositing about 1000 layers of silicon nitride film 3 of straw 1, and then an isolation oxide film is formed. The first silicon nitride film 3 in the region is removed (FIG. 1(A)).

次にシリコン酸化膜2のウェットエツチングを行ない、
島状に残した第1の窒化シリコン膜の端部から内側に約
5000人サイドエツチングする。
Next, perform wet etching of the silicon oxide film 2,
The first silicon nitride film left in the form of an island is side-etched inward from the end by approximately 5,000 steps.

露出したシリコン基板1の表面を再び酸化し、約100
人の第2のシリコン酸化膜バッファ層4全形放し、全面
に第2の窒化シリコン膜5を約300A堆積する。この
後、異方性ドライエツチングにより、平坦面に露出した
第2の窒化シリコン膜5のみを除去する(a!1図0)
。この時、シリコン酸化膜バッファ層に活性領域の周辺
で薄く(第2のシリコン酸化膜4)、内部で厚い(第1
のシリコン酸化膜2)状態となっている。従ってこの状
態で分離酸化膜6を約1μ惰形底すれば、バーズビーク
の食い込みを5ooo人以内におさえる事かできるC第
L l’B (J)) )。
The exposed surface of the silicon substrate 1 is oxidized again to about 100%
The entire second silicon oxide film buffer layer 4 is released, and a second silicon nitride film 5 is deposited to a thickness of about 300 Å over the entire surface. After this, only the second silicon nitride film 5 exposed on the flat surface is removed by anisotropic dry etching (a!1 Figure 0).
. At this time, the silicon oxide film buffer layer is thin (second silicon oxide film 4) around the active region and thick inside (first silicon oxide film 4).
The silicon oxide film 2) is in the state of 2). Therefore, if the separation oxide film 6 is shaped in this state by about 1 μm, the bite of the bird's beak can be suppressed to within 5 mm.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に、分離酸化膜を形成するさ
いに、活性領域上をマスクする窒化シリコン膜とシリコ
ン基板との間に設は不シリコン酸化膜バッファ層の膜厚
を、活性領域の周辺部で内部エリも薄くする事rc工り
、結晶欠陥を発生させル事h < 、バーズビークの食
い込みを短くおさえる効果がある。本発明の方法によれ
ば、不要なバーズビークの面積を縮小する事ができるの
で、酸化膜絶縁分離を用いたより高集積度の半導体装置
が実現可能である。
As explained above, in the present invention, when forming an isolation oxide film, the thickness of the non-silicon oxide buffer layer is adjusted between the silicon nitride film that masks the active region and the silicon substrate. RC machining also makes the internal edges thinner at the periphery, which creates crystal defects and has the effect of keeping the bird's beak bite short. According to the method of the present invention, since the area of unnecessary bird's beaks can be reduced, it is possible to realize a semiconductor device with a higher degree of integration using oxide film insulation isolation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に本発明の一実施例の主要な製造工程における縦
断面図、第2図に従来の製造方法の主要な工程における
縦断面図である。 1・・・・・・N型シリコン基板、2・・・・・・(第
1の)シリコン酸化膜バッファ層、3・・・・・・(第
1の)窒化シリコン膜、4・・・・・・第2のシリコン
酸化膜ノくツファ層、5・・・・・・第2の窒化クリコ
ン膜、6・・・・・・分離酸化膜。 代理人 弁理士  内 原   晋 第1 回
FIG. 1 is a vertical cross-sectional view of the main manufacturing steps of an embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view of the main steps of a conventional manufacturing method. DESCRIPTION OF SYMBOLS 1... N-type silicon substrate, 2... (first) silicon oxide film buffer layer, 3... (first) silicon nitride film, 4... . . . second silicon oxide film layer, 5 . . . second silicon nitride film, 6 . . . isolation oxide film. Agent Patent Attorney Susumu Uchihara 1st session

Claims (1)

【特許請求の範囲】[Claims] シリコン基板上に選択的に設けた窒化シリコン膜の島状
領域をマスクとして酸化膜絶縁分離を行なうにあたり、
窒化シリコン膜とシリコン基板との間に設けるシリコン
酸化膜のバッファ層の膜厚を、上記島状領域の周辺部で
内部に比して薄くなるように形成する事を特徴とする半
導体装置の製造方法。
When performing oxide film insulation isolation using an island-like region of a silicon nitride film selectively provided on a silicon substrate as a mask,
Manufacture of a semiconductor device characterized in that a buffer layer of a silicon oxide film provided between a silicon nitride film and a silicon substrate is formed to be thinner at a peripheral part of the island-like region than at an inner part. Method.
JP13872085A 1985-06-25 1985-06-25 Manufacture of semiconductor device Pending JPS61296741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13872085A JPS61296741A (en) 1985-06-25 1985-06-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13872085A JPS61296741A (en) 1985-06-25 1985-06-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61296741A true JPS61296741A (en) 1986-12-27

Family

ID=15228565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13872085A Pending JPS61296741A (en) 1985-06-25 1985-06-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61296741A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198590A (en) * 1991-06-10 1993-08-06 Philips Gloeilampenfab:Nv Manufacture of semiconductor device
US5358893A (en) * 1993-06-10 1994-10-25 Samsung Electronics Co., Ltd. Isolation method for semiconductor device
US5422300A (en) * 1992-12-03 1995-06-06 Motorola Inc. Method for forming electrical isolation in an integrated circuit
US5504034A (en) * 1992-09-23 1996-04-02 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Local oxidation method with bird's beak suppression

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198590A (en) * 1991-06-10 1993-08-06 Philips Gloeilampenfab:Nv Manufacture of semiconductor device
US5254494A (en) * 1991-06-10 1993-10-19 U.S. Philips Corp. Method of manufacturing a semiconductor device having field oxide regions formed through oxidation
US5504034A (en) * 1992-09-23 1996-04-02 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Local oxidation method with bird's beak suppression
US5422300A (en) * 1992-12-03 1995-06-06 Motorola Inc. Method for forming electrical isolation in an integrated circuit
US5358893A (en) * 1993-06-10 1994-10-25 Samsung Electronics Co., Ltd. Isolation method for semiconductor device

Similar Documents

Publication Publication Date Title
JPH01274470A (en) Bipolar-transistor device and manufacture thereof
US4810668A (en) Semiconductor device element-isolation by oxidation of polysilicon in trench
JPH06163532A (en) Method for isolation of semiconductor element
JP2001351865A (en) Manufacturing method of semiconductor device
JPS61296741A (en) Manufacture of semiconductor device
JP2589209B2 (en) Method of forming element isolation region of semiconductor device
JPS5882532A (en) Element separation method
JPS6359538B2 (en)
JP3162970B2 (en) Method for manufacturing semiconductor device
JPS618944A (en) Semiconductor device and manufacture thereof
US4353159A (en) Method of forming self-aligned contact in semiconductor devices
JPS6021541A (en) Manufacture of semiconductor device
JPH05206263A (en) Manufacture of semiconductor device
KR0151607B1 (en) A field oxide film forming method of a semiconductor device
JPH02142117A (en) Manufacture of semiconductor integrated circuit
JPS6017929A (en) Manufacture of semiconductor device
JPH10189707A (en) Forming method of element isolation region of semiconductor device
JPH0117256B2 (en)
JPH05211230A (en) Manufacture of semiconductor device
JPS5940291B2 (en) Manufacturing method of semiconductor device
JPS62281357A (en) Manufacture of semiconductor device
JPH0883795A (en) Method for forming element isolation region
JPH0431176B2 (en)
JPS6294954A (en) Manufacture of semiconductor integrated circuit
JPH0216019B2 (en)