JPS6254088B2 - - Google Patents

Info

Publication number
JPS6254088B2
JPS6254088B2 JP53020412A JP2041278A JPS6254088B2 JP S6254088 B2 JPS6254088 B2 JP S6254088B2 JP 53020412 A JP53020412 A JP 53020412A JP 2041278 A JP2041278 A JP 2041278A JP S6254088 B2 JPS6254088 B2 JP S6254088B2
Authority
JP
Japan
Prior art keywords
reaction zone
temperature
partially fluorinated
hydrocarbon
polycyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53020412A
Other languages
Japanese (ja)
Other versions
JPS53116359A (en
Inventor
Ii Mooa Robaato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntech Inc
Original Assignee
Suntech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntech Inc filed Critical Suntech Inc
Publication of JPS53116359A publication Critical patent/JPS53116359A/en
Publication of JPS6254088B2 publication Critical patent/JPS6254088B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/18Polycyclic halogenated hydrocarbons
    • C07C23/20Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic
    • C07C23/38Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic with three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/18Polycyclic halogenated hydrocarbons
    • C07C23/20Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/18Polycyclic halogenated hydrocarbons
    • C07C23/20Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic
    • C07C23/32Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic with a bicyclo ring system containing eight carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多環式炭化水素のフツ素化の改良法に
関する。より詳細には、本発明は望まない副生物
の製造を効果的に除去する三段階反応を使用する
上記炭化水素のフツ素化、好ましくは過フツ素化
の改良法に関する。 合衆国特許第3641167ならびに平行係属中の
1976年1月12日に提出した出願番号第647944号は
パーフルオロアルキルアダマンタン類の一段階製
造方法を開示している。新らしい分析技術を使用
する最近のデーターは、今やCoF3と高温を使用
する本願で用いる反応条件下では、開環した生成
物の生成と共に、非フツ素化環状構造の分解を示
している。 本発明によれば、(1)第一段階では温和な条件下
での温和なフツ素化剤で、出発材料の環式化合物
を部分的にフツ素化し、続いて(2)第二段階におい
て上記部分的フツ素化された材料を、上記材料の
沸点のすぐ上の温度で、強力なフツ素化剤と反応
せしめてより高度にフツ素化された化合物とし、
その後で(3)上記のより高度にフツ素化された化合
物を相当高い温度で同じ第二段階の反応器中に循
環して、いかなる分解した環開裂化合物もない本
質的に過フツ素化された多環式炭化水素を提供す
ることにより、実質的に環構造の分解のない多環
式炭化水素が過フツ素化されうることが、今や発
見された。 本発明の改良された過フツ素化方法のための出
発材料は、合衆国特許第3641167に記載されてい
るようなアルキルアダマンタン類からなる群から
選ばれる非芳香族化性の多環式炭化水素で、11〜
30個の炭素原子、好ましくは12〜14個の炭素原子
を持つ、1・3−ジメチルアダマンタン、1・
3・5−トリメチルアダマンタン、1−エチルア
ダマンタン、1−メチルアダマンタン、1−エチ
ル−3−メチルアダマンタン、1−エチル−3・
5−ジメチルアダマンタン等のようなもの、エン
ド−及びエキソ−テトラヒドロジシクロペンタジ
エン、1・4−メタノデカリン又は1・4・5・
8−ジメタノデカリンのようなメタノデカリン
類、水素化ピネン、カンフアン、ビシクロオクタ
ン、ビシクロノナン等からなつている。これら化
合物類が本発明の方法により処理されるときに
は、対応する過フツ素化多環式材料が高い収率と
純度で収得され、水素原子の少くとも95%、又好
ましくは97%ないし100%がフツ素原子により置
換される。一般には、本改良方法によれば、出発
材料の対応する過フツ素化化合物への転換率は少
くとも50%で、最も普通には約90%又はこれ以上
である。 これらの過フツ化材料は種々の工業上及び製薬
学上の応用に有用である。例えばフツ化アルキル
アダマンタンは、ガスタービン冷却剤、変圧器、
発電機等の誘電冷却剤ならびに合成血液組成物の
成分、潅流媒体及び類似の生物学的応用に有用で
ある。又過フツ素化環式材料は加熱管及びランキ
ンサイクル(Rankin cycle)エンジンの作動流
体としても有用である。 部分的にフツ素化された中間体を提供するため
の上記方法の第一段階は、多環式炭化水素又はそ
れらのヒドロキシル化又はカルボニル化誘導体
は、使用するフツ素化剤により、HF、HF−ピリ
ジン錯体、AgF2、MnF3、SF4、SbF5、KCoF4
びフルオロオレフインからなる群から選ばれるフ
ツ素化剤と、出発材料と使用されるフツ素化剤の
性質により、種々な温度、圧力等の条件下に、液
相中での接触させることにより行われる。これら
のフツ素化剤は炭化水素上のCoF3よりもその作
用が遥かに温和である。その結果としてフツ素化
の程度は薬剤と出発材料の適当な選択によつて制
御できる。一般に炭化水素中に約3〜6個のフツ
素原子の導入は、例えばCoF3による徹底的なフ
ツ素化に使用される更に苛酷な条件に対し、材料
を安定化することが見出された。 一般にこの第一段の部分的フツ素化段階では上
記フツ素化剤は多環式炭化水素それ自体と直接反
応せしめてよいが、若し希望するならばそれらの
部分的塩素化又は臭素誘導体と反応せしめてよ
い。しかし、この例外の一つはこれら化合物と
SF4又はジアルキルアミノサルフアフルオライド
との反応であり、この場合環式の出発材料は満足
にSF4又はジアルキルアミノサルフアフルオライ
ドと反応し得る前に、まつカルボニル化させねば
ならない。このように、例えばアルキルアダマン
タンの場合、これら化合物をSF4又はジアルキル
アミノサルフア試薬と適当に反応する前に、それ
らの対応するケトン、アルデヒド、酸又はヒドロ
キシ誘導体に転化されるべきである。 これらのアダマンチルカルボニル誘導体を生成
する方法の例示は、例えば合衆国特許第
33567403356741(アダマンチルケトンとジケトン
誘導体):合衆国特許3250805(アダマンチルジ
カルボン酸):合衆国特許3383424、3356718及び
3356709(アダマンチルジヒドロキシドとジカル
ボン酸)の教示に見出される。他の類似反応は当
業者に認められ理解されるであろう。 同じ様に他のかかるカルボニル化された多環式
の出発物質は類似の既知技術に従つてつくられう
る。 多環式出発物質の部分的(即ち第一段階)フツ
素化を一般的に云うばあい、SF4又はフツ化ジア
ルキルアミノ硫黄がフツ素化剤として使用される
時、多環式出発物質のカルボニル誘導体を含める
ことが意図されていることが前記記述から従つて
理解されるであろう。 SF4が使用される時の過フツ素化される環状物
質のカルボニル誘導体の使用の外に、HF又はHF
−ピリジン錯体が部分的フツ素化剤の時のこれら
の化合物の類似の既知のアルコール誘導体の使
用、又SbF5が使用される場合の塩素化又は臭素
化誘導体の使用がある。又1・3−シクロヘキサ
ジエンの様な環状ジエンがデイルスーアルダー型
反応でヘキサフルオロ−プロペンの様なフルオロ
オレフインと反応せしめられて以下もつと詳細に
述べる様に部分的にフツ化された多環式炭化水素
が得られる。これらの物質は次いで又本発明に従
つて過フツ素化される。 かくしてこれら前述のデイルスーアルダー反応
生成物は又前述の様に例えばCoF3で次いで過フ
ツ素化されうる部分的にフツ素化された多環式炭
化水素の一般的な定義に含められることが意図さ
れている。 部分的にフツ素化され、従つて安定化された環
式炭化水素をそれらがどんな風につくられるかに
係りなく徹底的にフツ素化することが本発明の範
囲内にあることがかくして前記記述から明かであ
ろう。 本発明方法の第二と第三段階でCoF3の様な強
フツ素化剤で多環式物質を反応させる前に多環式
物質に環状構造安定性を与えるに必要なフツ素化
の量は臨界的でないが望ましくは約3〜6個の水
素原子のフツ素置換からかかる水素の50%程度の
フツ素置換迄を含むべきである。これらフツ素原
子の位置は炭化水素分子の核又は側鎖のいずれか
又は両方でありうる。従つて第一段階フツ素化の
生成物は使用されるフツ素化剤によるが部分フツ
素化物質の単一生成物又はそれらの混合物のいず
れかを含みうる。この生成物は次の段階でCoF3
などと接触する前に第一フツ素化剤から好ましく
は蒸溜によつて先ず分離されるべきである。 本方法の第二段階では目的は化合物の環状構造
を劣化しない限り出来る丈高度のフツ素化を達成
することである。このフツ素化段階の効果は、環
分解副生物の生成なしに遥かにより厳重な反応条
件下で実質的に100%の過フツ素化が最後の段階
で達成できる様遥かにより大きい安定性を部分的
にフツ素化された多環式物質に与えることであ
る。過フツ素化の75%〜95%の第二段階に於ける
高度のフツ素化は部分的にフツ素化された炭化水
素混合物を蒸気相で(予熱によつて)おだやかな
仕込み率で仕込み物質の沸点のすぐ上からその沸
点上約50℃迄にわたつている温度範囲内でCoF3
と接触させることによつて容易に達成される。好
ましくは沸点のすぐ上から50°上迄徐々に増加す
る温度を有する複数帯反応器が使用されるべきで
ある。反応は発熱反応であるから分子の分解を避
けるため温度をおよそこれらの範囲内に調節する
様に注意がなされるべきである。 同様に蒸気相で行われる最後の段階はCoF3
応の高度にフツ素化された生成物を同じ反応器に
再循環して戻すことからなるがこの反応器は今度
は可成より高い温度、即ち前記高度のフツ素化段
階で最初に使用された温度より約25℃高い温度か
ら約130℃高い温度までの範囲内で反応器を通じ
て段階的に温度が高くなるように加熱して実質的
に完全なフツ素化を達成し、もとの仕込み原料の
量を基にして約50〜95%の収率を与える。 過フツ素化生成物は生成物を集めるだけではな
くHF及び任意の他のガス状の生成物をも集める
ために過フツ素化生成物が反応器から除かれるに
つれて若干個の冷却トラツプ中にそれを通過させ
ることによつて約0℃から80℃迄の温度に次いで
冷却されることが好ましい。 ここで本発明は以下の実施例によつて例示され
る。次の4個の実施例は本発明の方法に従つて続
いてペルフルオロ化されうる部分的にフツ素化さ
れたアダマンタンの製造を例示する。 実施例 1 アダマンタンジカルボン酸(22.4g、0.1モ
ル)及びSF4(27.0g、25%過剰)がホークボン
ベ(hoke bomb)中で110℃に於て24時間加熱さ
れた。加圧容器の内容物は冷却されCCl4で抽出
され、濾過されてCCl4は蒸発で除かれた。残渣
は21.8gのビストリフルオロメチルアダマンタン
(80%収率)からなつていた。 実施例 2 2−アダマンタノン(15.0g、9.1モル)及び
SF4(13g、25%過剰)が実施例1の様に加熱さ
れた。生成物は実施例1に記載された様にワーク
アツプされて12.9gの2・2−ジフルオロアダマ
ンタン(75%収率)を与えた。 実施例 3 5・7−ジメチル−1・3−アダマンタンジカ
ルボン酸(25.2g、0.1モル)及びSF4(27.0g、
25%過剰)が加熱され実施例1の様にワークアツ
プされ18gの3・5−ジメチル−5・7−ビス
(トリフルオロメチル)アダマンタン(60%)を
与えた。 実施例 4 1・3−ジメチルアダマンタン(42g)がペル
フルオロ1−メチルデカリン中のMnF3(1ポン
ド)のスラリーにゆつくりと加えられた。すべて
の炭化水素が加えられた後、混合物は素早く撹拌
しながら200℃に24時間加熱され、生成物はフレ
オン113で抽出されてフレオン113とペルフロロ1
−メチルデカリンの両方を除くために蒸留され
た。蒸留残渣は分子が平均しておよそ8個のフツ
素原子を含む部分的フツ素化された1・3−ジメ
チルアダマンタン、例えばC12H12F8からなつて
いる。 実施例 5 実施例1からのビストリフルオロメチルアダマ
ンタン(24c.c.;33.67g、0.123モル)が毎分0.247
c.c.で予熱器中に仕込まれた。予熱器温度は250℃
であり、CoF3反応容器温度は帯域1での250℃か
ら帯域4での300℃まで漸次増加させられた。生
成物ラインは225℃に保たれた。すべての炭化水
素が反応容器に仕込まれた後、反応容器は窒素で
3.25時間パージされた。粗生成物は46.0gの重さ
であつた。この物質は水のPHが5になるまで水洗
された。 第2段階からのこの物質は分子篩上で一夜乾燥
され次いで45.84gが毎分0.764c.c.の割合で帯域1
の275℃から帯域4の380℃迄漸次増加させられた
最終段階のための反応容器に再度仕込まれた。反
応容器は47.8gを含んでいる冷却されて凝縮した
生成物を受ける容器を除去する前に窒素で4時間
パージされた。フルオロカーボンは75%の物質バ
ランス。ガスクロマトグラフイーの分析は生成物
が90%ペルフルオロ1・3−ジメチルアダマンタ
ンを含んでいることを示した。これは質量分析及
び19F NMRで確認された。 同様の実験が1・3−ビス(トリフルオロメチ
ル)−5・7−ジメチルアダマンタンについて実
施され55%収率でペルフルオロテトラメチルアダ
マンタンを与えた。 融点132℃ 同じ様なやり方で実施例2及び実施例3の2・
2−ジフルオロアダマンタン及び3・5−ジメチ
ル−5・7−ビス(トリフルオロメチル)アダマ
ンタンが実施例5の手順に従つてCoF3と反応さ
れ、対応するペルフルオロアダマンタンを高い純
度でかつ高い収率で与えた。 比較例 次の比較例は最初の(部分的な)本発明のフツ
素化段階が用いられなかつた時の得られた結果を
例示する。 エクソテトラヒドロジシクロペンタジエン(25
c.c.24.15g、0.1776モル)が毎分0.494c.c.で予熱器
中に仕込まれた。予熱器温度は225℃であり、
CoF3反応容器温度は帯域1の200℃から帯域4の
250℃まで漸増させられた。生成物ラインは225℃
に保たれた。すべての炭化水素が反応容器に仕込
まれた後、反応容器は窒素で3.25時間パージされ
た。粗生成物は重さが63.6gであつた。この物質
は水のPHが5になるまで水洗された。 第2段階からの物質は分子篩上で乾燥され次い
で55.84gが第一帯域の300℃から最終段階のため
の帯域4の375℃まで漸増させられた反応容器に
毎分0.764c.c.の割合で再仕込みされた。反応容器
は60.8gのフルオロカーボンを含んだ冷却されて
凝縮した生成物を受ける容器を除去する前に窒素
で4時間パージされた。仕込みTHDCPの24.15g
を基準にして87%の物質バランス。ガスクロマト
グラフイー分析は生成物が40%のエンド及びエク
ソ−ペルフルオロ−テトラヒドロジシクロペンタ
ジエン、45%のペルフルオロビシクロ〔3・5・
0〕デカン及び〜15%の未知フルオロカーボンを
含んでいることを示した。
This invention relates to an improved method for the fluorination of polycyclic hydrocarbons. More particularly, the present invention relates to an improved process for the fluorination, preferably perfluorination, of such hydrocarbons using a three-step reaction that effectively eliminates the production of undesired by-products. U.S. Patent No. 3,641,167 and parallel pending
Application No. 647,944, filed January 12, 1976, discloses a one-step process for making perfluoroalkyl adamantanes. Recent data using new analytical techniques now indicate that under the reaction conditions used herein using CoF 3 and high temperatures, decomposition of the non-fluorinated ring structure with the formation of ring-opened products. According to the present invention, (1) the starting cyclic compound is partially fluorinated with a mild fluorinating agent under mild conditions in a first step, followed by (2) in a second step. reacting the partially fluorinated material with a strong fluorinating agent at a temperature just above the boiling point of the material to form a more highly fluorinated compound;
Thereafter, (3) the above-mentioned more highly fluorinated compounds are recycled into the same second stage reactor at substantially higher temperatures to produce essentially perfluorinated compounds free of any decomposed ring-cleaved compounds. It has now been discovered that polycyclic hydrocarbons can be perfluorinated with substantially no decomposition of the ring structure. The starting material for the improved perfluorination process of the present invention is a non-aromatizing polycyclic hydrocarbon selected from the group consisting of alkyladamantanes as described in U.S. Pat. No. 3,641,167. , 11~
1,3-dimethyladamantane, 1, having 30 carbon atoms, preferably 12 to 14 carbon atoms;
3,5-trimethyladamantane, 1-ethyladamantane, 1-methyladamantane, 1-ethyl-3-methyladamantane, 1-ethyl-3.
such as 5-dimethyladamantane, endo- and exo-tetrahydrodicyclopentadiene, 1,4-methanodecalin or 1,4,5-
It consists of methanodecalins such as 8-dimethanodecalin, hydrogenated pinene, camphuan, bicyclooctane, bicyclononane, etc. When these compounds are treated by the method of the invention, the corresponding perfluorinated polycyclic materials are obtained in high yield and purity, containing at least 95% and preferably 97% to 100% of hydrogen atoms. is replaced by a fluorine atom. Generally, according to the improved process, the conversion of the starting material to the corresponding perfluorinated compound is at least 50%, and most usually about 90% or more. These perfluorinated materials are useful in a variety of industrial and pharmaceutical applications. For example, alkyl adamantane fluorides are used in gas turbine coolants, transformers,
It is useful in dielectric coolants such as electrical generators, as well as components of synthetic blood compositions, perfusion media and similar biological applications. Perfluorinated cyclic materials are also useful as working fluids in heating tubes and Rankin cycle engines. The first step of the above process to provide a partially fluorinated intermediate is that the polycyclic hydrocarbons or their hydroxylated or carbonylated derivatives are converted into HF, HF, or HF, depending on the fluorinating agent used. - a fluorinating agent selected from the group consisting of pyridine complexes, AgF 2 , MnF 3 , SF 4 , SbF 5 , KCoF 4 and fluoroolefins, and at various temperatures depending on the nature of the starting materials and the fluorinating agent used. This is carried out by contacting in a liquid phase under conditions such as , pressure, etc. These fluorinating agents are much milder in their action than CoF 3 on hydrocarbons. As a result, the degree of fluorination can be controlled by appropriate selection of agents and starting materials. It has been found that the introduction of about 3 to 6 fluorine atoms into the hydrocarbon generally stabilizes the material against the more severe conditions used for intensive fluorination, e.g. with CoF3 . . Generally, in this first partial fluorination step, the fluorinating agent may be reacted directly with the polycyclic hydrocarbon itself or, if desired, with a partially chlorinated or brominated derivative thereof. You can react. However, one exception to this is that these compounds
SF 4 or dialkylaminosulfur fluoride, in which case the cyclic starting material must be carbonylated before it can be satisfactorily reacted with SF 4 or dialkylaminosulfur fluoride. Thus, for example in the case of alkyladamantanes, these compounds should be converted into their corresponding ketone, aldehyde, acid or hydroxy derivatives before suitably reacting with SF 4 or dialkylaminosulfur reagents. Illustrative methods of producing these adamantylcarbonyl derivatives are given, for example, in U.S. Pat.
33567403356741 (adamantyl ketone and diketone derivatives): US Patent 3250805 (adamantyldicarboxylic acid): US Patent 3383424, 3356718 and
3356709 (Adamantyl dihydroxide and dicarboxylic acids). Other similar reactions will be recognized and understood by those skilled in the art. Similarly other such carbonylated polycyclic starting materials can be made according to similar known techniques. Partial (i.e., first stage) fluorination of a polycyclic starting material is generally referred to when SF 4 or fluorinated dialkylamino sulfur is used as the fluorinating agent. It will therefore be understood from the foregoing description that carbonyl derivatives are intended to be included. Besides the use of carbonyl derivatives of perfluorinated cyclic substances when SF 4 is used, HF or HF
- The use of analogous known alcohol derivatives of these compounds when the pyridine complex is the partially fluorinating agent, and also the use of chlorinated or brominated derivatives when SbF 5 is used. Alternatively, a cyclic diene such as 1,3-cyclohexadiene can be reacted with a fluoroolefin such as hexafluoro-propene in a Diels-Alder type reaction to form a partially fluorinated polycyclic diene, as detailed below. The formula hydrocarbon is obtained. These materials are then also perfluorinated according to the invention. These aforementioned Diels-Alder reaction products can thus also be included in the general definition of partially fluorinated polycyclic hydrocarbons which can then be perfluorinated, for example with CoF 3 as described above. intended. It is thus within the scope of the present invention to completely fluorinate partially fluorinated and therefore stabilized cyclic hydrocarbons, regardless of how they are produced. It should be clear from the description. The amount of fluorination required to impart ring stability to the polycyclic material prior to reacting the polycyclic material with a strong fluorinating agent such as CoF 3 in the second and third steps of the process of the invention. Although not critical, it should desirably include fluorine substitution of about 3 to 6 hydrogen atoms to as much as 50% of such hydrogen atoms. The position of these fluorine atoms can be either the nucleus or the side chain of the hydrocarbon molecule, or both. The product of the first stage fluorination may therefore contain either a single product of partially fluorinated substances or a mixture thereof, depending on the fluorinating agent used. This product is converted into CoF 3 in the next step
The first fluorinating agent should first be separated, preferably by distillation, from the first fluorinating agent. In the second step of the process, the objective is to achieve as high a degree of fluorination as possible without degrading the cyclic structure of the compound. The effect of this fluorination step is that it provides much greater stability such that virtually 100% perfluorination can be achieved in the final step under much more severe reaction conditions without the formation of ring degradation by-products. fluorinated polycyclic substances. A high degree of fluorination in the second stage of 75% to 95% perfluorination is achieved by charging the partially fluorinated hydrocarbon mixture in the vapor phase (by preheating) at a moderate charge rate. CoF 3 within a temperature range extending from just above the boiling point of the substance to approximately 50°C above its boiling point.
This is easily achieved by contacting with. Preferably a multi-zone reactor with gradually increasing temperatures from just above the boiling point to 50° above should be used. Since the reaction is exothermic, care should be taken to control the temperature within approximately these ranges to avoid decomposition of the molecules. The last step, also carried out in the vapor phase, consists of recycling the highly fluorinated products of the CoF 3 reaction back to the same reactor, which is now at a significantly higher temperature, That is, heating is performed stepwise through the reactor at a temperature ranging from about 25°C to about 130°C above the temperature initially used in the advanced fluorination step to substantially increase the temperature. Complete fluorination is achieved, giving yields of approximately 50-95% based on the amount of original feedstock. The perfluorinated product is collected in several cooling traps as the perfluorinated product is removed from the reactor to collect not only the product but also the HF and any other gaseous products. It is preferably then cooled by passing it through a temperature of about 0°C to 80°C. The invention will now be illustrated by the following examples. The following four examples illustrate the production of partially fluorinated adamantanes that can be subsequently perfluorinated according to the method of the invention. Example 1 Adamantane dicarboxylic acid (22.4 g, 0.1 mol) and SF 4 (27.0 g, 25% excess) were heated in a Hoke bomb at 110° C. for 24 hours. The contents of the pressurized vessel were cooled, extracted with CCl 4 , filtered and the CCl 4 removed by evaporation. The residue consisted of 21.8 g of bistrifluoromethyladamantane (80% yield). Example 2 2-adamantanone (15.0 g, 9.1 mol) and
SF 4 (13 g, 25% excess) was heated as in Example 1. The product was worked up as described in Example 1 to give 12.9 g of 2,2-difluoroadamantane (75% yield). Example 3 5,7-dimethyl-1,3-adamantanedicarboxylic acid (25.2 g, 0.1 mol) and SF 4 (27.0 g,
(25% excess) was heated and worked up as in Example 1 to give 18 g of 3,5-dimethyl-5,7-bis(trifluoromethyl)adamantane (60%). Example 4 1,3-dimethyladamantane (42 g) was slowly added to a slurry of MnF 3 (1 lb.) in perfluoro 1-methyldecalin. After all the hydrocarbons have been added, the mixture is heated to 200 °C for 24 hours with rapid stirring, and the product is extracted with Freon 113 and Perfluoro 1.
- methyldecalin was distilled to remove both. The distillation residue consists of partially fluorinated 1,3-dimethyladamantane, for example C 12 H 12 F 8 , whose molecules contain on average approximately 8 fluorine atoms. Example 5 Bistrifluoromethyladamantane (24 c.c.; 33.67 g, 0.123 mol) from Example 1 was added at 0.247 m/min.
cc was placed in the preheater. Preheater temperature is 250℃
and the CoF 3 reactor temperature was gradually increased from 250°C in zone 1 to 300°C in zone 4. The product line was kept at 225°C. After all the hydrocarbons have been charged to the reactor, the reactor is flushed with nitrogen.
Purged for 3.25 hours. The crude product weighed 46.0g. This material was washed with water until the pH of the water was 5. This material from the second stage was dried overnight over molecular sieves and then 45.84 g was added to Zone 1 at a rate of 0.764 cc per minute.
The reaction vessel was reloaded for the final stage, which was increased gradually from 275°C in zone 4 to 380°C in zone 4. The reaction vessel was purged with nitrogen for 4 hours before removing the vessel containing 47.8 g of cooled condensed product. Fluorocarbon has a material balance of 75%. Gas chromatography analysis showed that the product contained 90% perfluoro-1,3-dimethyladamantane. This was confirmed by mass spectrometry and 19F NMR. A similar experiment was conducted with 1,3-bis(trifluoromethyl)-5,7-dimethyladamantane to give perfluorotetramethyladamantane in 55% yield. Melting point 132°C In a similar manner, Example 2 and Example 3 2.
2-difluoroadamantane and 3,5-dimethyl-5,7-bis(trifluoromethyl)adamantane were reacted with CoF 3 according to the procedure of Example 5 to give the corresponding perfluoroadamantane in high purity and high yield. Gave. Comparative Example The following comparative example illustrates the results obtained when the first (partial) inventive fluorination step was not used. Exotetrahydrodicyclopentadiene (25
cc24.15 g, 0.1776 mol) was charged into the preheater at 0.494 cc per minute. Preheater temperature is 225℃,
CoF 3 reactor temperature ranges from 200°C in zone 1 to 200°C in zone 4.
The temperature was gradually increased to 250°C. Product line is 225℃
was kept. After all the hydrocarbons were charged to the reaction vessel, the reaction vessel was purged with nitrogen for 3.25 hours. The crude product weighed 63.6g. This material was washed with water until the pH of the water was 5. The material from the second stage was dried over molecular sieves and then 55.84 g was recharged at a rate of 0.764 cc per minute into the reaction vessel ramped from 300°C in the first zone to 375°C in zone 4 for the final stage. It was done. The reaction vessel was purged with nitrogen for 4 hours before removing the vessel which received the cooled condensed product containing 60.8 g of fluorocarbon. 24.15g of prepared THDCP
87% substance balance based on . Gas chromatography analysis revealed that the products were 40% endo- and exo-perfluoro-tetrahydrodicyclopentadiene and 45% perfluorobicyclo [3.5.
0] decane and ~15% unknown fluorocarbon.

【表】 タジエン
実施例 6 エクソ−テトラヒドロジシクロペンタジエン
(35g)がペンフルオロ(1−メチル)デカリン
溶媒中のMnF3(1ポンド)のスラリーにゆつく
りと加えられた。すべての炭化水素が加えられた
後、混合物は200℃に加熱され迅速に24時間撹拌
された。生成物はフレオン113で抽出されフレオ
ン113及びペルフルオロ(1−メチル)デカリン
の両方を除くために蒸留された。蒸留残渣は分子
が平均して凡そ7フツ素原子を含む部分的にフツ
素化されたテトラヒドロジシクロペンタジエン、
C10H9F7からなつている。 この様にして得られた部分的にフツ素化された
テトラヒドロジシクロペンタジエンが次に実施例
5の手順に従つてCoF3でペルフルオロ化された
とき、実質的に純粋なエクソ及びエンド−ペルフ
ルオロテトラヒドロジシクロペンタジエンが高い
収率で得られ、これは比較例に挙げられたどんな
副生成物も本質的にないものである。 実施例 7 実施例6の手順に従うが部分的にフツ素化され
たテトラヒドロジシクロペンタジエンの代わりに
部分的にフツ素化されたカンフアン水素化された
ピナン、1・4−メタノデカリン又は1・4・
5・8−ジメタノデカリンに替えて対応する過フ
ツ素化されたシクロカルボンが高収率でかつ実質
的にどんな開環された減成副生物もなしに得られ
た。 実施例 8 上に示された様に例えばフルオロオレフインや
アセチレン類は容易にデイールスアルダー型反応
を受け1・4−環状付加反応中でジエノフイルと
して働く。ジエンに対するそれらの反応性は一般
にそれらの炭化水素類似物よりも高い。次の実施
例は次いで徹底的に実施例5の手順に従つてフツ
素化されることが出来てペルフルオロシクロカー
ボンを高収率かつ実質的に開環副生成なしに与え
ることのできる部分的にフツ素化されたシクロカ
ーボンの製造を例示する。 A 1・3−シクロヘキサジエン(1モル)が25
%モル過剰のヘキサフルオロプロペンと約150
℃で24時間反応せしめられ2−(トリフルオロ
メチル)2・3・3−トリフルオロ−ビシクロ
〔2・2・2〕オクテンを与える。ロジウム上
で水素添加して2−(トリフルオロメチル)
2・3・3−トリフルオロ−ビシクロ〔2・
2・2〕オクタンが得られる。 B 同様にシクロペンタジエンとヘキサフルオロ
−ブト−2−インを100℃で24時間反応させて
2・3−ビス(トリ−フルオロメチル)ビシク
ロ〔2・2・1〕ヘプタジエンが得られ、これ
をパラジウム上で水素添加すると2・3−ビス
(トリフルオロメチル)ビシクロ〔2・2・
1〕ヘプタンが得られる。 C 又類似方法でオクタフルオロ−ブト−2−エ
ンとシクロペンタジエンを反応させると2・3
−ジフルオロ−2・3−ビス(トリフルオロメ
チル)ビシクロ〔2・2・1〕ヘプテンが得ら
れ、これをルテニウム上で水素添加すると2・
3−ビス(トリフルオロメチル)ビシクロ
〔2・2・1〕ヘプタンが得られる。 実施例 9 ノルボルナジエン(1モル)と25%モル過剰の
ヘキサフルオロシクロペンタジエンを100℃で24
時間加熱して が得られ実施例5の手順でこれをCoF3で処理し
た後高度に純粋なペルフルオロ1・4・5・8−
ジメタノデカリンを生ずる。
Table Tadiene Example 6 Exo-tetrahydrodicyclopentadiene (35 g) was slowly added to a slurry of MnF 3 (1 lb.) in penfluoro(1-methyl)decalin solvent. After all the hydrocarbons were added, the mixture was heated to 200°C and stirred rapidly for 24 hours. The product was extracted with Freon 113 and distilled to remove both Freon 113 and perfluoro(1-methyl)decalin. The distillation residue is a partially fluorinated tetrahydrodicyclopentadiene whose molecules contain on average approximately 7 fluorine atoms;
It consists of C 10 H 9 F 7 . When the partially fluorinated tetrahydrodicyclopentadiene thus obtained is then perfluorinated with CoF 3 according to the procedure of Example 5, substantially pure exo- and endo-perfluorotetrahydrogen A high yield of dicyclopentadiene is obtained, which is essentially free of any by-products mentioned in the comparative examples. Example 7 Following the procedure of Example 6 but replacing partially fluorinated tetrahydrodicyclopentadiene with partially fluorinated camphuan hydrogenated pinane, 1,4-methanodecalin or 1,4-
Instead of 5,8-dimethanodecalin, the corresponding perfluorinated cyclocarvone was obtained in high yield and virtually without any ring-opened degradation by-products. Example 8 As shown above, for example, fluoroolefins and acetylenes readily undergo Diels-Alder type reactions and act as dienophiles in 1,4-cycloaddition reactions. Their reactivity toward dienes is generally higher than their hydrocarbon analogs. The following example shows that a partially fluorinated perfluorocyclocarbon can then be thoroughly fluorinated according to the procedure of Example 5 to give a perfluorocyclocarbon in high yield and with virtually no ring-opening side products. The production of fluorinated cyclocarbon is illustrated. A 1,3-cyclohexadiene (1 mol) is 25
% molar excess of hexafluoropropene and about 150
C. for 24 hours to give 2-(trifluoromethyl)2.3.3-trifluoro-bicyclo[2.2.2]octene. 2-(trifluoromethyl) by hydrogenation over rhodium
2,3,3-trifluoro-bicyclo[2.
2.2] Octane is obtained. B Similarly, cyclopentadiene and hexafluoro-but-2-yne were reacted at 100°C for 24 hours to obtain 2,3-bis(trifluoromethyl)bicyclo[2.2.1]heptadiene, which was then mixed with palladium When hydrogenated above, 2,3-bis(trifluoromethyl)bicyclo[2.2.
1] Heptane is obtained. C In addition, when octafluoro-but-2-ene and cyclopentadiene are reacted in a similar manner, 2.3
-difluoro-2,3-bis(trifluoromethyl)bicyclo[2,2,1]heptene is obtained, which is hydrogenated over ruthenium to give 2,
3-bis(trifluoromethyl)bicyclo[2.2.1]heptane is obtained. Example 9 Norbornadiene (1 mol) and 25% molar excess of hexafluorocyclopentadiene at 100°C
heat for an hour was obtained and after treatment with CoF 3 according to the procedure of Example 5 highly pure perfluorinated 1.4.5.8-
Produces dimethanodecalin.

Claims (1)

【特許請求の範囲】 1 (1) 非芳香族、非芳香族化性多環式炭化水素
及びそのカルボニル、アルデヒド、カルボキシ
ル、ヒドロキシ、塩素化、又は臭素化誘導体を
第一の反応帯域で液相で、過フツ素化に相当す
るフツ素化の約50%を越えないフツ素化を与え
るのに充分な条件下で、HF、HF−ピリジン、
Ag、F2、MnF3、SF4、SbF5、KCoF4及びフル
オロオレフインからなる群から選ばれるフツ素
化剤に接触させることによつて多環式炭化水素
を部分的にフツ素化し、 (2) その後前期部分的にフツ素化された多環式炭
化水素を蒸気相で第二の反応帯域でフツ素化さ
れた物質の沸点以上50℃を越えない温度で
CoF3で更にフツ素化して過フツ素化の約95%
より大きくないフツ素化に相当するフツ素化度
を有する高度にフツ素化された物質を与え、 (3) 前記高度にフツ素化された物質を前記第二反
応帯域へ回収して再循環させ、このものを蒸気
相で前記(2)で最初に使用された温度よりも、約
25℃高い温度から130℃高い温度までの範囲内
で段階的に温度をあげつつCoF3と再接触せし
めて、実質的に過フツ素化された多環式炭化水
素を与えることからなる、非芳香族でかつ非芳
香族化性の多環式炭化水素を過フツ素化する方
法。 2 第一反応帯域の温度が約175〜350℃の範囲で
ある特許請求の範囲第1項に記載の方法。 3 工程(2)の温度が第二反応帯域の第一の部分中
に於ける第一反応帯域から送られてきた部分的フ
ツ素化物の沸点のすぐ上の温度から、その反応帯
域の最後の部分に於ける前記沸点より50℃上まで
徐々に増加される特許請求の範囲第1項に記載の
方法。 4 多環式炭化水素が11〜30の炭素原子を有する
アルキルアダマンタンである特許請求の範囲第1
項に記載の方法。 5 第一反応帯域のフツ素化剤がSF4で、アルキ
ルアダマンタンがそのカルボニル化誘導体である
特許請求の範囲第4項に記載の方法。 6 多環式炭化水素がアルキルアダマンタン、1
−エチルアダマンタン、1−メチルアダマンタ
ン、1−エチル−3−メチルアダマンタン、又は
1−エチル−3・5−ジメチルアダマンタンであ
る特許請求の範囲第4項に記載の方法。 7 多環式炭化水素がエキソ−又はエンド−テト
ラヒドロジシクロペンタジエンである特許請求の
範囲第1項に記載の方法。 8 多環式炭化水素がビシクロオクタン又はビシ
クロノナンである特許請求の範囲第1項に記載の
方法。 9 多環式炭化水素がメタノデカリンである特許
請求の範囲第1項に記載の方法。 10 (1) 部分的にフツ素化された多環式炭化水
素を蒸気相でフツ素化された物質の沸点以上50
℃を越えない温度で反応帯域でCoF3で更にフ
ツ素化して過フツ素化の約95%より大きくない
フツ素化に相当するフツ素化度を有する高度に
フツ素化された物質を与え、 (2) 前記高度にフツ素化された物質を前記反応帯
域へ回収して再循環し、このものを蒸気相で(1)
で最初に使用された温度よりも約25℃高い温度
から130℃高い温度までの範囲内で段階的に温
度をあげつつCoF3と再接触せしめて実質的に
過フツ素化された多環式炭化水素を与えること
からなる、非芳香族でかつ非芳香族化性の多環
式炭化水素を過フツ素化する方法。 11 段階(1)の温度が前記反応帯域の第一の部分
中に於ける仕込まれた部分的フツ素化物の沸点の
すぐ上の温度から、その反応帯域の最後の部分に
於ける前記沸点より50℃上まで徐々に増加される
特許請求の範囲第10項に記載の方法。 12 部分的にフツ素化された炭化水素が部分的
にフツ素化されたアダマンタンである特許請求の
範囲第10項に記載の方法。 13 部分的にフツ素化された炭化水素が部分的
にフツ素化されたテトラヒドロジシクロペンタジ
エンである特許請求の範囲第10項に記載の方
法。 14 部分的にフツ素化された炭化水素が部分的
にフツ素化されたビシクロオクタン又はビシクロ
ヘプタンである特許請求の範囲第10項に記載の
方法。 15 部分的にフツ素化された炭化水素が部分的
にフツ素化されたメタノデカリンである特許請求
の範囲第10項に記載の方法。
[Scope of Claims] 1 (1) A non-aromatic, non-aromatizable polycyclic hydrocarbon and its carbonyl, aldehyde, carboxyl, hydroxy, chlorinated, or brominated derivative in a liquid phase in a first reaction zone. HF, HF-pyridine,
partially fluorinating the polycyclic hydrocarbon by contacting it with a fluorinating agent selected from the group consisting of Ag, F 2 , MnF 3 , SF 4 , SbF 5 , KCoF 4 and fluoroolefin; 2) The partially fluorinated polycyclic hydrocarbon is then heated in the vapor phase in a second reaction zone at a temperature not exceeding 50°C above the boiling point of the fluorinated material.
Further fluorination with CoF 3 results in approximately 95% perfluorination
(3) recovering and recycling said highly fluorinated material to said second reaction zone; and this material is heated in the vapor phase to a temperature lower than that originally used in (2) above, to about
A non-containing process consisting of re-contacting the CoF 3 at stepwise increases in temperature ranging from 25°C to 130°C to give a substantially perfluorinated polycyclic hydrocarbon. A method for perfluorinating aromatic and non-aromatizable polycyclic hydrocarbons. 2. The method of claim 1, wherein the temperature of the first reaction zone is in the range of about 175-350<0>C. 3. The temperature of step (2) ranges from just above the boiling point of the partially fluorinated material sent from the first reaction zone in the first part of the second reaction zone to the temperature at the end of the second reaction zone. 2. A process according to claim 1, wherein the temperature is gradually increased to 50<0>C above the boiling point of the portion. 4. Claim 1 in which the polycyclic hydrocarbon is an alkyl adamantane having 11 to 30 carbon atoms.
The method described in section. 5. The process of claim 4, wherein the fluorinating agent in the first reaction zone is SF 4 and the alkyl adamantane is a carbonylated derivative thereof. 6 Polycyclic hydrocarbon is alkyl adamantane, 1
-ethyladamantane, 1-methyladamantane, 1-ethyl-3-methyladamantane, or 1-ethyl-3,5-dimethyladamantane. 7. The method according to claim 1, wherein the polycyclic hydrocarbon is exo- or endo-tetrahydrodicyclopentadiene. 8. The method according to claim 1, wherein the polycyclic hydrocarbon is bicyclooctane or bicyclononane. 9. The method according to claim 1, wherein the polycyclic hydrocarbon is methanodecalin. 10 (1) Partially fluorinated polycyclic hydrocarbons in the vapor phase above the boiling point of the fluorinated substance 50
Further fluorination with CoF 3 in the reaction zone at a temperature not exceeding , (2) recovering and recycling the highly fluorinated material to the reaction zone and treating it in the vapor phase with (1)
The substantially perfluorinated polycyclic compound is then re-contacted with CoF 3 at stepwise temperatures ranging from approximately 25°C to 130°C above the temperature at which it was originally used. A method for perfluorinating non-aromatic and non-aromatizable polycyclic hydrocarbons, comprising providing a hydrocarbon. 11. The temperature of step (1) ranges from just above the boiling point of the charged partially fluorinated material in the first part of the reaction zone to above the boiling point in the last part of the reaction zone. 11. A method according to claim 10, wherein the temperature is gradually increased to above 50<0>C. 12. The method of claim 10, wherein the partially fluorinated hydrocarbon is partially fluorinated adamantane. 13. The method of claim 10, wherein the partially fluorinated hydrocarbon is partially fluorinated tetrahydrodicyclopentadiene. 14. The method of claim 10, wherein the partially fluorinated hydrocarbon is partially fluorinated bicyclooctane or bicycloheptane. 15. The method of claim 10, wherein the partially fluorinated hydrocarbon is partially fluorinated methanodecalin.
JP2041278A 1977-02-25 1978-02-25 Improved method of perfluorating cyclic hydrocarbon Granted JPS53116359A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77187377A 1977-02-25 1977-02-25

Publications (2)

Publication Number Publication Date
JPS53116359A JPS53116359A (en) 1978-10-11
JPS6254088B2 true JPS6254088B2 (en) 1987-11-13

Family

ID=25093219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041278A Granted JPS53116359A (en) 1977-02-25 1978-02-25 Improved method of perfluorating cyclic hydrocarbon

Country Status (13)

Country Link
JP (1) JPS53116359A (en)
BE (1) BE864328A (en)
CA (1) CA1122597A (en)
CH (1) CH637910A5 (en)
DE (1) DE2808112A1 (en)
DK (1) DK84878A (en)
FI (1) FI69831C (en)
FR (1) FR2381732A1 (en)
GB (1) GB1597914A (en)
IT (1) IT1095441B (en)
NL (1) NL7802145A (en)
NO (2) NO153607C (en)
SE (2) SE428206B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821628A (en) * 1981-07-29 1983-02-08 Dainippon Ink & Chem Inc Norbornadiene derivative and its preparation
US4929317A (en) * 1986-12-01 1990-05-29 Tokuyama Soda Kabushiki Kaisha Process for preparation of perfluoro organic compounds
JP2010215524A (en) * 2009-03-13 2010-09-30 Fujifilm Corp Fluorobicyclo[2.2.2]octane compound, method for producing the same, and use thereof
JP2010215523A (en) * 2009-03-13 2010-09-30 Fujifilm Corp Fluorobicyclo[2.2.2]-2-octene compound, method for producing the same, and use thereof
RU2451006C1 (en) * 2011-05-05 2012-05-20 Общество с ограниченной ответственностью "ГалоПолимер Кирово-Чепецк" (ООО "ГалоПолимер Кирово-Чепецк") Method of producing perfluorocycloalkanes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641167A (en) * 1965-03-17 1972-02-08 Sun Oil Co Highly fluorinated alkyladamantanes
US4041086A (en) * 1972-02-07 1977-08-09 Sun Ventures, Inc. Process of manufacture of flourinated alkyladamantanes

Also Published As

Publication number Publication date
CA1122597A (en) 1982-04-27
NO153607B (en) 1986-01-13
JPS53116359A (en) 1978-10-11
NO780651L (en) 1978-08-28
IT1095441B (en) 1985-08-10
DE2808112C2 (en) 1989-04-27
NO153607C (en) 1986-04-23
NO153965C (en) 1986-06-25
NL7802145A (en) 1978-08-29
NO841238L (en) 1978-08-28
FR2381732A1 (en) 1978-09-22
FI780610A (en) 1978-08-26
SE428206B (en) 1983-06-13
NO153965B (en) 1986-03-17
FR2381732B1 (en) 1983-11-25
SE448371B (en) 1987-02-16
FI69831B (en) 1985-12-31
GB1597914A (en) 1981-09-16
BE864328A (en) 1978-08-28
CH637910A5 (en) 1983-08-31
DE2808112A1 (en) 1978-08-31
SE8102878L (en) 1981-05-07
DK84878A (en) 1978-08-26
FI69831C (en) 1986-05-26
IT7820651A0 (en) 1978-02-24
SE7802153L (en) 1978-08-26

Similar Documents

Publication Publication Date Title
EP0315783B1 (en) Process for the preparation of fluorinated c-4 to c-6 hydrocarbons and fluorinated cyclic hydrocarbons, and the use of fluorinated c-4 to c-6 hydrocarbons as propellants and working fluids in heat pump systems
JPH04502471A (en) Aluminum fluoride catalyst composition and its use in a chlorofluorination process for producing 1,1-dichloro-1,2,2,2-tetrafluoroethane
JP3056310B2 (en) Synthesis of fluorinated ethers
US6388139B1 (en) Production of perfluoro (alkyl vinyl) ethers
US2490764A (en) Fluorinated organic compounds
Campbell et al. Polyfluorobicyclo (2.2. 1) heptanes—I: 1H-undecafluoro-and 1H, 4H-decafluorobicyclo (2.2. 1) heptane and a novel elimination process
US2549988A (en) Manufacture of organic fluorine compounds
JPS6254088B2 (en)
DE69830746T2 (en) PROCESS FOR PREPARING COMPOUNDS WITH A -CH2-CHF STRUCTURAL ELEMENT
KR100462665B1 (en) Synthesis of vicinal difluoro aromatics and intermediates thereof
Smart Fluorinated bicyclics. I. exo-cis-Bromination of fluorinated norbornenes
US4220606A (en) Cyclic hydrocarbon perfluorination process
Olah et al. Organic fluorine compounds. XXXIII. Electrophilic additions to fluoro olefins in superacids
JPS6322040A (en) Synthesis of mono- or dihydroxyfluoroalkane
CA1129411A (en) Cyclic hydrocarbon perfluorination process
Smith et al. 487. Fluorocyclohexanes. Part I. cis-and trans-1 H: 2 H-decafluoro cyclo hexanes
JP6610267B2 (en) Method for producing fluorinated hydrocarbon
US2553217A (en) Cyclic organic fluorine compounds and method of making
US2608593A (en) Fluorination process
JP3130303B2 (en) Halohydrin
US3829511A (en) Process for separating perfluoroalkyliodide telomers
JPH01186828A (en) Fluorination of cyclic organic compound
JPH0791201B2 (en) Method for producing trifluorohydrocarbon compound
JPS62120327A (en) Fluoroalkylation process
JP2001518060A (en) Tricyclocarboxylic acid ester, method for producing the same, and fragrance comprising the same