JPS6253768B2 - - Google Patents

Info

Publication number
JPS6253768B2
JPS6253768B2 JP54015315A JP1531579A JPS6253768B2 JP S6253768 B2 JPS6253768 B2 JP S6253768B2 JP 54015315 A JP54015315 A JP 54015315A JP 1531579 A JP1531579 A JP 1531579A JP S6253768 B2 JPS6253768 B2 JP S6253768B2
Authority
JP
Japan
Prior art keywords
light
plate
defects
monochromatic
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54015315A
Other languages
Japanese (ja)
Other versions
JPS55107942A (en
Inventor
Yutaka Abe
Shozo Nomura
Toshinori Inoe
Motoo Igari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1531579A priority Critical patent/JPS55107942A/en
Publication of JPS55107942A publication Critical patent/JPS55107942A/en
Publication of JPS6253768B2 publication Critical patent/JPS6253768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Description

【発明の詳細な説明】 本発明はロータリレースから巻き取られたベニ
ヤ単板のような連続板材に適した光学的な検査方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical inspection method suitable for a continuous plate material such as a veneer veneer wound from a rotary race.

近来、ガスレーザによる単色光ビームを板材に
走査して、素材の色欠陥や染色むらなどを検出す
る検査方法が行なわれているが、この方法は受光
信号レベルの変化が欠陥の色度の変化によるもの
か、あるいは凹凸によるものか識別できないとい
う欠点がある。本発明は上記の点に鑑み、単一の
光学系によつて板材の節、虫穴、欠け等の凹凸欠
陥、青じみ、赤じみ、染色むら等の色欠陥、クラ
ツク、厚みむら、やにすじ、あるいは反射光では
検出できないような細孔などの厚み乃至密度の欠
陥などを同時に検出し、これらの欠陥を区別、分
類することを目的とするものである。
Recently, an inspection method has been used in which a monochromatic light beam from a gas laser is scanned across a plate material to detect color defects and uneven dyeing in the material, but this method detects changes in the received light signal level due to changes in the chromaticity of the defect. There is a drawback that it is not possible to distinguish whether it is caused by an object or by unevenness. In view of the above points, the present invention uses a single optical system to eliminate uneven defects such as knots, insect holes, and chips in board materials, color defects such as bluing, reddish, and uneven dyeing, cracks, uneven thickness, and yellowing. The purpose is to simultaneously detect thickness or density defects such as streaks or pores that cannot be detected with reflected light, and to distinguish and classify these defects.

以下本発明方法を実施例図によつて詳述する。
第1図において、1は投光器本体で、矢印A方向
に往復走行するようになつており、2は投光器移
動用の保持アームである。3はベニヤ単板などの
板材で、矢印B方向に搬送される。4は散乱光用
の光学フイルタ、5は正反射光用の光学フイルタ
であり、6は散乱光および正反射光兼用の受光ボ
ツクス、7は透過光用の受光ボツクス、8および
9は各受光ボツクスの受光面に装着された半透明
の光散乱板である。第2図は第1図の投光器本体
1および受光ボツクス6,7を省略して、投光器
本体1の内部に設けられた細長形の反射鏡10を
示したもので、反射鏡10は投光器本体1と共に
矢印A方向に移動する。第2図において、11は
He−Neレーザで、赤の単色ビームを発生し、1
2はArイオンレーザで、青と緑の各単色ビーム
を発生する。各レーザビームはダイクロイツクミ
ラー13,14によつて合成され、コリメータ1
5を通り、回転ミラー16によつて放射状に振動
させられ、放物面鏡17により水平面内に平行移
動する走査ビームとなつて、第3図に示すよう
に、投光器本体1の側板に設けられたスリツト1
8を通り、さらに斜めに配置された反射鏡10に
よつて板材3の表面に照射される。このように走
査ビームは回転ミラー16による振動と反射鏡1
0の往復走行によつて縦横両方向に走査されるの
である。第3図において、走査ビームの板材表面
への入射点すなわち照射スポツトから、正反射光
bが正反射光用のフイルタ5に向かい、散乱光a
が散乱光用のフイルタ4に向かつている。散乱光
用フイルタ4は入射点から見てほぼ法線方向すな
わちほぼ垂直上方に設けられており、正反射光用
フイルタ5は法線に関して入射光と対称な方向に
設けられている。すなわち図において、角度θ
とθが同じ大きさになつている。走査ビームが
板材表面に照射された場合、ビームの一部は表面
で反射され、一部は表層部の微小粒子すなわち原
子や分子などの振動子を振動させることにより、
特定のスペクトル成分が吸収されたのち、散乱光
として外部に放出され、また一部は板材に吸収さ
れ、残りは板材を透過する。上記のように測色的
性質をもつ散乱光を最も効率よく受光できるのは
法線方向であるから、色欠陥検出用の受光器(本
実施例では色欠陥検出用フイルタ)をほぼ法線方
向に配設したのである。一方表面で反射された光
すなわち正反射光は、当然測色的性質をもたず、
これを正反射角方向で受光することにより、板材
表面の光沢の変化すなわち凹凸欠陥を検出できる
のである。第3図において、上記各フイルタ4,
5には正反射光と散乱光が混じり合わないよう
に、それぞれフード19が設けられている。散乱
光用フイルタ4は赤と緑を透過し、正反射光用フ
イルタ5は青を透過し、各透過光は兼用受光ボツ
クス6の光散乱板8に入射する。兼用受光ボツク
ス6の内部には、走査ビーム中に合成された単色
光の数だけの光電変換素子20,21,22が各
光電面にそれぞれ赤、緑、青フイルタ23,2
4,25を装着して配置されている。光散乱板8
は照射スポツトが移動しても常に一定の光量を光
電変換素子に入射させるためのものである。また
板材を透過した光cは、受光ボツクス7の光散乱
板9で全方向に均等に散乱され、透過光用光電変
換素子26に受光される。第4図は信号処理系を
概略ブロツク図で示したもので、赤用、緑用、青
用の各光電変換素子20,21,22および透過
光用光電変換素子26の各出力信号が前処理回路
27で波形整形されたのち、欠陥分類回路28に
入つて各種欠陥として判別され、良否レベル設定
回路にて総合判定されて不良品が選別されるので
ある。本実施例では、受光器の構造を簡略化する
ために、光散乱板8を備えた兼用受光ボツクス6
内に各単色光の数だけの光電変換素子を設けたの
であるが、例えば投光器本体1の内部に散乱光用
受光器および正反射光用受光器を別個に設けても
よく、また投光器1を固定して板材3を矢印A方
向に搬送するようにしてもよい。
The method of the present invention will be explained in detail below using examples.
In FIG. 1, numeral 1 is a projector main body, which is designed to move back and forth in the direction of arrow A, and 2 is a holding arm for moving the projector. 3 is a board material such as a plywood veneer, which is conveyed in the direction of arrow B. 4 is an optical filter for scattered light, 5 is an optical filter for specularly reflected light, 6 is a light receiving box for both scattered light and specularly reflected light, 7 is a light receiving box for transmitted light, and 8 and 9 are each light receiving box. This is a semi-transparent light scattering plate attached to the light receiving surface of the sensor. FIG. 2 shows a slender reflecting mirror 10 provided inside the projector main body 1, with the projector main body 1 and light receiving boxes 6, 7 of FIG. 1 omitted. It also moves in the direction of arrow A. In Figure 2, 11 is
A He-Ne laser generates a red monochromatic beam, 1
2 is an Ar ion laser that generates blue and green monochromatic beams. Each laser beam is combined by dichroic mirrors 13 and 14, and collimator 1
5, is vibrated radially by a rotating mirror 16, and is converted into a scanning beam that is translated in a horizontal plane by a parabolic mirror 17.As shown in FIG. slit 1
8, and is further irradiated onto the surface of the plate material 3 by a reflecting mirror 10 arranged diagonally. In this way, the scanning beam is vibrated by the rotating mirror 16 and reflected by the reflecting mirror 1.
It is scanned in both the vertical and horizontal directions by the reciprocating movement of zero. In FIG. 3, from the point of incidence of the scanning beam on the surface of the plate material, that is, from the irradiation spot, specularly reflected light b heads toward a filter 5 for specularly reflected light, and scattered light a
is directed toward the filter 4 for scattered light. The filter 4 for scattered light is provided in a substantially normal direction, that is, substantially vertically upward, when viewed from the incident point, and the filter 5 for regular reflection light is provided in a direction symmetrical to the incident light with respect to the normal. That is, in the figure, the angle θ 1
and θ 2 have the same magnitude. When a scanning beam is applied to the surface of a plate, part of the beam is reflected by the surface, and part of the beam vibrates microparticles, such as atoms and molecules, on the surface.
After specific spectral components are absorbed, they are emitted to the outside as scattered light, some of which is absorbed by the plate, and the rest of the light is transmitted through the plate. As mentioned above, scattered light with colorimetric properties can be received most efficiently in the normal direction. It was placed in On the other hand, the light reflected from the surface, that is, the specularly reflected light, naturally does not have colorimetric properties.
By receiving this light in the direction of the regular reflection angle, it is possible to detect changes in gloss on the surface of the plate material, that is, irregularities defects. In FIG. 3, each of the above filters 4,
5 is provided with a hood 19 to prevent specularly reflected light and scattered light from mixing. The scattered light filter 4 transmits red and green, the regular reflection light filter 5 transmits blue, and each transmitted light enters the light scattering plate 8 of the dual-purpose light receiving box 6. Inside the dual-purpose light receiving box 6, there are as many photoelectric conversion elements 20, 21, and 22 as there are monochromatic lights combined in the scanning beam, and red, green, and blue filters 23, 2 are arranged on each photocathode, respectively.
4,25 are installed. Light scattering plate 8
This is to ensure that a constant amount of light is always incident on the photoelectric conversion element even if the irradiation spot moves. The light c transmitted through the plate material is evenly scattered in all directions by the light scattering plate 9 of the light receiving box 7, and is received by the photoelectric conversion element 26 for transmitted light. FIG. 4 is a schematic block diagram of the signal processing system, in which the output signals of the red, green, and blue photoelectric conversion elements 20, 21, and 22 and the transmitted light photoelectric conversion element 26 are preprocessed. After being waveform-shaped by the circuit 27, it enters the defect classification circuit 28 where it is classified as various defects, and then comprehensively judged by the pass/fail level setting circuit to select defective products. In this embodiment, in order to simplify the structure of the light receiver, a dual-purpose light receiving box 6 equipped with a light scattering plate 8 is used.
For example, a scattered light receiver and a specularly reflected light receiver may be separately provided inside the projector body 1, and the projector body 1 may have as many photoelectric conversion elements as the number of monochromatic lights. The plate material 3 may be conveyed in the direction of arrow A while being fixed.

本発明は上述のように、1本の光ビームに対し
て正反射方向と法線方向とに受光器を配設し、正
反射光で凹凸欠陥を、散乱光で色欠陥をそれぞれ
検査するようにしたものであるから、連続板材を
検査するに当たり、反射鏡を平行移動させて板材
の繊維方向と平行な入射光で走査し、導管溝によ
るノイズ成分を除去し得る上に、きわめて簡単な
構造で凹凸欠陥と色欠陥とを区別して検出し得る
という利点がある。
As described above, in the present invention, light receivers are arranged in the specular reflection direction and the normal direction for one light beam, and the specular reflection light is used to inspect uneven defects and the scattered light is used to inspect color defects. Therefore, when inspecting continuous plate materials, the reflecting mirror can be moved in parallel to scan with incident light parallel to the fiber direction of the plate material, and noise components due to conduit grooves can be removed, and the structure is extremely simple. This method has the advantage that uneven defects and color defects can be detected separately.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図
は一部切欠斜視図、第2図は一部省略した概略斜
視図、第3図は要部断面図、第4図は要部概略ブ
ロツク図である。 3……板材、4……散乱光用フイルタ、5……
正反射用フイルタ、6……散乱光および反射光用
兼用受光ボツクス、8……光散乱板、20……赤
用光電変換素子、21……緑用光電変換素子、2
2……青用光電変換素子、23……赤フイルタ、
24……緑フイルタ、25……青フイルタ、a…
…散乱光、b……正反射光、c……透過光。
The drawings show one embodiment of the present invention, in which Fig. 1 is a partially cutaway perspective view, Fig. 2 is a partially omitted schematic perspective view, Fig. 3 is a sectional view of the main part, and Fig. 4 is a main part. FIG. 2 is a schematic block diagram. 3...Plate material, 4...Scattered light filter, 5...
Specular reflection filter, 6... Light receiving box for both scattered light and reflected light, 8... Light scattering plate, 20... Photoelectric conversion element for red, 21... Photoelectric conversion element for green, 2
2... Blue photoelectric conversion element, 23... Red filter,
24... Green filter, 25... Blue filter, a...
...scattered light, b... specularly reflected light, c... transmitted light.

Claims (1)

【特許請求の範囲】 1 板材表面と平行に照射される光ビームを板材
の搬送方向と直角な方向に往復走行する反射鏡に
より板材表面に斜めに入射せしめ、入射点から見
て法線方向に散乱光を受光する色検出用の受光器
を配設すると共に、法線に関して入射光と対称な
方向に正反射光を受光する凹凸検出用の受光器を
配設して、両受光器により板材の色欠陥および凹
凸欠陥を同時に検出することを特徴とする板材の
検査方法。 2 板材の裏側に透過光を受光する受光器を配設
して、板材のクラツクや厚みなどの欠陥をも同時
に検出せしめることを特徴とする特許請求の範囲
第1項記載の板材の検査方法。 3 光ビームを2種類以上の単色光を合成して形
成し、上記法線方向に1種類以上の単色光を透過
する光学フイルタを配設し、上記正反射方向に残
りの単色光を透過する光学フイルタを配設し、両
フイルタの上方に半透明の光散乱板を受光面とす
る色検出および凹凸検出用の受光ボツクスを設け
て、該ボツクス内に上記各単色光をそれぞれ透過
する光学フイルタを配設し、各フイルタの後方に
それぞれ配置された光電変換素子の出力信号によ
り色欠陥の大きさと色度および凹凸欠陥の大きさ
を判別せしめることを特徴とする特許請求の範囲
第1項記載の板材の検査方法。
[Claims] 1. A light beam irradiated parallel to the surface of a plate is made obliquely incident on the surface of the plate by a reflecting mirror that travels back and forth in a direction perpendicular to the direction of conveyance of the plate, and is directed in the normal direction as seen from the point of incidence. A light receiver for detecting color that receives scattered light is provided, and a light receiver for detecting irregularities that receives specularly reflected light in a direction symmetrical to the incident light with respect to the normal is provided. A method for inspecting plate materials characterized by simultaneously detecting color defects and unevenness defects. 2. A method for inspecting a plate material according to claim 1, characterized in that a light receiver for receiving transmitted light is disposed on the back side of the plate material to simultaneously detect defects such as cracks and thickness of the plate material. 3. A light beam is formed by combining two or more types of monochromatic light, and an optical filter that transmits one or more types of monochromatic light in the normal direction is provided, and the remaining monochromatic light is transmitted in the regular reflection direction. An optical filter is provided, and a light receiving box for color detection and unevenness detection is provided above both filters with a translucent light scattering plate as a light receiving surface, and an optical filter that transmits each of the above monochromatic lights is installed in the box. Claim 1 is characterized in that the size and chromaticity of color defects and the size of unevenness defects are determined based on output signals of photoelectric conversion elements respectively arranged behind each filter. Inspection method for board materials.
JP1531579A 1979-02-13 1979-02-13 Inspecting method of plate Granted JPS55107942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1531579A JPS55107942A (en) 1979-02-13 1979-02-13 Inspecting method of plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1531579A JPS55107942A (en) 1979-02-13 1979-02-13 Inspecting method of plate

Publications (2)

Publication Number Publication Date
JPS55107942A JPS55107942A (en) 1980-08-19
JPS6253768B2 true JPS6253768B2 (en) 1987-11-12

Family

ID=11885341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1531579A Granted JPS55107942A (en) 1979-02-13 1979-02-13 Inspecting method of plate

Country Status (1)

Country Link
JP (1) JPS55107942A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780546A (en) * 1980-11-07 1982-05-20 Nippon Kogaku Kk <Nikon> Detecting device for foreign substance
JPS57128834A (en) * 1981-02-04 1982-08-10 Nippon Kogaku Kk <Nikon> Inspecting apparatus of foreign substance
JPS57158545A (en) * 1981-03-25 1982-09-30 Mitsubishi Electric Corp Surface defect inspecting device
US4795260A (en) * 1987-05-15 1989-01-03 Therma-Wave, Inc. Apparatus for locating and testing areas of interest on a workpiece
DE3819900A1 (en) * 1988-06-11 1989-12-14 Daimler Benz Ag METHOD FOR DETERMINING THE CORROSION STABILITY OF DEEP-DRAWABLE IRON SHEETS FOR BODY PARTS OF MOTOR VEHICLES, AND DEVICE FOR CARRYING OUT THIS METHOD
JPH01221776A (en) * 1989-01-26 1989-09-05 Ricoh Co Ltd Magnetic brush developing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071995A (en) * 1973-10-24 1975-06-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071995A (en) * 1973-10-24 1975-06-14

Also Published As

Publication number Publication date
JPS55107942A (en) 1980-08-19

Similar Documents

Publication Publication Date Title
FI58838C (en) REFERENCE FOR A DETECTION OF THE DEFECTIVE OF A VIRKE
US3812349A (en) Apparatus for inspecting cigarettes or the like
US4302108A (en) Detection of subsurface defects by reflection interference
US4469442A (en) Detecting irregularities in a coating on a substrate
JP2003501649A (en) High speed flaw detection apparatus and method for reflective materials
JPS6223250B2 (en)
US4522497A (en) Web scanning apparatus
US4330205A (en) Optical apparatus for measuring the size and location of optical in an article
JPS59227285A (en) Optical scanner of surface of moving cigarette continuous body
JPS6253768B2 (en)
US4764017A (en) Method for identifying timber surface properties
US20060065857A1 (en) Device and method for the quantified evaluation of surface characteristics
JP2678411B2 (en) Nori inspection method and device
JPS5973710A (en) Surface defect inspecting device for transparent disk
US5157266A (en) Method and device for testing transparent sheets
US4705957A (en) Wire surface monitor
JPH0228815B2 (en)
JPS5839934A (en) Surface defect detecting device
JPS6239380B2 (en)
JPH07146245A (en) Apparatus and method for detecting foreign matter
JPH10142162A (en) Coated layer flaw inspecting light selecting method, coated layer flaw inspecting method, and coated layer flaw inspecting device
JPH0252241A (en) Surface defect inspection instrument
JPS59183350A (en) Surface inspecting apparatus
JPH0378098A (en) Inspecting device for pader sheets
JPS59220636A (en) Detector for defect of sheet-shaped product