JPS6253610B2 - - Google Patents

Info

Publication number
JPS6253610B2
JPS6253610B2 JP58236376A JP23637683A JPS6253610B2 JP S6253610 B2 JPS6253610 B2 JP S6253610B2 JP 58236376 A JP58236376 A JP 58236376A JP 23637683 A JP23637683 A JP 23637683A JP S6253610 B2 JPS6253610 B2 JP S6253610B2
Authority
JP
Japan
Prior art keywords
fiber
aluminosilicate ceramic
carbon
aluminosilicate
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58236376A
Other languages
Japanese (ja)
Other versions
JPS60134025A (en
Inventor
Susumu Aoki
Seiji Sakurai
Junichi Kuchiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP23637683A priority Critical patent/JPS60134025A/en
Publication of JPS60134025A publication Critical patent/JPS60134025A/en
Publication of JPS6253610B2 publication Critical patent/JPS6253610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics

Description

【発明の詳細な説明】 本発明は、高度の耐熱性を有する無機質繊維そ
の製造法に関するものである。 約800℃をこえる高温の雰囲気で連続使用可能
な耐熱性繊維としてはセラミツク繊維が代表的な
ものであり、近年はそのすぐれた耐熱性、耐熱衝
撃性、軽量性、電気絶縁性、化学的安定性、吸音
性などを生かして、製鉄その他各種の金属工業、
化学工業、機械工業等において断熱材、高温シー
ル材、パツキング、消音材、濾材などに広く利用
されるようになつた。しかしながら、上記セラミ
ツク繊維の用途分野における各種設備は近年ます
ます高性能化する傾向にあり、これにともない、
そこで使われる耐熱性繊維材料についてもより一
層耐熱性のすぐれたものが要望されるようになつ
た。たとえば最も普通に使われているアルミノシ
リケート質セラミツク繊維は、ほんらい非晶質の
ものが、1000℃付近から徐々に結晶化を起こし、
主にムライトと遊離シリカ(またはクリストバラ
イト)を生じて著しい体積減少と強度低下を起こ
すから、約1500℃をこえる温度での使用には通常
耐えられない。 多くの点で他のセラミツク繊維よりも有利なア
ルミノシリケート質セラミツク繊維を基にして、
より耐熱性のすぐれた繊維を製造しようとする試
みはすでに多数あり、その代表的な方法として
は、アルミノシリケート質セラミツク繊維の製造
原料中に酸化クロムを混入する方法や、アルミノ
シリケート質セラミツク繊維の表面に酸化クロ
ム、アルミナ、リン化合物等を付着させる方法な
どがある。しかしながら、これらの方法は上記ム
ライトの生成を根本的に抑制するものではないか
ら、耐熱性向上の効果はあまり顕著なものではな
い。 本発明者らは上述のような現状を背景に、より
高度の耐熱性を有するアルミノシリケート系セラ
ミツク繊維を求めて鋭意研究を重ねた結果、該繊
維を構成するアルミノシリケート質の一部を窒素
物に変換する化学的改質によつて目的を達成し得
ることを知り、本発明を完成するに至つた。 すなわち本発明は、アルミノシリケート質セラ
ミツク繊維の表面を炭素の薄層で被覆し、得られ
た炭素被覆アルミノシリケート質セラミツク繊維
を、窒素、アンモニア、窒素−アンモニア混合気
体またはこれらのいずれかと水素との混合気体中
で、該繊維を構成するアルミノシリケート質から
Si−Al−O−N4元素化合物が生成する温度に加
熱することにより、アルミノシリケート質セラミ
ツク繊維の少なくとも表層部をSi−Al−O−N4
元素化合物に変換することを特徴とする耐熱性無
機質繊維の製造法を提案するものである。 本発明による耐熱性繊維は、上記製法から明ら
かなようにアルミノシリケート質セラミツク繊維
が改質されたものであるが、改質度の進んだもの
は、もはやアルミノシリケート質セラミツク繊維
とはいえない新たな組成のセラミツク繊維であ
る。この繊維の表層部または全部を構成するSi−
Al−O−N4元素化合物は、その好ましい組成が
式Si6ZAlZOZN8Z(但し、zは1.0〜4.2の正
数)で表わされるものであつて、この化合物自体
は公知のものである(K.H.Jack,J.Mat.Sci.,
11,1135)。しかしながら、この化合物は従来非
繊維分野における焼結体製造原料としてのみ検討
されており、これからなる繊維がアルミノシリケ
ート質セラミツク繊維から誘導された例はなく、
また他の径路で作られた例もなかつた。 アルミノシリケート質セラミツク繊維と窒素と
の化学反応によつて形成された繊維状Si−Al−O
−N4元素化合物は熱的にきわめて安定であり、
また全体がSi−Al−O−N4元素化合物に変換さ
れていない場合でも残りの部分がやはり熱的に安
定なムライトに変換されているから、本発明によ
る繊維はアルミノシリケート質セラミツク繊維に
みられるような結晶化に伴う大きな収縮や強度低
下を起こさず、したがつてアルミノシリケート質
セラミツク繊維よりも苛酷な条件での使用に耐え
るものである。 次に本発明による上記耐熱性繊維の製造法につ
いて説明する。 出発原料として使用するアルミノシリケート質
セラミツク繊維は、周知の常法により製造された
ものをいずれも使用することができるが、なかで
もSi−Al−O−N4元素化合物への変換が円滑に
行われる点で好ましいのは、SiO235〜55重量
%、Al2O365〜45重量%、残部5重量%以下のも
のである。このような組成のアルミノシリケート
質セラミツク繊維の市販品の例としては、フアイ
ンフレツクス1300、同1500(いずれもニチアス株
式会社製品)、リフラシール(HITCO社製品)な
どがある。繊維径は1〜10μのものがよく、特に
好ましいのは3〜5μのものである。 原料繊維の表面を炭素の薄層で被覆する方法と
しては、微粒子状炭素(たとえばカーボンブラツ
ク、グラフアイトなど)の分散液または炭素前駆
体(加熱して炭化させると炭素微粉末を生成する
物質、たとえばフエノール樹脂、アクリル樹脂
等、炭素含有率の高い有機化合物)の溶液を原料
繊維に噴霧するか浸漬法により付着させて乾燥
し、炭素前駆体溶液を用いた場合は更に不活性雰
囲気中で有機物が炭化可能な温度に加熱する方法
があるが、これらに限定されるわけではない。繊
維表面は、繊維に対して5〜30重量%(特に好ま
しくは10〜20重量%)の炭素粒子で、なるべく均
一に被覆されることが望ましい。また炭素粒子は
繊維表面で直径が1μ以下(好ましくは0.5μ以
下)の微粒子状態を保つていることが望ましい。 アルミノシリケート質セラミツク繊維の表面を
炭素で被覆する上記処理は、アルミノシリケート
質セラミツク繊維製造の最終工程において実施し
てもよい。 次に、得られた炭素被覆アルミノシリケート質
セラミツク繊維を密閉可能な加熱炉に入れ、炉を
密閉して炉内を約1×10-4Torr以下(望ましく
は1×10-6Torr程度)の真空にした後、窒素、
アンモニア、窒素−アンモニア混合気体またはこ
れらのいずれかと水素との混合気体を導入してそ
の圧力を0.1〜200Kg/cm2、望ましくは1〜100
Kg/cm2に保ち、1600〜2000℃、望ましくは1700〜
1800℃に加熱する。この加熱処理により、加熱温
度にもよるが約60分までの処理では繊維の表層部
に厚さ0.1μ前後のSi−Al−O−N4元素化合物層
が形成され、更に処理を続けると、全体がSi−Al
−O−N4元素化合物に変換される(直径3〜5
μの繊維の場合)。原料繊維を被覆していた炭素
は、この熱処理においてSiO2およびAl2O3の還元
剤として作用し、窒化反応を促進する。 以上のように、本発明によれば、Si−Al−O−
N4元素化合物またはこれとムライトからなる高
度耐熱性無機質繊維をアルミノシリケート質セラ
ミツク繊維の改質により容易に製造することがで
きる。 以下実施例を示して本発明を説明する。 実施例 1 フエノール樹脂ワニス・PlyophenJ−325(大
日本インキ株式会社製品)をメタノールで2倍に
希釈し、これにアルミノシリケート質セラミツク
繊維・フアインフレツクス1300(ニチアス株式会
社製品;SiO248重量%、Al2O352重量%)を室温
で浸漬することにより上記希釈液を繊維に付着さ
せ、処理済繊維を50℃−60mmHgで減圧乾燥した
のち窒素雰囲気中800℃で3時間加熱して表面の
フエノール樹脂を炭化させることにより、繊維重
量に対して10%の炭素で被覆されたアルミノシリ
ケート質セラミツク繊維を調製した。次いでこの
繊維をグラフアイト製ルツボに入れて電気炉内に
置き、炉内を1×10-6Torrまで排気したのち窒
素ガスを導入し、窒素ガス圧を1Kg/cm2に保ちな
がら昇温速度30℃/minで1800℃まで昇温し、
1800℃で120分間加熱した。 得られた繊維は、その鉱物組成をX線回折とX
線マイクロアナライザーにより解析した結果、繊
維全体がSi−Ai−O−N4元素化合物からなるこ
とが確認された。 実施例 2 炭素被覆アルミノシリケート質セラミツク繊維
の窒素中加熱処理の時間を30分に短縮したほかは
実施例1と同様にして、アルミノシリケート質セ
ラミツク繊維の改質を行なつた。得られた繊維
は、その鉱物組成をX線回折とX線マイクロアナ
ライザーにより解析した結果、厚さ約1μの表層
部がSi−Al−O−N4元素化合物からなり、芯部
がムライト結晶からなるものであることが確認さ
れた。 上記各例による製品および原料のアルミノシリ
ケート質セラミツク繊維について1500℃−3時間
の加熱試験を行い、加熱による収縮率および加熱
後の引張り強さを測定した。その結果を第1表に
示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an inorganic fiber having a high degree of heat resistance. Ceramic fiber is a typical heat-resistant fiber that can be used continuously in high-temperature environments exceeding approximately 800°C, and in recent years has received attention for its excellent heat resistance, thermal shock resistance, light weight, electrical insulation, and chemical stability. Taking advantage of its properties such as sound absorption and sound absorption, it is used in steel manufacturing and other various metal industries.
It has come to be widely used in the chemical industry, machinery industry, etc. for insulation materials, high-temperature sealing materials, packing materials, sound deadening materials, filter materials, etc. However, in recent years, the various types of equipment used in the above-mentioned fields of application of ceramic fibers have tended to become more and more sophisticated, and with this,
As for the heat-resistant fiber materials used therein, there has been a demand for materials with even better heat resistance. For example, the most commonly used aluminosilicate ceramic fibers are mostly amorphous, but gradually crystallize from around 1000℃.
It usually cannot withstand use at temperatures above about 1500°C, as it mainly forms mullite and free silica (or cristobalite), causing significant volume and strength loss. Based on aluminosilicate ceramic fibers, which have many advantages over other ceramic fibers,
There have already been many attempts to produce fibers with better heat resistance, and representative methods include mixing chromium oxide into the raw materials for producing aluminosilicate ceramic fibers, and There are methods such as attaching chromium oxide, alumina, phosphorus compounds, etc. to the surface. However, since these methods do not fundamentally suppress the formation of mullite, the effect of improving heat resistance is not so significant. Against the background of the above-mentioned current situation, the present inventors have conducted intensive research in search of aluminosilicate ceramic fibers with higher heat resistance. The present invention was completed based on the realization that the objective could be achieved through chemical modification to convert it into . That is, the present invention coats the surface of aluminosilicate ceramic fiber with a thin layer of carbon, and then injects the obtained carbon-coated aluminosilicate ceramic fiber with nitrogen, ammonia, a nitrogen-ammonia mixed gas, or any of these with hydrogen. In a mixed gas, the aluminosilicate that makes up the fiber
By heating to a temperature at which Si-Al-O-N4 elemental compounds are formed, at least the surface layer of the aluminosilicate ceramic fiber is converted into Si-Al-O-N4.
This paper proposes a method for producing heat-resistant inorganic fibers characterized by conversion into elemental compounds. As is clear from the above manufacturing method, the heat-resistant fiber according to the present invention is a modified aluminosilicate ceramic fiber, but the highly modified fiber is a new product that can no longer be called an aluminosilicate ceramic fiber. It is a ceramic fiber with a unique composition. Si- which constitutes the surface layer or all of this fiber
The preferred composition of the Al-O-N4 element compound is represented by the formula Si 6 - Z Al Z O Z N 8 - Z (where z is a positive number from 1.0 to 4.2), and the compound itself is It is a known one (KHJack, J.Mat.Sci.,
11, 1135). However, this compound has so far only been considered as a raw material for producing sintered bodies in the non-textile field, and there are no examples of fibers made from it being derived from aluminosilicate ceramic fibers.
There were also no examples of it being made using other routes. Fibrous Si-Al-O formed by chemical reaction between aluminosilicate ceramic fiber and nitrogen
−N4 element compounds are extremely thermally stable;
Furthermore, even if the entire portion is not converted to Si-Al-O-N4 elemental compound, the remaining portion is still converted to thermally stable mullite, so the fiber according to the present invention is found in aluminosilicate ceramic fiber. It does not undergo large shrinkage or strength reduction due to crystallization, and therefore can withstand use under harsher conditions than aluminosilicate ceramic fibers. Next, a method for producing the heat-resistant fiber according to the present invention will be explained. The aluminosilicate ceramic fiber used as a starting material can be any one manufactured by a well-known conventional method, but among them, the one that can be smoothly converted into a Si-Al-O-N4 elemental compound From this point of view, preferred is SiO 2 35-55% by weight, Al 2 O 3 65-45% by weight, and the remainder 5% by weight or less. Examples of commercially available aluminosilicate ceramic fibers with such compositions include Fineflex 1300 and Fineflex 1500 (both products of Nichias Corporation), and Refraseal (product of HITCO Corporation). The fiber diameter is preferably 1 to 10 microns, particularly preferably 3 to 5 microns. The surface of raw material fibers can be coated with a thin layer of carbon by using a dispersion of particulate carbon (e.g. carbon black, graphite, etc.) or a carbon precursor (a substance that produces fine carbon powder when heated and carbonized). For example, a solution of an organic compound with a high carbon content (such as phenolic resin or acrylic resin) is applied to the raw fiber by spraying or dipping, and then dried. If a carbon precursor solution is used, the organic compound is further removed in an inert atmosphere. There is a method of heating to a temperature at which it can be carbonized, but it is not limited to these methods. It is desirable that the fiber surface be coated as uniformly as possible with carbon particles in an amount of 5 to 30% by weight (particularly preferably 10 to 20% by weight) based on the fiber. Further, it is desirable that the carbon particles maintain a fine particle state with a diameter of 1 μm or less (preferably 0.5 μm or less) on the fiber surface. The above treatment of coating the surface of the aluminosilicate ceramic fiber with carbon may be carried out in the final step of producing the aluminosilicate ceramic fiber. Next, the obtained carbon-coated aluminosilicate ceramic fibers are placed in a sealable heating furnace, and the furnace is sealed to keep the inside of the furnace at a temperature of about 1×10 -4 Torr or less (preferably about 1×10 -6 Torr). After vacuuming, nitrogen,
Ammonia, a nitrogen-ammonia mixed gas, or a mixed gas of either of these and hydrogen is introduced and the pressure is adjusted to 0.1 to 200 Kg/cm 2 , preferably 1 to 100 Kg/cm 2 .
Kg/ cm2 , maintained at 1600~2000℃, preferably 1700~
Heat to 1800℃. Through this heat treatment, a Si-Al-O-N4 elemental compound layer with a thickness of around 0.1μ is formed on the surface layer of the fibers for up to about 60 minutes, depending on the heating temperature, and if the treatment is continued further, the entire is Si−Al
-O-N4 element compound (diameter 3-5
for μ fibers). The carbon that coated the raw material fiber acts as a reducing agent for SiO 2 and Al 2 O 3 during this heat treatment and promotes the nitriding reaction. As described above, according to the present invention, Si-Al-O-
Highly heat-resistant inorganic fibers made of N4 elemental compounds or N4 element compounds and mullite can be easily produced by modifying aluminosilicate ceramic fibers. The present invention will be explained below with reference to Examples. Example 1 Phenol resin varnish PlyophenJ-325 (product of Dainippon Ink Co., Ltd.) was diluted twice with methanol, and aluminosilicate ceramic fiber Fineflex 1300 (product of Nichias Co., Ltd.; SiO 2 48% by weight) was diluted twice with methanol. , Al 2 O 3 (52% by weight)) at room temperature to adhere the diluted solution to the fibers, and the treated fibers were dried under reduced pressure at 50℃-60mmHg, and then heated at 800℃ for 3 hours in a nitrogen atmosphere to coat the surface. Aluminosilicate ceramic fibers coated with 10% carbon based on the fiber weight were prepared by carbonizing phenolic resin. Next, this fiber was placed in a crucible made of graphite and placed in an electric furnace, and the furnace was evacuated to 1 × 10 -6 Torr, nitrogen gas was introduced, and the temperature was increased at a rate of increase while maintaining the nitrogen gas pressure at 1 kg/cm 2 . Raise the temperature to 1800℃ at 30℃/min,
Heated at 1800°C for 120 minutes. The mineral composition of the obtained fibers was determined by X-ray diffraction and
As a result of analysis using a line microanalyzer, it was confirmed that the entire fiber was composed of a Si-Ai-O-N4 elemental compound. Example 2 Aluminosilicate ceramic fibers were modified in the same manner as in Example 1, except that the time for heat treatment of the carbon-coated aluminosilicate ceramic fibers in nitrogen was shortened to 30 minutes. The mineral composition of the obtained fibers was analyzed using X-ray diffraction and an X-ray microanalyzer, and it was found that the surface layer, approximately 1μ thick, was composed of a Si-Al-O-N4 elemental compound, and the core was composed of mullite crystals. It was confirmed that it was. A heating test was conducted at 1500 DEG C. for 3 hours on the products and raw material aluminosilicate ceramic fibers according to each of the above examples, and the shrinkage rate due to heating and the tensile strength after heating were measured. The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 アルミノシリケート質セラミツク繊維の表面
を炭素の薄層で被覆し、得られた炭素被覆アルミ
ノシリケート質セラミツク繊維を、窒素、アンモ
ニア、窒素−アンモニア混合気体またはこれらの
いずれかと水素との混合気体中で、該繊維を構成
するアルミノシリケート質からSi−Al−O−N4
元素化合物が生成する温度に加熱することを特徴
とする耐熱性無機質繊維の製造法。 2 アルミノシリケート質セラミツク繊維が
SiO235〜55重量%、Al2O365〜45重量%、残部5
重量%以下のものである特許請求の範囲第1項記
載の製造法。 3 炭素被覆アルミノシリケート質セラミツク繊
維の加熱温度が1600〜2000℃である特許請求の範
囲1項または第2項記載の製造法。
[Claims] 1. The surface of an aluminosilicate ceramic fiber is coated with a thin layer of carbon, and the obtained carbon-coated aluminosilicate ceramic fiber is heated with nitrogen, ammonia, a nitrogen-ammonia mixed gas, or any of these gases and hydrogen. Si-Al-O-N4 from the aluminosilicate material constituting the fiber in a gas mixture with
A method for producing heat-resistant inorganic fibers, which comprises heating to a temperature at which elemental compounds are generated. 2 Aluminosilicate ceramic fiber
SiO 2 35-55% by weight, Al 2 O 3 65-45% by weight, balance 5
% or less by weight. 3. The manufacturing method according to claim 1 or 2, wherein the carbon-coated aluminosilicate ceramic fiber is heated at a temperature of 1,600 to 2,000°C.
JP23637683A 1983-12-16 1983-12-16 Heat-resistant inorganic fiber and its production Granted JPS60134025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23637683A JPS60134025A (en) 1983-12-16 1983-12-16 Heat-resistant inorganic fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23637683A JPS60134025A (en) 1983-12-16 1983-12-16 Heat-resistant inorganic fiber and its production

Publications (2)

Publication Number Publication Date
JPS60134025A JPS60134025A (en) 1985-07-17
JPS6253610B2 true JPS6253610B2 (en) 1987-11-11

Family

ID=16999871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23637683A Granted JPS60134025A (en) 1983-12-16 1983-12-16 Heat-resistant inorganic fiber and its production

Country Status (1)

Country Link
JP (1) JPS60134025A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875823A (en) * 1971-12-22 1973-10-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875823A (en) * 1971-12-22 1973-10-12

Also Published As

Publication number Publication date
JPS60134025A (en) 1985-07-17

Similar Documents

Publication Publication Date Title
CN1189430C (en) Composite carbonaceous heat insualtor and its prepn.
KR101810238B1 (en) A method for coating oxidation protective layer for carbon/carbon composite, a carbon heater, and cooker
Shimoo et al. Thermal stability of low‐oxygen silicon carbide fiber (Hi‐Nicalon) subjected to selected oxidation treatment
US4572844A (en) Method for preparing coated powder
US3709717A (en) Ceramic coated articles
Shimoo et al. Effect of Firing Temperature on the Thermal Stability of Low‐Oxygen Silicon Carbide Fibers
JPS6253610B2 (en)
JPS6048473B2 (en) Flexible graphite material and its manufacturing method
KR100520435B1 (en) Method for Making Oxidation Protective Coating for Carbon/Carbon Composite
JPH06234573A (en) Preparation of ceramic material wherein thialon is main component
KR101856145B1 (en) Process for SiC coating on graphite foam containing silicon
JPH01249679A (en) Graphite-silicon carbide composite body and production thereof
RU2771029C1 (en) Method for producing composite carbon-silicon carbide fibres with a "core-skin" structure
KR102208517B1 (en) SiC nanotube and a method thereof
JPH0225686A (en) Heat insulating material for heating furnace
JPH03221442A (en) Anticorrosive and oxidation-resistant material
JPH08119741A (en) Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact
JP2855458B2 (en) Processing material for semiconductor
JP2003192459A (en) Production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon
JPS6246965A (en) Sic-si3n4 base composite ceramics and manufacture
JPS60186473A (en) Silicon nitride sintered body and manufacture
JPH01122976A (en) Porous carbon shaped product
WO1990004574A1 (en) Composite boron nitride material and process for its production
JPS6175875A (en) Surface modifeed carbon fiber and its production
JPH03100160A (en) Production of perforated body of molybdenum silicide