JPS60134025A - Method for producing heat-resistant inorganic fibers - Google Patents
Method for producing heat-resistant inorganic fibersInfo
- Publication number
- JPS60134025A JPS60134025A JP23637683A JP23637683A JPS60134025A JP S60134025 A JPS60134025 A JP S60134025A JP 23637683 A JP23637683 A JP 23637683A JP 23637683 A JP23637683 A JP 23637683A JP S60134025 A JPS60134025 A JP S60134025A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- carbon
- aluminosilicate
- ceramic
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000012784 inorganic fiber Substances 0.000 title claims description 5
- 239000000835 fiber Substances 0.000 claims description 54
- 239000000919 ceramic Substances 0.000 claims description 34
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 24
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052863 mullite Inorganic materials 0.000 claims description 6
- 239000010410 layer Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000002344 surface layer Substances 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- CVTZKFWZDBJAHE-UHFFFAOYSA-N [N].N Chemical compound [N].N CVTZKFWZDBJAHE-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 239000007833 carbon precursor Substances 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- -1 etc. in industry Substances 0.000 description 2
- 239000012210 heat-resistant fiber Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、高度の耐熱性を有する無機質繊維およびその
製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inorganic fiber having high heat resistance and a method for producing the same.
約800℃をこえる高温の雰囲気で連続使用可能な耐熱
性t!JllとしてはセラミックNlL維が代表的なも
のであり、近年はそのすぐれた耐熱性、耐熱衝撃性、軽
量性、電気絶縁性、化学的安定性、吸音性などを生かし
て、製鉄その他各種の金属工業、化学工業、機械工業等
において断熱材、高温シール材、バッキング、消音材、
濾材などに広く利用されるようになった。しかしながら
、上記セラミック繊維の用途分野における各種設備は近
年ますます高性能化する傾向にあり、これにともない、
そこで使われる耐熱性N&維材料についてもより一層耐
熱性のすぐれたものが要望されるようになった。たとえ
ば最も普通に使われているアルミノシリテート質セラミ
ック繊訛は、はんらい非晶質のものが、1000℃付近
から徐々に結晶化を起こし、主にムライトと遊離シリカ
(またはクリ支ドパライト)を生じて著しい体積減少と
強度低下を起こすから、約1500℃をこえる温度での
使用には通常耐えられなり1゜
多くの点で他のセラミック繊維よりも有利なアルミノシ
リケート質セラミック繊Mしを基にして、より耐熱性の
すぐれた繊維を製造しようとする試みはすでに多数あり
、その代表的な方法としては、アルミノシリケート質セ
ラミック繊維の製造原料中に酸化クロムを混入する方法
や、アルミ/シリケート質セラミック繊維の表面に酸化
クロム、アルミナ、リン化合物等を付着させる方法など
がある。しがしなが呟これらの方法は上記ムライトの生
成を根本的に抑制するものではないから、耐熱性向」二
の効果はあまり顕著なものではない。Heat resistant, can be used continuously in high temperature atmospheres exceeding approximately 800℃! Ceramic NIL fiber is a typical JLL fiber, and in recent years, it has been used in steel manufacturing and various other metals, taking advantage of its excellent heat resistance, thermal shock resistance, light weight, electrical insulation, chemical stability, and sound absorption properties. Insulating materials, high temperature sealing materials, backings, sound deadening materials, etc. in industry, chemical industry, mechanical industry, etc.
It has become widely used as filter media. However, in recent years, the various types of equipment used in the above ceramic fiber application fields have tended to become more and more sophisticated.
As for the heat-resistant N&fiber materials used for this purpose, there has been a demand for even more heat-resistant materials. For example, the most commonly used aluminosilitate ceramic fiber is amorphous, but gradually crystallizes from around 1000℃, and consists mainly of mullite and free silica (or dopalite). Aluminosilicate ceramic fibers, which are advantageous over other ceramic fibers in many respects, are generally not suitable for use at temperatures above about 1500°C. Based on this, there have already been many attempts to produce fibers with better heat resistance, and typical methods include mixing chromium oxide into the raw material for producing aluminosilicate ceramic fibers, and mixing aluminum/ There are methods of attaching chromium oxide, alumina, phosphorus compounds, etc. to the surface of silicate ceramic fibers. Shigashina: These methods do not fundamentally suppress the formation of mullite, so the effect on heat resistance is not very significant.
本発明者らは上述のような現状を背景に、より高度の耐
熱性を有するアルミノシリケート系セラミック繊維をめ
て鋭意研究を重ねた結果、該繊維を構成するアルミノシ
リケート質の一部を窒化物に変換する化学的改質によっ
て目的を達成し得ることを知り、本発明を完成するに至
った。Against the background of the above-mentioned current situation, the inventors of the present invention have conducted extensive research into aluminosilicate ceramic fibers with higher heat resistance. The present invention was completed based on the realization that the objective could be achieved by chemical modification to convert the molecule into a .
すなわち本発明は、アルミノシリケート質セラミック繊
維の少なくとも表層部を5i−AI−0−N 4元素化
合物に変換してなる耐熱性無機質繊維、およびこの繊維
の製造法として、アルミ/シリケート貿セラミック繊細
の表面を炭素の薄層で被覆し、得られた炭素被覆アルミ
ノシリケート質セラミック繊維を、窒素、アンモニア、
窒素−アンモニア混合x体またはこれらのいずれかと水
素との混合気体中で、−該4&維を構成するアルミノシ
リケート質から5iAl−0−N 4元素化合物が生成
する温度に加熱する方法を提供するものである。That is, the present invention provides a heat-resistant inorganic fiber obtained by converting at least the surface layer of an aluminosilicate ceramic fiber into a 5i-AI-0-N four-element compound, and a method for producing this fiber, which uses a delicate aluminum/silicate ceramic fiber. The surface is coated with a thin layer of carbon, and the resulting carbon-coated aluminosilicate ceramic fiber is treated with nitrogen, ammonia,
Provided is a method for heating in a nitrogen-ammonia mixture or a mixed gas of any of these and hydrogen to a temperature at which a 5iAl-0-N 4-element compound is produced from the aluminosilicate material constituting the 4&fiber. It is.
本発明による耐熱性繊維は、−1−紀要法から明らかな
ようにアルミノシリケート質セラミック繊細が改質され
たものであるが、改質度の進んだものは、もはやアルミ
ノシリケート質セラミック繊維とはいえない新たな組成
のセラミック繊細である。この繊維の表層部または全部
を構成する5i−AI−0−N4元素化合物は、その好
ましいm歳が式S!5−zAl□○2N、、−2(但し
2は1.0〜4.2の正数)で表わされるものであって
、この化合物自体は公知のものである(K、I−L J
ack。The heat-resistant fiber according to the present invention is a modified aluminosilicate ceramic fiber, as is clear from the -1-Bulletin Act, but the highly modified fiber is no longer considered an aluminosilicate ceramic fiber. It is a delicate ceramic with an unprecedented new composition. The 5i-AI-0-N4 elemental compound constituting the surface layer or the entirety of this fiber has a preferred formula S! It is represented by 5-zAl
ack.
J、 Mat、 Sci、、j j v 1135)。J, Mat, Sci, 1135).
しカルなが呟この化合物は従来非繊維分野における焼
結体製造原料としてのみ検討されており、これからなる
繊維がアルミノシリケート質セラミック繊維から誘導さ
れた例はなく、また他の径路で作られた例もなかった。This compound has been considered only as a raw material for producing sintered bodies in the non-textile field, and there are no examples of fibers made from it being derived from aluminosilicate ceramic fibers, and there is no evidence that it has been made using other routes. There were no examples.
アルミノシリケート質セラミック繊維と窒素との化学反
応によって形成された繊it状S i−A I−○−N
4元素化合物は熱的にきわめて安定であり、また全体
が5i−AI−0−N 4元素化合物に変換されていな
い場合でも残りの部分がやはり熱的に安定なムライトに
変換されているから、本発明による繊維はアルミノシリ
ケ−)質セラミック繊維にみちれるような結晶化に伴う
大きな収縮や強度低下を起こさず、したがってアルミノ
シリケート質セラミック繊維よりも苛酷な条件での使用
に耐えるものである。Fibrous S i-A I-○-N formed by chemical reaction between aluminosilicate ceramic fiber and nitrogen
The four-element compound is thermally extremely stable, and even if the entire 5i-AI-0-N four-element compound is not converted, the remaining part is still converted to thermally stable mullite. The fibers of the present invention do not suffer from the large shrinkage or strength loss associated with crystallization that occurs with aluminosilicate ceramic fibers, and therefore can withstand more severe conditions than aluminosilicate ceramic fibers.
次に本発明による上記耐熱性繊維の製造法について説明
する。Next, a method for producing the heat-resistant fiber according to the present invention will be explained.
出発原料として使用するアルミノシリチー1質セラミッ
ク繊MLは、周知の常法により製造されたものをいずれ
も使用することができるが、なかでも 5i−AI−0
−N 4元素化合物への変換が円滑に行われる点で好ま
しいのは、Si0235〜55重量%、A120365
〜45重量%、残部5重量%以下のものである。このよ
うな組成のアルミ/シリケート質セラミックmatの市
販品の例としては、ファインフレックス1300、同1
500(いずれもニチアス株式会社製品)、す7ラシー
ル()−11TcO社製品)などがある。繊組:径は1
〜10μのものがよく、特に好ましいのは3〜5μのも
のである。As the aluminosilicate monolithic ceramic fiber ML used as a starting material, any one manufactured by a well-known conventional method can be used, but among them, 5i-AI-0
-N From the viewpoint of smooth conversion to a four-element compound, Si0235 to 55% by weight, A120365
~45% by weight, with the remainder being 5% by weight or less. Examples of commercially available aluminum/silicate ceramic mats with such compositions include Fineflex 1300 and Fineflex 1.
500 (both manufactured by NICHIAS Co., Ltd.), Su7 Rashir ()-11 manufactured by TcO Co., Ltd., etc. Textile: Diameter is 1
A thickness of ~10μ is preferred, and a value of 3 to 5μ is particularly preferred.
原料繊維の表面を炭素の薄層で被覆する方法としては、
微粒子状炭素(たとえばカーボンブラック、グラ7アイ
Fなど)の分散液または炭素前駆体(加熱して炭化させ
ると炭素微粉末を生成する物質、たとえばフェノール樹
脂、アクリル樹脂等、炭素含有率の高い有機化合物)の
溶液を原料1m紺に噴霧するか浸漬法により(4着させ
て乾燥し、炭素前駆体溶液を用いた場合は更に不活性雰
囲気中で有機物が炭化可能な温度に加熱する方法がある
が、これらに限定されるわけではない。The method of coating the surface of raw fiber with a thin layer of carbon is as follows:
A dispersion of fine particulate carbon (e.g. carbon black, Gura 7 Eye F, etc.) or a carbon precursor (a substance that produces fine carbon powder when heated and carbonized, such as an organic material with a high carbon content such as phenol resin or acrylic resin) There is a method of spraying a solution of a compound) on 1 m of navy blue raw material or by dipping it (4 coats) and drying it, and then heating it in an inert atmosphere to a temperature at which the organic matter can be carbonized if a carbon precursor solution is used. However, it is not limited to these.
繊維表面は、繊維に対して5〜30重量%(特に好まし
くは10〜20重景%)の炭素粒子で、なるべく均一に
被覆されることが望ましい。また炭素粒子は繊維表面で
直径がi /J以下(好ましくは()、5μ以下)の微
粒子状態を保っていることが望ましい。It is desirable that the fiber surface be coated as uniformly as possible with carbon particles in an amount of 5 to 30% by weight (particularly preferably 10 to 20% by weight) based on the fiber. Further, it is desirable that the carbon particles maintain a fine particle state with a diameter of i 2 /J or less (preferably (), 5 μ or less) on the fiber surface.
アルミノシリケート質セラミック繊維の表面を炭素で被
覆する上記処理は、アルミ/シリク−)質セラミック繊
維製造の最終工程において実施してもよい。The above treatment of coating the surface of the aluminosilicate ceramic fiber with carbon may be carried out in the final step of producing the aluminosilicate ceramic fiber.
次に、得られた炭素被覆アルミ/シリケート質セラミッ
ク繊維を密閉可能な加熱炉に入れ、炉を密閉して炉内を
約1×in−’Torr以下(望ましくは1 X 10
−6Torr程度)の真空にした後、窒素、アンモニア
、窒素−アンモニア混合気体またはこれらのいずれかと
水素との混合気体を導入してその圧力を0.1−200
Kg/cm2、望ましくはi −100Kg/am2
に保ち、16 (I (1−2000℃、望ましくは1
700〜1800 ”Cに加熱する。この加熱処理によ
り、加熱温度にもよるが約60分までの処理では繊維の
表層部に厚さ0.1/7前後の5i−AI−0−N 4
元素化合物層が形成され、更に処理を続けると、全体が
5i−AI−0−N 4元素化合物に変換される(直径
3〜5 /Jの繊維の場合)。原料繊維を被覆していた
炭素は、この熱処理においてSio2およびAl2O,
の還元剤として作用し、窒化反応を促進する。Next, the obtained carbon-coated aluminum/silicate ceramic fibers are placed in a sealable heating furnace, the furnace is sealed, and the inside of the furnace is heated to about 1 x in-' Torr or less (preferably 1 x 10
After creating a vacuum of -6 Torr, nitrogen, ammonia, a nitrogen-ammonia mixed gas, or a mixture of any of these and hydrogen is introduced to reduce the pressure to 0.1-200 Torr.
Kg/cm2, preferably i-100Kg/am2
16 (I (1-2000℃, preferably 1
Heat to 700 to 1800"C. Through this heat treatment, 5i-AI-0-N 4 with a thickness of around 0.1/7 is coated on the surface layer of the fiber for up to about 60 minutes, depending on the heating temperature.
An elemental compound layer is formed and further processing converts the whole into a 5i-AI-0-N quaternary compound (for fibers with a diameter of 3-5/J). During this heat treatment, the carbon that coated the raw material fibers was converted into Sio2 and Al2O,
acts as a reducing agent and promotes the nitriding reaction.
以」−のように、本発明によれば5i−AI−0−N
4元素化合物またはこれとムライトとからなる高度耐熱
性無機質m維をアルミノシリケート質セラミック繊維の
改質により容易に製造することができる。According to the present invention, 5i-AI-0-N
Highly heat-resistant inorganic fibers made of a four-element compound or this and mullite can be easily produced by modifying aluminosilicate ceramic fibers.
以下実施例を示して本発明を説明する。The present invention will be explained below with reference to Examples.
実施例 1
フェノール樹脂ワニス・Plyopl+en J−32
5(大日本インキ株式会社製品)をメタノールで2倍に
希釈し、これにアルミノシリケート質セラミックwL維
・ファインフレックス1300にチアス株式会社製品;
5i0248重景%、Al□0152重量%)を室温
で浸漬することにより上記希釈液を繊AlEに付着させ
、処理済繊itを50℃−60mm1−1gで減圧乾燥
したのち窒素雰囲気中800℃で3時間加熱して表面の
7エノール樹脂を炭化させることにより、繊維重量に対
して10%の炭素で被覆されたアルミノシリケート質セ
ラミック繊維を調製した。次いでこのu&紺をグラファ
イト製ルツボに入れて電気炉内に置き、炉内を1 X
i 0−6Torrまで抽気したのち窒素ガスを導入し
、窒素ガス圧を1 Ki?/cm2に保ちなから層温速
度30℃/minで1800℃まで昇温し、1800℃
で120分間加熱した。Example 1 Phenolic resin varnish・Plyopl+en J-32
5 (Dainippon Ink Co., Ltd. product) diluted twice with methanol, add aluminosilicate ceramic wL fiber Fine Flex 1300 to Chias Co., Ltd. product;
The above diluted solution was attached to the fiber AlE by immersing it (5i0248 weight%, Al□0152% by weight) at room temperature, and the treated fiber was dried under reduced pressure at 50°C-60mm 1-1g, and then at 800°C in a nitrogen atmosphere. By heating for 3 hours to carbonize the 7-enol resin on the surface, an aluminosilicate ceramic fiber coated with 10% carbon based on the weight of the fiber was prepared. Next, put this u & navy blue into a graphite crucible, place it in an electric furnace, and heat the inside of the furnace to 1X.
i After extracting air to 0-6 Torr, nitrogen gas was introduced and the nitrogen gas pressure was increased to 1 Ki? /cm2, then raise the temperature to 1800°C at a layer temperature rate of 30°C/min.
and heated for 120 minutes.
得られた繊維は、その鉱物組成をX線回折とX線マイク
ロアナライザーにより解析した結果、繊維全体が5i−
AI−0−N 4元素化合物からなることが確認された
。The mineral composition of the obtained fibers was analyzed using X-ray diffraction and an X-ray microanalyzer, and the results showed that the entire fiber was 5i-
It was confirmed that AI-0-N consists of a four-element compound.
実施例 2
炭素被覆アルミノシリケート質セラミックt&紺の窒素
中加熱処理の時間を30分に短縮したほかは実施例1と
同様にして、アルミノシリケート質セラミック繊維の改
質を行なった。Example 2 Aluminosilicate ceramic fibers were modified in the same manner as in Example 1, except that the time for heat treatment of the carbon-coated aluminosilicate ceramic T & navy blue in nitrogen was shortened to 30 minutes.
得られた繊維は、その鉱物組成をX線回折とX線マイク
ロアナライザーにより解析した結果、厚さ約i /Jの
表層部が5i−AI−0−N 4元素化合物からなり、
芯部がムライト結晶からなるものであることが確認され
た。As a result of analyzing the mineral composition of the obtained fibers using X-ray diffraction and an X-ray microanalyzer, it was found that the surface layer with a thickness of approximately i/J was composed of a 5i-AI-0-N four-element compound;
It was confirmed that the core was made of mullite crystal.
」ニ記各例による製品および原料のアルミノシリケート
質セラミ・ンク#&紺について1500℃−3時間の加
熱試験を行(・、加熱による収縮率および加熱後の引張
り強さを測定した。その結果を第1表に示す。A heating test was conducted at 1500°C for 3 hours on the products and raw material aluminosilicate ceramic ink #& navy blue according to each example (the shrinkage rate due to heating and the tensile strength after heating were measured.The results are shown in Table 1.
第1表
p、!Mす1 店(j12 Fi、≧14fQ4加熱に
よる収縮率(%) 0.1 0.5 Is、0加熱後引
張強度(Kg/Cm”) 1 S O11010代理人
弁理士 板井−朧Table 1 p,! Msu1 Store (j12 Fi, ≧14fQ4 Shrinkage rate due to heating (%) 0.1 0.5 Is, 0 Tensile strength after heating (Kg/Cm") 1 S O11010 agent Patent attorney Itai Oboro
Claims (6)
とも表層部を5i−AI−0−N 4元素化合物に変換
してなる耐熱性無機質繊維。(1) A heat-resistant inorganic fiber obtained by converting at least the surface layer of aluminum/silicate ceramic N and navy blue into a 5i-AI-0-N four-element compound.
+6−zA 1202N、−2((IIL 2fi1.
0〜4.2の正数)で表わされるものである特許請求の
範囲第1項記載の繊維。(2) 5i-ALO-N 4-element compound has composition formula S
+6-zA 1202N, -2((IIL 2fi1.
The fiber according to claim 1, which is represented by a positive number from 0 to 4.2.
以外の部分が実質的にムライトからなる特許請求の範囲
第1項記載の繊維。(3) The fiber according to claim 1, in which the portion other than the portion consisting of the Si-AI-0-N four-element compound substantially consists of mullite.
素の薄層で被覆し、得られた炭素被覆アルミノシリケー
ト質セラミックwL維を、窒素、アンモニア、窒素−ア
ンモニア混合気体またはこれらのいずれかと水素との混
合気体中で、該繊維を構成するアルミノシリケート質が
ら5i41−0−N4元素化合物が生成する温度に加熱
することを特徴とする耐熱性無機質m維の製造法。(4) The surface of the aluminosilicate ceramic fiber is coated with a thin layer of carbon, and the obtained carbon-coated aluminosilicate ceramic wL fiber is mixed with nitrogen, ammonia, a nitrogen-ammonia mixed gas, or a mixture of any of these and hydrogen. A method for producing a heat-resistant inorganic m-fiber, which comprises heating in a gas to a temperature at which a 5i41-0-N4 elemental compound is produced in the aluminosilicate material constituting the fiber.
35〜55重量%、A1□0565〜45重量%、残部
5重電%以下のものである特許請求の範囲第4項記載の
製造法。(5) Aluminum 7 silicate ceramic fiber or 5i02
The manufacturing method according to claim 4, wherein the content is 35 to 55% by weight, A1□0565 to 45% by weight, and the balance is 5% or less.
#、の加熱温度が16 (1(1〜2000℃である特
許請求の範囲第4項または第5項記載の製造法。(6) Carbon coated aluminum 7 silicate ceramic fiber! I
The manufacturing method according to claim 4 or 5, wherein the heating temperature of # is 16 (1 (1 to 2000°C).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23637683A JPS60134025A (en) | 1983-12-16 | 1983-12-16 | Method for producing heat-resistant inorganic fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23637683A JPS60134025A (en) | 1983-12-16 | 1983-12-16 | Method for producing heat-resistant inorganic fibers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60134025A true JPS60134025A (en) | 1985-07-17 |
JPS6253610B2 JPS6253610B2 (en) | 1987-11-11 |
Family
ID=16999871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23637683A Granted JPS60134025A (en) | 1983-12-16 | 1983-12-16 | Method for producing heat-resistant inorganic fibers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60134025A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4875823A (en) * | 1971-12-22 | 1973-10-12 |
-
1983
- 1983-12-16 JP JP23637683A patent/JPS60134025A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4875823A (en) * | 1971-12-22 | 1973-10-12 |
Also Published As
Publication number | Publication date |
---|---|
JPS6253610B2 (en) | 1987-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101810238B1 (en) | A method for coating oxidation protective layer for carbon/carbon composite, a carbon heater, and cooker | |
JPS5850929B2 (en) | Method for manufacturing silicon carbide powder | |
Shimoo et al. | Thermal stability of low‐oxygen silicon carbide fiber (Hi‐Nicalon) subjected to selected oxidation treatment | |
Fitzer et al. | Chemical Vapor Deposition of Silicon Carbide and Silicon Nitride—Chemistry's Contribution to Modern Silicon Ceramics | |
KR100520436B1 (en) | Method for Making Oxidation Protective Double Coating for Carbon/Carbon Composite | |
JP2004175605A (en) | Oxidation resistant C / C composite and method for producing the same | |
JPH0448723B2 (en) | ||
JPS60134025A (en) | Method for producing heat-resistant inorganic fibers | |
JP2777903B2 (en) | Heat-resistant and corrosion-resistant inorganic material and method for producing the same | |
JPH0848509A (en) | Production of carbonaceous porous body | |
EP0444426B1 (en) | Process for producing a silicon carbide whisker-reinforced silicon nitride composite material | |
RU2771029C1 (en) | Method for producing composite carbon-silicon carbide fibres with a "core-skin" structure | |
JPH03221442A (en) | Corrosion resistant oxidation resistant material | |
JP3482480B2 (en) | Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same | |
JPH03109269A (en) | Sialon-based ceramics composite material reinforced with carbon fiber | |
KR100515240B1 (en) | Method of forming a coating layer with oxydative resistance on carbon/carbon composites | |
JPS605072A (en) | Manufacture of silicon carbide formed body | |
JP2792749B2 (en) | Oxidation resistant carbon material and method for producing the same | |
JPH11180788A (en) | Oxidation resistant carbon-silicon carbide composite material and heating part using the same | |
JP3818606B2 (en) | Carbon fiber reinforced carbon composite | |
JPS6246965A (en) | Sic-si3n4 base composite ceramics and manufacture | |
JPH10114828A (en) | Cross-linker for silazane polymer | |
CN118459249A (en) | A SiC/HfB2-SiC dual-phase mosaic coating and its preparation method and application | |
JP2792592B2 (en) | Inorganic fiber reinforced ceramic composite | |
JPH0354179A (en) | Coating of alumina sheet with silicon carbide |