JPS625242B2 - - Google Patents
Info
- Publication number
- JPS625242B2 JPS625242B2 JP56010520A JP1052081A JPS625242B2 JP S625242 B2 JPS625242 B2 JP S625242B2 JP 56010520 A JP56010520 A JP 56010520A JP 1052081 A JP1052081 A JP 1052081A JP S625242 B2 JPS625242 B2 JP S625242B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- fluidized
- fluidized bed
- combustion
- side edges
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 56
- 239000000463 material Substances 0.000 claims description 41
- 238000005192 partition Methods 0.000 claims description 27
- 239000006185 dispersion Substances 0.000 claims description 15
- 238000009826 distribution Methods 0.000 claims description 10
- 230000007246 mechanism Effects 0.000 claims description 10
- 238000009841 combustion method Methods 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 6
- 230000000630 rising effect Effects 0.000 claims 1
- 239000012530 fluid Substances 0.000 description 15
- 239000002699 waste material Substances 0.000 description 13
- 238000004062 sedimentation Methods 0.000 description 11
- 239000000428 dust Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000005243 fluidization Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 101150054854 POU1F1 gene Proteins 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/033—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0015—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
- B01J8/002—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor with a moving instrument
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1818—Feeding of the fluidising gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
- B01J8/38—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
- B01J8/384—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
- B01J8/386—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only internally, i.e. the particles rotate within the vessel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/22—Crushing mills with screw-shaped crushing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/30—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/44—Details; Accessories
- F23G5/442—Waste feed arrangements
- F23G5/444—Waste feed arrangements for solid waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K3/00—Feeding or distributing of lump or pulverulent fuel to combustion apparatus
- F23K3/16—Over-feed arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K2201/00—Pretreatment of solid fuel
- F23K2201/10—Pulverizing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Food Science & Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、流動層を用いる燃焼方法及び燃焼炉
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustion method and a combustion furnace using a fluidized bed.
この種の燃焼炉として、例えば都市ごみの燃焼
炉においては、近年ストーカ炉よりも燃焼効率が
よく、かつ燃焼残渣の少ない流動層炉が用いられ
て来ている。
As this type of combustion furnace, for example, in a combustion furnace for municipal waste, a fluidized bed furnace has recently been used, which has better combustion efficiency than a stoker furnace and produces less combustion residue.
しかし、ごみが或る程度以上の大きな寸法の状
態で炉に投入されると、流動媒体の流動化を阻害
し、燃焼を妨げるので、これを防ぐために、これ
までの流動層燃焼炉においては、ごみを炉に投入
する前の前処理として、ごみを流動媒体の流動を
妨げない程度の小寸法にまで、予め破砕機を用い
て破砕の前処理を行うことが不可欠の要素であつ
た。
However, if waste is thrown into the furnace in a state of a certain size or larger, it will inhibit the fluidization of the fluidized medium and prevent combustion.To prevent this, conventional fluidized bed combustion furnaces As a pretreatment of the waste before it is put into the furnace, it is essential to use a crusher to pre-shred the waste to a size small enough not to interfere with the flow of the fluidizing medium.
そしてこのような破砕設備は、設備費用、運転
費用、或いは保守費用がかさみ、関連作業の手間
を要し、設備のためのスペースを要するという欠
点を有するばかりでなく、破砕プロセス中に異物
の噛み込みなどによる部品の損傷、動力の増大な
どに起因して破砕設備が停止し、さらに炉の運転
を停止せねばならない、という重大な支障を招く
場合があつた。 Such crushing equipment not only has the drawbacks of high equipment costs, operating costs, and maintenance costs, the labor involved in related work, and the need for space for the equipment, but also has the drawbacks that foreign particles may be caught during the crushing process. There have been cases in which the crushing equipment has stopped due to damage to parts due to crushing, etc., and an increase in power, which has led to serious problems such as the need to stop the operation of the furnace.
一方、燃焼能力の点について見るに、現在運転
中のものは最大1炉当たり75t/24h程度であり、
設計中のものでも150t/24h程度が最大であり、
これよりも大容量のものの実現は困難であつた。 On the other hand, in terms of combustion capacity, the maximum capacity of the currently operating furnaces is approximately 75t/24h.
Even in the design, the maximum is about 150t/24h,
It was difficult to realize a larger capacity than this.
このような問題点を解決するために、従来、若
干の試みがなされているが、何れのものにおいて
もなお、次の如き欠点を伴うものであつた。 Several attempts have been made in the past to solve these problems, but all of them still have the following drawbacks.
(1) ごみなどの燃焼物を炉に投入する前の前処理
として破砕を行なうことが不可欠であり、破砕
装置に関する費用、手間或いはスペース上の損
失のみならず、破砕プロセスにおけるトラブル
のために炉の運転に支障を来すことがある。(1) It is essential to crush garbage and other combustible materials as a pre-treatment before feeding them into the furnace, and not only the cost, labor, and space associated with crushing equipment, but also the problems caused by the crushing process, It may interfere with driving.
(2) 移動層室と流動層室を区画する仕切壁の下端
と分散板との間の隙間に大寸法の不燃物や粗大
可燃物が引掛り、炉内の流動媒体の円滑な循環
を妨げ燃焼効率を低下せしめ、また不燃物の円
滑な排出を妨げる。(2) Large incombustibles and coarse combustibles get caught in the gap between the lower end of the partition wall that separates the moving bed chamber from the fluidized bed chamber and the distribution plate, preventing smooth circulation of the fluidized medium in the furnace. It reduces combustion efficiency and prevents smooth discharge of non-combustible materials.
(3) 移動層の沈降速度が小であり、流動媒体の循
環量が少なく燃焼能力が小さい。(3) The settling velocity of the moving bed is low, the circulation amount of the fluidized medium is small, and the combustion capacity is small.
(4) 移動層の沈降速度の制御幅が小さい。(4) The control range for the settling speed of the moving layer is small.
(5) 移動層中における熱分解によつて発生する可
燃性ガスが、側方に拡散せず、上方に逃げてフ
リーボードにて燃焼するため、その燃焼熱は流
動媒体の加熱には役立たない。(5) The flammable gas generated by thermal decomposition in the moving bed does not diffuse laterally, but escapes upward and burns in the freeboard, so the combustion heat is not useful for heating the fluidized medium. .
(6) 燃焼物の供給管の先端が移動層の上端に達し
ているので、摩耗、腐蝕、変形を生じ易く、燃
焼物の閉塞などのトラブルを起こすおそれがあ
る。(6) Since the tip of the combustible material supply pipe reaches the upper end of the moving bed, it is susceptible to wear, corrosion, and deformation, which may cause problems such as combustible material blockage.
(7) 仕切板や供給管が炉内にあるため、炉内の点
検、補修が困難である。(7) Because the partition plates and supply pipes are inside the furnace, it is difficult to inspect and repair the inside of the furnace.
(8) クリンカが発生し易く、そのために流動媒体
の流動を妨げ、炉の運転を停止せしめるに至る
場合がある。(8) Clinker is likely to occur, which may impede the flow of the fluidized medium and cause the furnace to stop operating.
(9) 炉の水平面断面形状が円形であるので、容量
を増大するには半径を大きくすることが必要で
あるが、円周部分から中心点にまで流動媒体を
有効に円滑に移動させるためには半径に限度が
あり、一基で大容量の燃焼炉を作ることができ
ない。(9) Since the horizontal cross-sectional shape of the furnace is circular, it is necessary to increase the radius to increase the capacity, but in order to effectively and smoothly move the fluid medium from the circumference to the center point, it is necessary to increase the radius. has a radius limit, and it is not possible to create a large-capacity combustion furnace with one unit.
発明者らは、これらの欠点を除くために多くの
実験を重ねて研究を行い、これらの欠点を除くこ
とが可能な手段を確認し、その際得られた知見に
基づいて本発明がなされたものである。 In order to eliminate these drawbacks, the inventors conducted numerous experiments and research, confirmed means that could eliminate these drawbacks, and based on the knowledge obtained at that time, the present invention was made. It is something.
本発明は、従来のものの上記の欠点を除き、有
用な流動層燃焼方法及び燃焼炉を提供することを
目的とするものである。 The object of the present invention is to eliminate the above-mentioned drawbacks of the conventional methods and provide a useful fluidized bed combustion method and combustion furnace.
本発明は、燃焼炉の炉底部より上方に向けて噴
出せしめた流動化ガスにより流動媒体を流動化し
て形成せしめた流動層により燃焼物を燃焼処理す
る流動層燃焼方法において、前記流動層は、水平
面断面が矩形状の流動層室内に保持され、前記流
動化ガスは、中央部が高く両側縁部が低く形成さ
れているガス分散機構から噴出せしめられ、前記
流動化ガスの質量速度を、前記炉底の中央部付近
におけるよりも、該中央部の両側の両側縁部にお
いて、より大となし、該両側縁流動層の上方にお
いて、両側縁部の流動化ガスの上向き流路をさえ
ぎり、かつ炉の中央に向けて転向せしめ、炉底の
中央部には流動媒体が流動状態を保つたまま沈降
する移動層を形成し、両側縁部には流動媒体が活
発に流動化している両側縁流動層を形成し、前記
流動媒体を、前記移動層内で沈降せしめ、該移動
層の下部で前記両側縁部に移行せしめ、前記両側
縁流動層内で上昇せしめ、該両側縁流動層上部で
前記転向する流動化ガスにより前記移動層の頂部
に向けて転向せしめて、炉内を循環せしめ、前記
移動層と前記両側縁流動層との間には仕切壁を用
いることなく、該両層の間の流動媒体、ガス、燃
焼物などの物質移動及び熱移動を妨げない状態で
燃焼を行わしめることを特徴とする流動層燃焼方
法及び燃焼炉である。
The present invention provides a fluidized bed combustion method in which a combustion material is combusted in a fluidized bed formed by fluidizing a fluidized medium by fluidizing gas ejected upward from the bottom of a combustion furnace, wherein the fluidized bed comprises: The fluidizing gas is held in a fluidized bed chamber having a rectangular horizontal cross section, and the fluidizing gas is ejected from a gas dispersion mechanism that is high in the center and low in both side edges. It is larger at both side edges of the center than near the center of the furnace bottom, and above the both side edge fluidized bed blocks the upward flow path of the fluidizing gas at both side edges, and The fluidized medium is turned toward the center of the furnace, forming a moving layer in the center of the furnace bottom where the fluidized medium settles while maintaining a fluidized state, and the fluidized media on both sides is actively fluidized. forming a bed, the fluidized medium is allowed to settle in the moving bed, migrate to the both side edges at the bottom of the moving bed, rise in the side edge fluidized bed, and rise above the both side edge fluidized bed. The diverted fluidizing gas is diverted toward the top of the moving bed and circulated in the furnace, and there is no partition wall between the moving bed and the side edge fluidized beds, and there is no partition wall between the two layers. A fluidized bed combustion method and a combustion furnace are characterized in that combustion is performed in a state where mass transfer and heat transfer of a fluidized medium, gas, combustible materials, etc. are not hindered.
本発明を、都市ごみの燃焼炉で、流動用空気の
分散機構として分散板を用いた実施例につき、図
面を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings in an embodiment in which a dispersion plate is used as a dispersion mechanism for fluidizing air in a municipal waste combustion furnace.
第1図には、流動層燃焼炉6を用いた都市ごみ
燃焼設備の一例を示し、ピツト1に貯留されたご
みをクレーン2のバケツト3によりホツパ4に投
じ、燃焼物供給装置である給じん装置5により燃
焼炉6に供給するようになつている。燃焼炉6に
おいては、ブロワ7により供給された流動化ガス
が分散板8から上方に炉内に噴出し、傾斜壁9に
当たつて垂直面内の旋回流10となり、砂などの
流動媒体をこれに沿つて流動せしめて旋回流動層
が形成される。さらに後述するように炉内中央に
下降移動層が形成され、この旋回流動層及び下降
移動層によつてごみは短時間に良好な燃焼を行な
い、破砕が予め行なわれなくとも流動化を阻害す
ることなく高い燃焼効率を得ることができる。 Fig. 1 shows an example of municipal waste combustion equipment using a fluidized bed combustion furnace 6, in which waste stored in a pit 1 is dumped into a hopper 4 by a bucket 3 of a crane 2, and a dust supply which is a combustion material supply device is used. The device 5 is adapted to supply a combustion furnace 6 . In the combustion furnace 6, the fluidizing gas supplied by the blower 7 is ejected upward from the distribution plate 8 into the furnace, hits the inclined wall 9 and becomes a swirling flow 10 in a vertical plane, dispersing the fluidized medium such as sand. A swirling fluidized bed is formed by flowing along this line. Furthermore, as will be described later, a descending moving bed is formed in the center of the furnace, and the swirling fluidized bed and descending moving bed allow the waste to be burnt well in a short period of time, inhibiting fluidization even if crushing is not performed in advance. high combustion efficiency can be obtained without
11は燃焼排ガスダクト、12は不燃物排出装
置、13は振動篩、14は塊状不燃物排出用のコ
ンベヤ、15は砂などの流動媒体の回収用のエレ
ベータである。 11 is a combustion exhaust gas duct, 12 is a non-combustible material discharge device, 13 is a vibrating sieve, 14 is a conveyor for discharging lump non-combustible materials, and 15 is an elevator for collecting a fluid medium such as sand.
給じん装置5において、16はごみの入口、1
7は破砕されたあとのごみの出口、18は燃焼炉
6に入れることが許されない大きな不燃物の排出
口、19は戻しシユートである。53は、大きな
不燃物を除くために、一時これを受けておくダン
パである。 In the dust supply device 5, 16 is a garbage inlet;
Reference numeral 7 indicates an outlet for the crushed waste, 18 indicates an outlet for large incombustible materials that are not allowed to enter the combustion furnace 6, and 19 indicates a return chute. 53 is a damper that temporarily receives large incombustible materials in order to remove them.
給じん装置5の構造の詳細は特願昭55―164223
に示されているが、第2図に示す如く、モータ2
7で駆動されるスクリユーに並んで逆向きの捩れ
羽根を有するスクリユーが平行に配備され、歯車
により互いに逆向きに回転するようになつてい
る。両スクリユーの羽根が上部にて互いに近寄る
向きに回転(正回転)するときにごみは右方に移
動し出口17より燃焼炉6内に投入される。燃焼
炉6内に投入することが許されない塊状の不燃物
は、両スクリユーを逆転させて左方に移動せしめ
排出口18から戻しシユート19に投ぜられる。 Details of the structure of the dust supply device 5 can be found in Japanese Patent Application No. 55-164223.
However, as shown in FIG.
Screws having opposite torsion blades are arranged parallel to the screw driven by the screw 7, and are rotated in opposite directions by gears. When the blades of both screws rotate toward each other at the top (forward rotation), the waste moves to the right and is thrown into the combustion furnace 6 through the outlet 17. Uncombustible lumps that are not allowed to be introduced into the combustion furnace 6 are thrown back into the chute 19 through the discharge port 18 by reversing both screws and moving them to the left.
スクリユーのピツチは入口16付近のピツチよ
り出口17付近のピツチの方が広くなつている。 The pitch of the screw near the exit 17 is wider than the pitch near the entrance 16.
燃焼炉6につき説明する。 The combustion furnace 6 will be explained.
第2図、第3図、第4図に示す如く、燃焼炉6
の炉内底部に流動化用の空気の分散板42が備え
られている。分散板42は両側縁部が中央部より
低く、炉の中心線57に対してほぼ対称な山形断
面状(屋根状)に形成されている。中央部と両側
縁部とで傾斜を変えてもよい。両側縁部には不燃
物排出口48が接続されている。不燃物排出口4
8は、必ずしも左右両側が全く同じ形状でなくと
もよく、例えば一方は第4図の如き形成で、他方
は第5図に示す如き形状であつてもよく、左右の
流動媒体の排出量及びその流れ方がほぼ等くなる
ように両側に配備されていればよい。 As shown in FIGS. 2, 3, and 4, the combustion furnace 6
An air distribution plate 42 for fluidization is provided at the bottom of the furnace. The distribution plate 42 has both side edges lower than the center, and is formed into a chevron-shaped cross section (roof-like shape) that is substantially symmetrical with respect to the center line 57 of the furnace. The inclination may be different between the center portion and both side edge portions. Incombustible material discharge ports 48 are connected to both side edges. Nonflammable material discharge port 4
8 does not necessarily have to have exactly the same shape on both the left and right sides; for example, one side may have a shape as shown in FIG. 4, and the other may have a shape as shown in FIG. 5. It is sufficient if they are placed on both sides so that the flow direction is approximately equal.
ブロワ7から送られた流動化空気は、空気室4
3,44,45を経て分散板42から上方に噴出
せしめられている。両側縁部の空気室43,45
から噴出する流動化空気の質量速度(Kg/m2・
sec)は流動層を形成するのに十分な大きさを有
するが、中央部の空気室44から噴出する流動化
空気の質量速度は前者よりも小さく選ばれてい
る。 The fluidized air sent from the blower 7 is sent to the air chamber 4.
3, 44, and 45, and is ejected upward from the dispersion plate 42. Air chambers 43, 45 on both side edges
Mass velocity of fluidized air ejected from (Kg/ m2・
sec) has a sufficient size to form a fluidized bed, but the mass velocity of the fluidized air ejected from the central air chamber 44 is selected to be smaller than the former.
例えば空気室43,45より噴出する流動化空
気の質量速度は4〜20Gmf、好ましくは6〜
12Gmfであるのに対し、空気室44より噴出する
流動化空気の質量速度は0.5〜3Gmf、好ましくは
1〜2.5Gmfに選ばれる。ここに1Gmfは流動化開
始質量速度である。 For example, the mass velocity of the fluidized air ejected from the air chambers 43 and 45 is 4 to 20 Gmf, preferably 6 to 20 Gmf.
12 Gmf, whereas the mass velocity of the fluidized air ejected from the air chamber 44 is selected to be 0.5 to 3 Gmf, preferably 1 to 2.5 Gmf. Here, 1 Gmf is the fluidization starting mass velocity.
空気室の数は3個以上任意の数が選ばれる。多
数の場合でも、流動化空気の質量速度は、中心に
近いものを小に、両側縁部に近いものを大になる
ようにする。 The number of air chambers is selected from three or more. In many cases, the mass velocity of the fluidizing air is small near the center and large near the side edges.
両側縁部の空気室43,45の直上に流動化空
気の上向き流路をさえぎり、流動化空気を炉内中
央に向けて反射転向せしめる反射壁として傾斜壁
9が設けられている。 Slanted walls 9 are provided directly above the air chambers 43 and 45 on both side edges as reflective walls that block the upward flow path of the fluidized air and reflect the fluidized air toward the center of the furnace.
傾斜壁9の上側は、傾斜壁9と反対の傾斜を有
する傾斜面58が設けられ、流動媒体が堆積する
のを妨ぐようになつている。 The upper side of the inclined wall 9 is provided with an inclined surface 58 having an opposite slope to the inclined wall 9, so as to prevent the flow medium from accumulating.
分散板42の傾斜は、5〜15度程度が好まし
い、傾斜壁9の傾斜は水平に対して10〜60度程度
が好ましい。傾斜壁9の表面は、平面、凸面、凹
面何れでもよい。 The inclination of the dispersion plate 42 is preferably about 5 to 15 degrees, and the inclination of the inclined wall 9 is preferably about 10 to 60 degrees with respect to the horizontal. The surface of the inclined wall 9 may be a flat surface, a convex surface, or a concave surface.
炉内天井部59には、給じん装置5の出口17
に連なる燃焼物投入口60が、中央部の空気室4
4に対応するよう設けられている。 The outlet 17 of the dust supply device 5 is provided in the furnace ceiling 59.
A combustion material inlet 60 connected to the central air chamber 4
It is set up to correspond to 4.
しかして、炉壁61(傾斜壁9、傾斜面58を
含む)、分散板42、天井部59により囲まれる
炉内空間には、分散板42の上方付近で空間を区
画する隔壁体(例えば仕切板)が全く備えられて
いない。 Therefore, in the furnace space surrounded by the furnace wall 61 (including the inclined wall 9 and the inclined surface 58), the distribution plate 42, and the ceiling part 59, there is a partition wall (for example, a partition) that partitions the space near the upper part of the distribution plate 42. board) is not provided at all.
傾斜壁9を、金属パイプによる壁面体とし、パ
イプ内に流動化空気を通して予熱を行なつてもよ
い。 The inclined wall 9 may be a wall body made of a metal pipe, and preheating may be performed by passing fluidized air into the pipe.
燃焼炉6の作用につき説明すれば、ブロワ7に
より、流動化空気を送り込み、空気室43,45
からは大なる質量速度にて、空気室44からは小
なる質量速度にて噴出せしめる。 To explain the operation of the combustion furnace 6, the blower 7 sends fluidized air to the air chambers 43, 45.
Air is ejected from the air chamber 44 at a large mass velocity, and from the air chamber 44 at a small mass velocity.
通常の流動層においては、流動媒体は沸とうし
ている水の如く激しい上下に運動して流動状態を
形成しているが、空気室44の上方の流動媒体は
激しい上下動は伴なわず、弱い流動状態にある移
動層を形成する。この移動層の幅は、上方は狭い
が、裾の方は分散板42の傾斜の作用も相まつて
稍広がつており、裾の一部は両側縁部の空気室4
3,45の上方に達しているので、大きな質量速
度の空気の噴射を受け、吹き上げられる。裾の一
部の流動媒体が除かれるので、空気室44の直上
の層は自重で降下する。その層の上方には後述の
如く旋回流10を伴う流動層からの流動媒体が補
給される。これを繰り返して、空気室44の上方
の流動媒体は、或る領域の部分が弱い流動状態の
ままほぼひとまとめとなり、徐々に下降する下降
移動層46を形成する。 In a normal fluidized bed, the fluidized medium moves violently up and down like boiling water to form a fluidized state, but the fluidized medium above the air chamber 44 does not move violently up and down. Forms a moving bed in a weakly fluid state. The width of this moving layer is narrow at the top, but it becomes slightly wider at the bottom due to the effect of the slope of the dispersion plate 42, and a part of the bottom is expanded to the air chambers 4 at both side edges.
Since it reaches above 3,45, it receives a jet of air with a large mass velocity and is blown up. Since some of the fluid medium at the skirt is removed, the layer directly above the air chamber 44 will fall under its own weight. Above that bed, a fluidized medium from a fluidized bed with a swirling flow 10 is replenished as described below. By repeating this process, the fluidized medium above the air chamber 44 is almost brought together in a certain region while remaining in a weak fluidized state, forming a descending moving layer 46 that gradually descends.
空気室43,45上に移動した流動媒体は上方
に吹き上げられるが、傾斜壁9に当たり反射転向
して炉の中央に向きながら上昇旋回し、前述の下
降移動層46の頂部に移動し、徐々に下降し、裾
に至つて再び吹き上げられて循環する。一部の流
動媒体は旋回流10として流動層の中で旋回循環
する。 The fluidized medium that has moved onto the air chambers 43 and 45 is blown upward, but it hits the inclined wall 9 and is reflected and turned upward while facing the center of the furnace, moves to the top of the above-mentioned descending moving layer 46, and gradually It descends, reaches the hem, and is blown up again to circulate. A portion of the fluidized medium circulates in the fluidized bed as a swirling flow 10.
このような状態の燃焼炉6の炉内に、燃焼物投
入口60から投入されたごみは下降移動層46の
頂部に下降する。頂部付近においては流動媒体の
流れは外側から中心に向かつて集中する方向に流
れるので、ごみはこの流れに巻き込まれて下降移
動層46の頂部にもぐり込まされる。従つて、紙
の如き軽いものでも確実に下降移動層46の中に
取り込むことができるので、従来の流動層におけ
るが如く、紙が砂上で燃焼して流動媒体の加熱に
大きく貢献することなく燃焼するようなことを防
ぎ、確実に下降移動層46及び流動層10の中で
燃焼を行ない流動媒体の加熱を行なうことができ
る。 In the combustion furnace 6 in such a state, the garbage input from the combustion material inlet 60 descends to the top of the descending moving layer 46. Near the top, the flow of the fluid medium flows in a concentrated direction from the outside toward the center, so that the debris is caught up in this flow and sucked into the top of the descending moving bed 46. Therefore, even light materials such as paper can be reliably taken into the descending moving bed 46, so that the paper can be burned on the sand without greatly contributing to the heating of the fluidized medium, as in conventional fluidized beds. It is possible to prevent this from happening and to reliably perform combustion in the descending moving bed 46 and the fluidized bed 10 to heat the fluidized medium.
下降移動層46の中では部分的に熱分解が行な
われ可燃ガスが発生する。本実施例においては仕
切壁がないので発生した可燃ガスは水平方向に拡
散し、流動層に入つて燃焼するので、その熱は流
動媒体の加熱に有効に役立つ。 In the descending moving layer 46, thermal decomposition occurs partially and combustible gas is generated. In this embodiment, since there is no partition wall, the generated combustible gas diffuses horizontally, enters the fluidized bed, and burns, so that the heat effectively serves to heat the fluidized medium.
下降移動層46の表面にびん、アイロンなどの
如き重くかつ大きな物体を落下せしめて供給した
場合、これらの物体は瞬時に空気室44の上まで
落下するのではなく、下降移動層46に支えられ
て、流動媒体の流れと共に徐々に下降する。 When heavy and large objects such as bottles and irons are dropped onto the surface of the downward movement layer 46 and supplied, these objects do not fall instantly to the top of the air chamber 44 but are supported by the downward movement layer 46. Then, it gradually descends with the flow of the fluid medium.
さらに本実施例では仕切壁がないので、大きな
可燃物でも仕切壁への引掛りにより障害がなく、
円滑に移動層の中を徐々に下降せしめることがで
き、また閉塞をおこすおそれもなく、流動媒体の
流れを阻害することもない。 Furthermore, since there is no partition wall in this embodiment, even large combustible objects will not cause problems due to getting caught on the partition wall.
It can be made to descend smoothly and gradually through the moving bed, and there is no risk of clogging or impeding the flow of the fluid medium.
そのため、可燃物は、かなりの大きさのもので
も、下降移動層46の中で徐々に下降しているう
ちに乾燥、ガス化、燃焼が行なわれ、裾に達する
ときには大半が燃焼して細片化しているので、流
動層の形成を阻害することがない。 Therefore, even if the combustible material is quite large, it will be dried, gasified, and burned as it gradually descends in the descending moving layer 46, and by the time it reaches the bottom, most of it will have been burned and broken into small pieces. , so the formation of a fluidized bed is not inhibited.
従つてごみは予め破砕機で破砕をしなくとも、
給じん装置5を破袋する程度で差支えなく、破砕
機や破砕工程を省略しコンパクトな装置とするこ
とができるのみならず、破砕プロセスにおけるト
ラブルにより、炉の運転に重大な支障を来すよう
なことを防ぐことができる。 Therefore, garbage does not need to be crushed with a crusher in advance.
There is no problem with just breaking the bag of the dust supply device 5, and not only can the crusher and crushing process be omitted to make the device more compact, but also the problem in the crushing process can be prevented from seriously hindering the operation of the furnace. can be prevented.
また、下降移動層46に投入されたごみは速や
かに流動媒体中に拡散するので燃焼効率が増大す
る。 In addition, since the waste thrown into the descending moving bed 46 is quickly diffused into the fluidized medium, the combustion efficiency is increased.
給じん装置5を通過して供給された中寸法の不
燃物は、先ず下降移動層46の中を降下移動する
が、この際不燃物に付着したり、一体に組まれて
いる可燃物(例えば電線の被覆など)は燃焼して
しまう。裾に達した下燃物は流動媒体の横移動と
分散板42の傾斜によつて不燃物排出口48に達
し、垂直路49に排出される。 The medium-sized noncombustibles supplied through the dust supply device 5 first move downward in the descending movement layer 46, but at this time, they may not adhere to the noncombustibles or combustibles that are integrated with them (for example, (e.g. the covering of electric wires) will burn. The incombustible materials that have reached the hem reach the incombustible material discharge port 48 due to the lateral movement of the fluid medium and the inclination of the distribution plate 42, and are discharged into the vertical path 49.
不燃物排出装置12としてスクリユーコンベヤ
が用いられている。スクリユー50の羽根51
は、コンベヤケーシング52との間に、炉内に投
入された中寸法の固状不燃物の通過を許す流路断
面を有しているので不燃物の排出はすみやかであ
る。 A screw conveyor is used as the incombustible material discharge device 12. Screw 50 feather 51
Since the conveyor casing 52 has a flow passage cross section that allows medium-sized solid noncombustibles introduced into the furnace to pass through, the noncombustibles can be quickly discharged.
54はスクリユーコンベヤで、第1図の振動篩
13の位置に用いられている。コンベヤケーシン
グ52とスクリユーコンベヤ54にはシールのた
め不燃物及び流動媒体がほぼ充満されるが、必要
程度充満しているかどうかをレベル指示調節計5
5にて検出し、若しレベルが達していなければス
クリユーコンベヤ54を停止する、などによりレ
ベルの回復をはかる。56はシール効果を確実に
するために、ケーシング52とフリーボード47
とを連通する均圧管である。 54 is a screw conveyor, which is used in the position of the vibrating screen 13 in FIG. The conveyor casing 52 and the screw conveyor 54 are almost filled with incombustible materials and a fluid medium for sealing purposes, but the level indicator controller 5 checks whether they are filled to the required level.
5, and if the level has not been reached, the screw conveyor 54 is stopped, etc. to recover the level. 56 is connected to the casing 52 and the freeboard 47 to ensure the sealing effect.
This is a pressure equalizing pipe that communicates with the
53は戻しシユート19に設けた開閉ダンパで
あり、通常は閉じて排出口18からの異物を受け
て貯留する。人手又は機械によりこの異物を取り
除いた後ダンパ53を手動又は動力により開き、
その上に堆積した細かいごみをピツト1に戻す。 Reference numeral 53 denotes an opening/closing damper provided in the return chute 19, which is normally closed to receive and store foreign matter from the discharge port 18. After removing the foreign matter manually or mechanically, the damper 53 is opened manually or by power,
Return the fine dust that has accumulated on it to pit 1.
分散板42の風量につき説明する。 The air volume of the distribution plate 42 will be explained.
空気室44から噴出する流動化空気の室量速度
が小さ過ぎると流動性を失つて堆積を生じ、大き
過ぎると流動層となつて下降移動層46が形成さ
れなくなる。 If the flow velocity of the fluidized air ejected from the air chamber 44 is too small, fluidity will be lost and accumulation will occur, and if it is too large, the fluidized air will become a fluidized bed and the descending moving bed 46 will not be formed.
発明者らの研究によれば、例えば第6図の実線
に示す如く、下降移動層風量が増大すれば下降移
動層46は流動性を増して沈降速度は大となる。
沈降速度が大であるということは、下降移動層4
6に取り込まれた燃焼物が早く流動層に到達して
燃焼し始めること、及び流動媒体の循環量が大な
ることを意味し、何れも燃焼能力が増大すること
と結び付く。しかも風量が或る値(第6図では
3Gmf付近)を越えると下降移動層46は形成さ
れなくなる。発明者らの研究により下降移動層4
6用の風量は、0.5〜3Gmfが好ましく、1〜
2.5Gmfが一層好ましいことがわかつた。 According to the research conducted by the inventors, as shown by the solid line in FIG. 6, for example, as the descending moving bed air volume increases, the descending moving bed 46 becomes more fluid and its settling speed increases.
A high sedimentation rate means that the descending moving layer 4
This means that the combustible materials taken into the fuel cell 6 reach the fluidized bed quickly and begin to burn, and the amount of fluidized medium circulated increases, both of which are associated with an increase in combustion capacity. Moreover, when the air volume is at a certain value (in Figure 6,
3Gmf), the downwardly moving layer 46 is no longer formed. According to the research of the inventors, the downward moving layer 4
The air volume for 6 is preferably 0.5 to 3Gmf, and 1 to 3Gmf.
It was found that 2.5Gmf is more preferable.
第6図における点線は従来のものの如く、下降
移動層と流動層とを仕切る仕切板を備えた場合を
示す。仕切板は下降移動層を保持するこに役立つ
ので、4Gmfに至る大きな風量においても下降移
動層を形成せしめることができるのが、横方向の
移動は少ないので沈降速度は小さい。即ち本実施
例の如く仕切板がない方が沈降速度は大である。
又、これは小風量或いは風量の小変化で、沈降速
度の大きな変化が得られるということであり、沈
降速度の制御幅が大きくすることができる。 The dotted line in FIG. 6 shows the case where a partition plate is provided to partition the descending moving bed and the fluidized bed, as in the conventional case. Since the partition plate helps to hold the downwardly moving layer, it is possible to form a downwardly moving layer even at a large air flow of up to 4 Gmf, but since there is little lateral movement, the settling speed is small. That is, the sedimentation rate is higher when there is no partition plate as in this example.
Furthermore, this means that a large change in sedimentation speed can be obtained with a small air volume or a small change in air volume, and the control range of the sedimentation speed can be widened.
第7図実線は流動層用の風量と、下降移動層沈
降速度との関係を示したもので、流動層風量が増
せば下降移動層の沈降速度も増す。一点鎖線は仕
切板のある従来のものを示す。 The solid line in FIG. 7 shows the relationship between the air volume for the fluidized bed and the sedimentation speed of the descending moving bed; as the fluidized bed air volume increases, the sedimentation speed of the descending moving bed also increases. The one-dot chain line shows the conventional one with a partition plate.
図にて明らかな如く、本実施例の如く、仕切板
のない方が沈降速度は大であり、燃焼能力が大き
い。 As is clear from the figure, the sedimentation velocity is higher and the combustion capacity is greater when there is no partition plate as in this example.
しかも、本実施例においては仕切板がないこと
により、流動媒体の流れを妨げないのは勿論のこ
と、大寸法の不燃性の異物も妨げられることなく
円滑に移動を行ない不燃物排出口48から確実に
取り出すことができる。 Moreover, since there is no partition plate in this embodiment, not only does the flow of the fluid medium not be obstructed, but also large non-combustible foreign objects can be smoothly moved without being obstructed from the non-combustible material discharge port 48. You can definitely take it out.
また本実施例においては、天井部59の燃焼物
投入口60から下降移動層46に達する燃焼物供
給管が省かれているので、供給管の下端における
摩耗、腐蝕、変形などに起因する燃焼物の閉塞な
どのトラブルを避けることができる。 Furthermore, in this embodiment, since the combustible material supply pipe that reaches the descending moving layer 46 from the combustible material inlet 60 of the ceiling part 59 is omitted, the combustible material due to wear, corrosion, deformation, etc. at the lower end of the supply pipe is omitted. Problems such as blockage can be avoided.
都市ごみにおいては混入物は不定であり、かな
りの寸法の不燃物が混入しているので、汚泥の燃
焼炉などと異なり、必ず不燃物の排出を行なわね
ばならない。不燃物の排出に当たつては、不燃物
自体の20〜30倍程度の流動媒体を共に排出するこ
とになり、この排出は殆んど連続して行なわれ
る。従つて不燃物と流動媒体の排出が均等にかつ
円滑に行なわれないと、炉内の流動媒体の流れも
均等、円滑でなくなり、下降移動層の形成も不安
定になり、安定せしめるために仕切板が必要とな
り、前述の如き弊害をもたらす。 Contaminants in municipal waste are indeterminate and include noncombustibles of considerable size, so unlike sludge combustion furnaces, noncombustibles must be discharged. When discharging noncombustibles, a fluid medium that is about 20 to 30 times as much as the noncombustibles itself is also discharged, and this discharging is almost continuous. Therefore, if the incombustible materials and the fluidized medium are not discharged evenly and smoothly, the flow of the fluidized medium in the furnace will not be even and smooth, and the formation of the downwardly moving layer will also become unstable. A board is required, which brings about the disadvantages mentioned above.
本実施例においては不燃物排出口48が両側縁
部に設けられて流動媒体の排出の流れや量を、左
右ほぼ等しくなるようにしており、炉内の各部分
も中心線57に対してほぼ対称に形成されている
ので炉内の流動媒体の流れも対称を保ち易くな
り、安定した下降移動層を得るために、仕切板を
必要とせず、炉内空間を、中にじやま物のない一
体の空間とすることができ、前述の種々の効果を
奏することができる。 In this embodiment, the incombustible material discharge ports 48 are provided at both side edges so that the flow and amount of discharge of the fluidized medium are almost equal on the left and right sides, and each part of the furnace is also approximately parallel to the center line 57. Since it is symmetrically formed, it is easy to maintain a symmetrical flow of the fluid medium inside the furnace, and in order to obtain a stable downward moving layer, there is no need for partition plates, and the furnace space is free from obstructions. It can be made into an integrated space, and the various effects described above can be achieved.
炉内空間を区画する隔壁体などのじやま物が全
くないことにより、炉内の点検、補修も著しく容
易になる。 Since there are no obstructions such as partitions that partition the space inside the furnace, inspection and repair of the inside of the furnace becomes extremely easy.
炉内の流動層が保持されている流動層室の水平
面断面の形状が矩形なので、異なる能力のものを
設計するには、同一断面で幅のみを変えればよ
く、また、建屋内での配備も矩形であれば有利で
あり、設計が容易となる。また製作も容易であ
る。 The horizontal cross-section of the fluidized bed chamber, which holds the fluidized bed in the reactor, is rectangular, so to design one with different capabilities, you only need to change the width of the same cross-section. A rectangular shape is advantageous and facilitates design. It is also easy to manufacture.
発明者らの研究によれば、実施例のものは、炉
幅を大きく変えても流動媒体の旋回効率(流動用
空気1m3/h〔NTP〕当たりの流動媒体の旋回
量)はあまり変らず、大型化しても低下しない。
その他流動媒体の流れは極めて円滑であり、下降
移動層の沈降速度も大となるので、大型化が容易
であり、例えば一つの炉で300t/d程度のものも
実施可能であると考えられる。 According to the inventors' research, in the example, the swirling efficiency of the fluidized medium (the amount of swirling of the fluidized medium per 1 m 3 /h [NTP] of fluidizing air) did not change much even if the furnace width was changed significantly. , it does not decrease even when the size is increased.
In addition, since the flow of the fluidized medium is extremely smooth and the settling speed of the descending moving bed is high, it is easy to increase the size of the furnace.
以上の説明は分散板42を用いた燃焼炉6につ
いて行なつたが、流動化空気の分散機構がパイプ
グリツドである場合も、同様な効果を奏すること
ができる。 Although the above description has been made regarding the combustion furnace 6 using the dispersion plate 42, similar effects can be achieved even when the dispersion mechanism for fluidized air is a pipe grid.
パイプグリツドの場合、大寸法の不燃物を通過
せしめるため、パイプの間隔を広くした部分を形
成せしめる場合は、中央部の下降移動層の下は避
けて形成すのが好ましい。 In the case of pipe grids, when forming widely spaced sections of pipes in order to pass large-sized noncombustible materials, it is preferable to avoid forming them under the descending moving layer in the center.
不燃物の排出はパイプグリツドの下方の炉底中
央の排出口から行なう。 Incombustible materials are discharged from the outlet in the center of the bottom of the furnace below the pipe grid.
本発明により、中央部の移動層と両側縁の流動
層との間には仕切壁による遮断がなく、該両層の
間の流動媒体、ガス、燃焼物などの物質移動及び
熱移動を妨げない状態で燃焼が行われ、次の如き
実用上極めて大なる効果を有する流動層燃焼方法
及び燃焼炉を提供することができる。 According to the present invention, there is no partition wall between the moving bed in the center and the fluidized beds on both sides, and the mass transfer and heat transfer of the fluidized medium, gas, combustion materials, etc. between the two layers is not hindered. It is possible to provide a fluidized bed combustion method and a combustion furnace in which combustion is carried out under the following conditions, and which has the following practical effects.
(1) 燃焼物を予め破砕する必要がなくなり、破砕
設備が不要となり、費用、手間およびスペース
上有利になるばかりでなく、破砕プロセスにお
けるトラブルに起因して炉が停止する、などの
炉の運転に対する重大な支障が生ずるのを防ぐ
ことができるる。(1) It is no longer necessary to crush the combustible material in advance, eliminating the need for crushing equipment, which not only provides advantages in terms of cost, labor, and space, but also improves the operation of the furnace, such as when the furnace stops due to problems in the crushing process. It is possible to prevent serious problems from occurring.
(2) 従来のものに起こる、仕切壁の下縁の隙間に
おける不燃物、可燃物の引掛りなどを生ずるト
ラブルがなく、流動媒体の流れを阻害せず、炉
内循環量を増し、燃焼効率を向上せしめること
ができる。(2) There is no problem of non-combustibles or combustibles getting caught in the gap at the lower edge of the partition wall, which occurs with conventional products, and the flow of the fluidized medium is not obstructed, increasing the amount of circulation in the furnace and improving combustion efficiency. can be improved.
(3) 流動媒体の下降移動層における沈降速度を大
となし、炉内循環量を増し、燃焼容量の増大を
はかることができる。(3) It is possible to increase the settling velocity of the fluidized medium in the descending moving bed, increase the amount of circulation in the furnace, and increase the combustion capacity.
(4) 下降移動層の沈降速度の制御幅を大きくする
ことができる。(4) The control range of the sedimentation speed of the descending moving layer can be increased.
(5) 下降移動層中における熱分解によつて発生す
る可燃物ガスは側方に拡散するので流動層にお
いて燃焼し、流動媒体の加熱に有効に役立てる
ことができる。(5) The combustible gas generated by thermal decomposition in the descending moving bed diffuses laterally, so it is combusted in the fluidized bed and can be effectively used to heat the fluidized medium.
(6) 燃焼物が、移動層の中に速やかに拡散するの
で加熱が速やかに十分行なわれ燃焼効率を上げ
ることができる。(6) Since the combustible materials are quickly diffused into the moving bed, heating can be carried out quickly and sufficiently, increasing combustion efficiency.
(7) 燃焼物の供給管がないので、摩耗、腐蝕、変
形に基づく燃焼物の閉塞などのトラブルを避け
ることができる。(7) Since there is no combustible material supply pipe, troubles such as combustible material clogging due to wear, corrosion, and deformation can be avoided.
(8) 炉内は、仕切板や供給管がなく一体空間とな
つているため、炉内の点検や補修が極めて容易
である。(8) The inside of the furnace is an integrated space without partition plates or supply pipes, making inspection and repair inside the furnace extremely easy.
(9) クリンカーの発生を防止して、流動媒体の流
れの阻害を防ぎ、仕切壁の下部付近における閉
塞による炉の運転停止、或いは同閉塞による側
縁部流動層への流動媒体の供給不足による吹き
抜け、などのトラブルを防ぐことができる。(9) Preventing the generation of clinker and preventing the flow of the fluidized medium from being obstructed, resulting in shutdown of the furnace due to blockage near the bottom of the partition wall, or insufficient supply of fluidized medium to the side fluidized bed due to the same blockage. This can prevent problems such as blowouts.
(10) 流動層の平面形状が矩形であり、炉を幅方向
(第2図の紙面に直角の方向)に延長すること
により、流動層、移動層の作動条件をあまり変
えることなく一基の炉の容量を大幅に増大する
ことができる。(10) The planar shape of the fluidized bed is rectangular, and by extending the furnace in the width direction (direction perpendicular to the plane of the paper in Figure 2), a single unit can be used without changing the operating conditions of the fluidized bed or moving bed. The capacity of the furnace can be increased significantly.
(11) ガス分散機構が、中央部が高く、両側縁部が
低く形成されているので、移動層の裾における
流動媒体の横移動が円滑となり、流動媒体の循
環を促進する。(11) Since the gas dispersion mechanism is formed so that the central part is high and the side edges are low, the lateral movement of the fluid medium at the bottom of the moving bed is smooth and the circulation of the fluid medium is promoted.
図面は本発明の実施例に関するもので、第1図
はごみ燃焼場の断面正面図、第2図は燃焼炉の縦
断面図、第3図はその―線断面図、第4図は
第3図の―線断面平面図、第5図は別の実施
例の第4図相当部分図、第6図は下降移動層風量
と沈降速度との関係の線図、第7図は流動層風量
と下降移動層沈降速度との関係の線図である。
1……ピツト、2……クレーン、3……バケツ
ト、4……ホツパ、5……給じん装置、6……燃
焼炉、7……ブロワ、8……分散板、9……傾斜
壁、10……旋回流、11……排ガスダクト、1
2……不燃物排出装置、13……振動篩、14…
…コンベヤ、15……エレベータ、16……入
口、17……出口、18……排出口、19……戻
しシユート、27……モータ、42……分散板、
43,44,45……空気室、46……下降移動
層、47……フリーボード、48……不燃物排出
口、49……垂直路、50……スクリユー、51
……羽根、52……ケーシング、53……ダン
パ、54……スクリユーコンベヤ、55……レベ
ル指示調節計、56……均圧管、57……中心
線、58……傾斜面、59……天井部、60……
燃焼物投入口、61……炉壁。
The drawings relate to embodiments of the present invention, and FIG. 1 is a cross-sectional front view of a waste combustion field, FIG. 2 is a longitudinal cross-sectional view of a combustion furnace, FIG. Fig. 5 is a partial view of another embodiment corresponding to Fig. 4, Fig. 6 is a diagram showing the relationship between descending moving bed air volume and sedimentation velocity, and Fig. 7 is a diagram showing the relationship between fluidized bed air volume and sedimentation velocity. It is a diagram of the relationship with the descending moving bed sedimentation velocity. 1... pit, 2... crane, 3... bucket, 4... hopper, 5... dust supply device, 6... combustion furnace, 7... blower, 8... distribution plate, 9... inclined wall, 10...Swirling flow, 11...Exhaust gas duct, 1
2... Incombustible material discharge device, 13... Vibrating sieve, 14...
...Conveyor, 15...Elevator, 16...Inlet, 17...Exit, 18...Discharge port, 19...Return chute, 27...Motor, 42...Dispersion plate,
43, 44, 45... Air chamber, 46... Descending moving layer, 47... Free board, 48... Incombustible material discharge port, 49... Vertical path, 50... Screw, 51
... Vane, 52 ... Casing, 53 ... Damper, 54 ... Screw conveyor, 55 ... Level indicator controller, 56 ... Pressure equalization pipe, 57 ... Center line, 58 ... Inclined surface, 59 ... Ceiling part, 60...
Combustible material inlet, 61...furnace wall.
Claims (1)
た流動化ガスにより流動媒体を流動化して形成せ
しめた流動層により燃焼物を燃焼処理する流動層
燃焼方法において、 前記流動層は、水平面断面が矩形状の流動層室
内に保持され、 前記流動化ガスは、中央部が高く両側縁部が低
く形成されているガス分散機構から噴出せしめら
れ、 前記流動化ガスの質量速度を、前記炉底の中央
部付近におけるよりも、該中央部の両側の両側縁
部において、より大となし、 該両側縁流動層の上方において、両側縁部の流
動化ガスの上向き流路をさえぎり、かつ路の中央
に向けて転向せしめ、 炉底の中央部には流動媒体が流動状態を保つた
まま沈降する移動層を形成し、両側縁部には流動
媒体が活発に流動化している両側縁流動層を形成
し、 前記流動媒体を、前記移動層内で沈降せしめ、
該移動層の下部で前記両側縁部に移行せしめ、前
記両側縁流動層内で上昇せしめ、該両側縁流動層
上部で前記転向する流動化ガスにより前記移動層
の頂部に向けて転向せしめて、炉内を循環せし
め、 前記移動層と前記両側縁流動層との間には仕切
壁を用いることなく、該両層の間の流動媒体、ガ
ス、燃焼物などの物質移動及び熱移動を妨げない
状態で燃焼を行わしめることを特徴とする流動層
燃焼方法。 2 前記両側縁部における流動化ガス質量速度が
4〜20Gmfである特許請求の範囲第1項記載の流
動層燃焼方法。 3 炉内下部に、水平面断面が矩形状の流動層室
を備え、炉内底部に流動化用ガス分散機構を備
え、該ガス分散機構は、中央が高く、両側縁部が
低く形成されており、該ガス分散機構のうち両側
縁部における流動化ガス質量速度を、中央部にお
ける流動化ガス質量速度よりも大となし、前記両
側縁部の真上に流動化ガスの上向き流路をさえぎ
り、流動化ガスを炉内中央に向けて反射転向せし
める傾斜壁を備え、炉内上部に燃焼物投入口を設
け、炉壁と前記分散機構及び傾斜壁とにより囲ま
れる炉内空間は、該炉内空間を区画する隔壁体を
備えずに一体空間として形成されていることを特
徴とする流動層燃焼炉。 4 前記ガス分散機構の前記両側縁部に排出口が
接続されている特許請求の範囲第3項記載の流動
層燃焼炉。[Scope of Claims] 1. A fluidized bed combustion method in which a combustion material is combusted in a fluidized bed formed by fluidizing a fluidized medium with fluidized gas injected upward from the bottom of a combustion furnace, comprising: The layer is held in a fluidized bed chamber having a rectangular horizontal cross section, and the fluidizing gas is ejected from a gas dispersion mechanism that is high in the center and low in both side edges, and the mass velocity of the fluidizing gas is is larger at both side edges of the center than near the center of the furnace bottom, and above the both side edge fluidized bed, an upward flow path of the fluidizing gas at both side edges is formed. It is blocked and diverted towards the center of the path, forming a moving layer in the center of the hearth bottom where the fluidized medium settles while maintaining its fluidized state, and the fluidized media is actively fluidized at both side edges. forming a fluidized bed on both sides, and allowing the fluidized medium to settle within the moving bed;
Transferring to the both side edges at the lower part of the moving bed, rising in the both side edge fluidized bed, and turning toward the top of the moving bed by the turning fluidizing gas at the upper part of the both side edge fluidized bed, circulating in the furnace, without using a partition wall between the moving bed and the fluidized bed on both sides, and not impeding mass transfer and heat transfer of the fluidized medium, gas, combustion materials, etc. between the two layers. A fluidized bed combustion method characterized by carrying out combustion in a state of 2. The fluidized bed combustion method according to claim 1, wherein the fluidizing gas mass velocity at both side edges is 4 to 20 Gmf. 3. A fluidized bed chamber with a rectangular horizontal cross section is provided at the bottom of the furnace, and a fluidizing gas dispersion mechanism is provided at the bottom of the furnace, and the gas distribution mechanism is high at the center and low at both side edges. , the fluidizing gas mass velocity at both side edges of the gas dispersion mechanism is made higher than the fluidizing gas mass velocity at the central portion, and the upward flow path of the fluidizing gas is blocked directly above the both side edges; A furnace space surrounded by the furnace wall, the dispersion mechanism, and the slope wall is provided with an inclined wall that reflects and diverts the fluidizing gas toward the center of the furnace, and a combustion material inlet is provided at the upper part of the furnace. A fluidized bed combustion furnace characterized in that it is formed as an integral space without a partition wall that partitions the space. 4. The fluidized bed combustion furnace according to claim 3, wherein a discharge port is connected to the both side edges of the gas dispersion mechanism.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1052081A JPS57124608A (en) | 1981-01-27 | 1981-01-27 | Fluidized bed type heat-reactive furnace |
US06/319,875 US4419330A (en) | 1981-01-27 | 1981-11-09 | Thermal reactor of fluidizing bed type |
EP84116144A EP0154717B1 (en) | 1981-01-27 | 1981-11-11 | Method for incinerating material |
EP81109623A EP0056851B1 (en) | 1981-01-27 | 1981-11-11 | Thermal reactor of fluidizing bed type |
DE8181109623T DE3172626D1 (en) | 1981-01-27 | 1981-11-11 | Thermal reactor of fluidizing bed type |
DE8484116144T DE3176853D1 (en) | 1981-01-27 | 1981-11-11 | Method for incinerating material |
US06/521,920 US4452155A (en) | 1981-01-27 | 1983-08-10 | Method for incinerating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1052081A JPS57124608A (en) | 1981-01-27 | 1981-01-27 | Fluidized bed type heat-reactive furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57124608A JPS57124608A (en) | 1982-08-03 |
JPS625242B2 true JPS625242B2 (en) | 1987-02-04 |
Family
ID=11752504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1052081A Granted JPS57124608A (en) | 1981-01-27 | 1981-01-27 | Fluidized bed type heat-reactive furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57124608A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6055834U (en) * | 1983-09-19 | 1985-04-19 | 株式会社荏原製作所 | Fluidized bed incinerator |
JPS6275331U (en) * | 1985-10-29 | 1987-05-14 | ||
CA1285375C (en) * | 1986-01-21 | 1991-07-02 | Takahiro Ohshita | Thermal reactor |
US5138982A (en) * | 1986-01-21 | 1992-08-18 | Ebara Corporation | Internal circulating fluidized bed type boiler and method of controlling the same |
JPS62196522A (en) * | 1986-02-21 | 1987-08-29 | Ebara Corp | Heat recovery method from fluidized bed and its equipment |
JPS6361811A (en) * | 1986-09-02 | 1988-03-18 | Ebara Corp | Method of burning combustible lump matter |
ATE85682T1 (en) * | 1987-07-20 | 1993-02-15 | Ebara Corp | FLUIDIZED BED FURNACE WITH INTERNAL CIRCULATION AND CONTROL METHOD OF THE SAME. |
TW270970B (en) * | 1995-04-26 | 1996-02-21 | Ehara Seisakusho Kk | Fluidized bed combustion device |
JP6338430B2 (en) | 2014-04-16 | 2018-06-06 | 荏原環境プラント株式会社 | Swirling fluidized bed furnace |
JP6271365B2 (en) * | 2014-07-30 | 2018-01-31 | 株式会社Ihi環境エンジニアリング | Burner for powder combustion |
JP6718296B2 (en) * | 2016-04-26 | 2020-07-08 | 三菱重工業株式会社 | Fluidized bed combustion furnace |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5923924Y2 (en) * | 1977-01-22 | 1984-07-16 | 日本碍子株式会社 | fluidized combustion furnace |
-
1981
- 1981-01-27 JP JP1052081A patent/JPS57124608A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57124608A (en) | 1982-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0154717B1 (en) | Method for incinerating material | |
JPH04507134A (en) | Bottom ash discharge device | |
JPS625242B2 (en) | ||
EP0628767A2 (en) | Fluidized bed reactor and method utilizing refuse derived fuel | |
EP0687855B1 (en) | Circulating fluidized bed reactor for low grade fuels | |
JPS63204004A (en) | Furnace | |
JPH0814531A (en) | Supplying device for solid substance to be burnt | |
TW200413672A (en) | Fluidized-bed gasification furnace | |
JP2651769B2 (en) | Heat recovery combustion equipment | |
JP3542280B2 (en) | Fluid bed incinerator | |
KR890004814B1 (en) | Fluidized bed incinerating device | |
JPH0756361B2 (en) | Fluidized bed heat recovery apparatus and control method thereof | |
JPS61205720A (en) | Lateral type fluidized bed type incinerator | |
JPS61217616A (en) | Fluidized bed heat reaction furnace | |
JPH0755123A (en) | Method and device for incineration of waste | |
JPS61223421A (en) | Fluidized bed thermal reaction furnace | |
JPS61217617A (en) | Fluidized bed reaction furnace and operating method therefor | |
JP3172751B2 (en) | Fluidized bed combustion method | |
JPH0616248Y2 (en) | Fluidized bed combustor | |
JP2657735B2 (en) | Method and apparatus for charging combustion products to fluidized bed combustion apparatus | |
JPH0335575B2 (en) | ||
JPH06241426A (en) | Waste incinerator | |
JPS62196522A (en) | Heat recovery method from fluidized bed and its equipment | |
JP2001343110A (en) | Equipment for combustion completion in waste incinerator | |
CA1184075A (en) | Grating structure |