JP2651769B2 - Heat recovery combustion equipment - Google Patents

Heat recovery combustion equipment

Info

Publication number
JP2651769B2
JP2651769B2 JP4184754A JP18475492A JP2651769B2 JP 2651769 B2 JP2651769 B2 JP 2651769B2 JP 4184754 A JP4184754 A JP 4184754A JP 18475492 A JP18475492 A JP 18475492A JP 2651769 B2 JP2651769 B2 JP 2651769B2
Authority
JP
Japan
Prior art keywords
combustion
heat recovery
dust
exhaust gas
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4184754A
Other languages
Japanese (ja)
Other versions
JPH062813A (en
Inventor
勉 肥後
正司 神定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP4184754A priority Critical patent/JP2651769B2/en
Publication of JPH062813A publication Critical patent/JPH062813A/en
Application granted granted Critical
Publication of JP2651769B2 publication Critical patent/JP2651769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱回収燃焼設備の改良
に係り、特に、燃焼排ガス中にダストを多く伴う、廃棄
物を処理して燃料化したものや石炭、石油コークス等を
燃料とするボイラや熱風発生設備あるいは、都市ごみ、
汚泥、種々の産業廃棄物等廃棄物を焼却処理する焼却設
備のうち廃熱ボイラや排ガス式空気予熱器(排ガスによ
り燃焼用空気を予熱するもの)を備えた熱回収燃焼設備
の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the improvement of heat recovery and combustion equipment, and more particularly, to the treatment of waste fuel, which is accompanied by a large amount of dust in flue gas, and is converted into fuel or coal, petroleum coke, etc. as fuel. Boilers and hot air generators or municipal waste,
The present invention relates to an improvement of a heat recovery combustion facility provided with a waste heat boiler and an exhaust gas type air preheater (one that preheats combustion air by exhaust gas) among incinerators for incinerating sludge and various industrial wastes such as industrial wastes.

【0002】[0002]

【従来の技術】従来、この種の技術は、燃焼装置にスト
ーカ(火格子)炉やロータリーキルン炉を用いて燃焼物
中の不燃物が極力飛散しない様に工夫すると共に、発生
する燃焼排ガスの持つ熱エネルギーを回収するボイラや
空気予熱器等の熱交換器の入口には、サイクロン等のプ
レダスタを置いてダストを捕集して熱交換器へ流入する
ダスト濃度を極力低減させるようにするのが一般的であ
った。図3にその一般的なフローシートを示す。
2. Description of the Related Art Conventionally, this type of technology uses a stoker (grate) furnace or a rotary kiln furnace as a combustion device so that incombustibles in combustion products are not scattered as much as possible, and the generated combustion exhaust gas has At the entrance of a heat exchanger such as a boiler or air preheater that recovers thermal energy, a pre-daster such as a cyclone should be placed to collect dust and reduce the dust concentration flowing into the heat exchanger as much as possible. Was common. FIG. 3 shows a general flow sheet.

【0003】図3において、補助燃料14は、着火ない
しは着火に至る温度域までに燃焼装置1内部温度を上昇
するために用いるバーナ29のためのガスや油等の燃料
をさす。又、冷却水17は、燃焼排ガスが高温となりす
ぎて耐火物を傷めたり、ダストが溶けたり焼結しはじめ
たりして煙道や伝熱面、装置内壁等にスケール化する事
を防ぐために、直接排ガス中に噴霧して通常900〜1
000℃以下に冷却するためのものである。燃焼用空気
16は1ケ所に集中して供給せず、少くとも燃焼物の投
入されている部分の下面と、燃焼排ガスが燃焼装置の出
口に流れてゆく途中との2ケ所に分けて添加し、前者を
一次燃焼空気、後者を二次燃焼空気と呼ぶ。この一次燃
焼空気量は理論空気量前後が若干少めとして還元状態に
て燃焼物を燃焼させて、発生するフューエルNOx、即
ち燃焼物中に含まれる窒素が窒素酸化物に転化するのを
抑制し、かつ一次燃焼空気吹込部で激しく燃焼が起こ
り、局部的に高温化して火格子や耐火物が熱や化学反応
で損傷するのを防いでいる。一次燃焼空気だけでは理論
空気量前後が若干少めのため不完全燃焼であるので、後
で二次空気を加え、適当な空気過剰率として完全燃焼さ
せる。
In FIG. 3, auxiliary fuel 14 refers to fuel such as gas or oil for a burner 29 used to raise the internal temperature of the combustion apparatus 1 to a temperature range where ignition or ignition occurs. In addition, the cooling water 17 is used to prevent the flue gas from becoming too hot and damaging the refractory, and preventing the dust from melting or sintering and causing the flue, the heat transfer surface, and the inner wall of the device to be scaled. Spray directly into exhaust gas, usually 900-1
It is for cooling to below 000 ° C. The combustion air 16 is not concentrated and supplied at one location, but is added separately at two locations, that is, at least on the lower surface of the portion where the combustion material is charged and on the way the combustion exhaust gas flows to the outlet of the combustion device. The former is called primary combustion air, and the latter is called secondary combustion air. The amount of primary combustion air is reduced slightly before and after the theoretical air amount, and the combustion products are burned in a reduced state to suppress the generation of fuel NOx, that is, the conversion of nitrogen contained in the combustion products into nitrogen oxides. In addition, intense combustion occurs in the primary combustion air blowing section, which locally raises the temperature to prevent the grate or refractory from being damaged by heat or a chemical reaction. Since the amount of the primary air is only slightly less than the theoretical air amount and is incomplete combustion, secondary air is added later to complete combustion with an appropriate excess air ratio.

【0004】空気予熱器8は、燃焼排ガスから熱を回収
して燃焼用空気を予熱すると同時に排ガスを冷却するも
ので、燃焼装置1の熱バランスを改善して昇温し燃焼物
の燃焼を容易とし、廃熱ボイラ7の熱回収率を高めると
共に、バグフィルターなどの集塵装置9の耐熱温度以下
まで排ガスを冷却するものである。図3では一次燃焼空
気のみであるが二次燃焼空気も排ガス式空気予熱器を通
し、二次燃焼を促進すると共に排ガス温度を下げてやる
事もある。また、スクラバーや電気集塵器を集塵装置9
に用いる場合は、バグフィルターの通常150〜250
℃に対して200〜350℃と高めのため、空気予熱器
を設置しない場合もある。燃焼装置1からの不燃物13
の排出は、通常水封などをへて消火、冷却、排ガスシー
ルし外に排出する。それ以外の灰排出装置5はロータリ
バルブやダブルダンパ等で排ガスをシールしながらダス
トを外に排出する。
[0004] The air preheater 8 recovers heat from the flue gas to preheat the combustion air and simultaneously cools the flue gas. The air preheater 8 improves the heat balance of the combustion device 1 and raises the temperature to facilitate combustion of the burned material. The heat recovery rate of the waste heat boiler 7 is increased, and the exhaust gas is cooled to a temperature equal to or lower than the allowable temperature limit of the dust collector 9 such as a bag filter. In FIG. 3, only the primary combustion air is used, but the secondary combustion air is also passed through the exhaust gas type air preheater to promote the secondary combustion and sometimes reduce the exhaust gas temperature. In addition, a scrubber or an electric dust collector is attached to the dust collecting device 9.
When used for bag filters, usually 150-250
In some cases, an air preheater is not installed because the temperature is as high as 200 to 350 ° C. Non-combustible material 13 from combustion device 1
Emissions are usually made by extinguishing, cooling, and sealing the exhaust gas through a water seal or the like, and then discharged outside. The other ash discharging device 5 discharges dust while sealing exhaust gas with a rotary valve, a double damper, or the like.

【0005】[0005]

【発明が解決しようとする課題】最近、徐々に流動床燃
焼装置の採用が一般化しはじめている。従来のストーカ
炉やロータリキルン炉などは対象燃焼物の発熱量や物性
がきわめて限られており、過大な発熱量のものは火格子
や耐火物を溶かしたり変形させたりクリンカを発生させ
て損傷を起こし、過少な発熱量のものは燃焼しないまま
排出してしまうなどのため、処理量が激減し、補助燃料
がかさむ。又、燃焼物が油や汚泥やプラスチック、雑芥
などと種類が異なるとそれに応じ、燃焼炉の形式を選択
してやる必要があった。これに対して流動床燃焼装置で
は一つで廃油から廃液まで、汚泥も雑芥も全て受け入
れ、発熱量の高低でも損傷はなく、受入燃焼物の平均発
熱量のバランスによって熱収支が決まる、という優れた
面をもっている。
Recently, the adoption of fluidized bed combustors has gradually begun to become popular. Conventional stoker furnaces and rotary kiln furnaces have extremely limited calorific values and physical properties of target combustibles, and those with excessive calorific values can damage or damage the grate or refractory by melting or deforming them or generating clinkers. If the heat generation amount is too small, it is discharged without being burned, so that the processing amount is drastically reduced and the auxiliary fuel is increased. Further, if the type of combustion material is different from oil, sludge, plastic, garbage, etc., it is necessary to select the type of combustion furnace according to the difference. On the other hand, a fluidized bed combustor accepts both sludge and garbage, from waste oil to waste liquid, without any damage even if the calorific value is high or low, and the heat balance is determined by the balance of the average calorific value of the received combustion products. Has an excellent side.

【0006】これは600〜850℃程度の燃焼温度に
熱した砂を底から吹き込む一次燃焼空気によって流動化
させた流動床を底部に形成させ、上部のフリーボード部
と呼ぶ空間で流動床よりはね上がる砂を落下させ流動床
にもどすと共に、二次燃焼空気により二次燃焼させるも
ので、燃焼物をフリーボード部壁等からあるいは直接流
動床に投入することにより、流動砂でもみほぐしながら
燃焼物を燃焼させるため、前述したような燃焼物の性
状、発熱量を選ばない事が可能となるものである。そし
て、残った不燃物は流動床の底より砂と共に炉外に抜き
出し、トロンメル(回転横置円筒篩)や振動篩などによ
り、2〜5mm以下の砂とそれより大きな不燃物とに篩分
し、砂は再び炉内に戻し、不燃物は排出する。不燃物中
にホチキス針、釘、針金、鋲等が多い場合は篩にからま
り閉塞させ易いため、篩の上流側に磁選機を置いて鉄分
を除去するのが普通である。流動床の底と外部との圧力
差は、特にダンパ類は用いず、1〜2m長さの冷却シュ
ートを入れて、砂や不燃物の冷却と同時にそのシュート
内に充満する砂のマテリアルシールにより圧力差を抑え
てしまう方法がかみこみ等の問題がなく都合がよい。
[0006] In this method, a fluidized bed fluidized by primary combustion air blown from the bottom with sand heated to a combustion temperature of about 600 to 850 ° C is formed at the bottom, and rises from the fluidized bed in a space called an upper free board section. The sand is dropped and returned to the fluidized bed, and the secondary combustion is performed by the secondary combustion air. Since the fuel is burned, it is possible to select the properties of the burned material and the calorific value as described above. The remaining incombustible material is taken out of the furnace together with the sand from the bottom of the fluidized bed, and sieved by a trommel (rotating horizontal cylindrical sieve) or a vibrating sieve into sand of 2 to 5 mm or less and a larger incombustible material. The sand is returned to the furnace, and the incombustibles are discharged. If there are many staples, nails, wires, tacks, etc. in the incombustibles, they are easily caught and clogged by the sieve, so it is common to place a magnetic separator upstream of the sieve to remove iron. The pressure difference between the bottom of the fluidized bed and the outside can be controlled by using a cooling chute with a length of 1 to 2 m without using dampers and cooling the sand and incombustibles and filling the chute with sand. The method of suppressing the pressure difference is convenient because there is no problem such as biting.

【0007】この流動床においては、従来のロータリー
キルンやストーカ炉と異なり、砂により激しくもみ砕き
ながら乾燥、燃焼させるため、炉底から排出される不燃
物はダスト分がなくきれいで完全に燃えつき取扱いが容
易となる反面、流動床からフリーボード部をへて燃焼装
置外に排ガスと共に飛散してしまうものが増加する。加
えて流動砂自体も互いに衝突しあったり、燃焼物や廃液
などと接してサーマルショックを受けるなどするうちに
摩耗して細かくなり、ダストとして飛散してゆくように
なる。燃焼物に含まれる不燃物で砂状のものは、炉外分
級においても排出される事なく砂と同化されるため、そ
の量が多い場合は砂の量は漸次増加してゆくが、少ない
場合減少するため、砂を補充する必要が生じ、その分燃
焼装置より飛散するダスト量も増加する。飛散するダス
ト粒径は、通常500μm前後より下のものがほとんど
を占めるが、流動床の沸騰現象に伴う砂の飛散でこれよ
り大きな粒径のものも多い。
In this fluidized bed, unlike conventional rotary kilns and stoker furnaces, since it is dried and burned while being violently crushed with sand, incombustible substances discharged from the furnace bottom are clean and completely burned without dust, and can be handled completely. On the other hand, on the other hand, there is an increase in the number of substances that are scattered together with the exhaust gas from the fluidized bed to the freeboard section and out of the combustion apparatus. In addition, the fluidized sand itself collides with each other, or is subjected to thermal shock in contact with a combustible material or a waste liquid, and becomes worn and fine, and scatters as dust. Non-combustible sand contained in combustibles is assimilated with sand without being discharged even in the outside classification, so if the amount is large, the amount of sand gradually increases, but if it is small, Due to the decrease, it becomes necessary to replenish the sand, and the amount of dust scattered from the combustion device increases accordingly. Most of the dust particles scattered generally have a particle size of less than about 500 μm, but there are many particles having a particle size larger than this due to scattering of sand due to the boiling phenomenon of the fluidized bed.

【0008】このため、従来通り、サイクロンなどのプ
レダスタにより極力除塵してから、廃熱ボイラや空気予
熱器等の熱回収装置に通してやろうとするとサイクロン
の金属部が粒子の大きなダストによって激しい摩耗を生
じた。又、サイクロンを通過する様な10μm以下と微
細な径のものだけが熱回収装置に流入すると、次第に伝
熱面に付着し、非常に軽いために剥離しにくい断熱層を
形成してしまう。このため、熱交換が防げられ頻繁にス
ートブローを作動させなければならなくなった。このた
め、スートブローによる伝熱面の摩耗の心配や廃熱ボイ
ラ付の場合、スートブローに伴う回収蒸気量の低下やス
ートブロー時のスートブロー分の蒸気発生量の変動がさ
けられず、廃熱ボイラがなく空気予熱器のみの場合、ス
ートブローのための空気源又は蒸気源を必要とした。
For this reason, as in the prior art, if the dust is removed as much as possible by a cyclone or other pre-duster and then the dust is passed through a heat recovery device such as a waste heat boiler or an air preheater, the metal part of the cyclone is severely worn by the large dust particles. occured. Also, when only a fine particle having a diameter as small as 10 μm or less that passes through the cyclone flows into the heat recovery device, it gradually adheres to the heat transfer surface and forms a heat insulating layer that is very light and thus difficult to peel off. For this reason, heat exchange was prevented and soot blow had to be operated frequently. For this reason, if the heat transfer surface is worn out due to soot blowing or if a waste heat boiler is used, a reduction in the amount of recovered steam due to the soot blowing and a change in the amount of steam generated by the soot blowing during the soot blowing can be avoided, and there is no waste heat boiler. The air preheater alone required an air or steam source for soot blowing.

【0009】また、スートブロー時の排ガス量がスート
ブロー流体分だけ急変動するため、設備の安定運転が損
われ、排ガス圧力変動が大巾に上下したり排ガス処理設
備の能力を越えてしまい、有害ガス除去効率や集じん効
率が低下するなどの問題を起こすとか、その様な状況を
さけるためにスートブローに先立って燃焼量を下げて排
ガス流量をしぼりこんでおく、という運転を行う必要が
あった。特に、汚泥など10μm以下の不燃物を多量に
含むものを燃焼物に含む場合に伝熱面への断熱層の形成
速度が大きく、問題が大きかった。本発明は、上記のよ
うな問題点を解消するために、燃焼装置からの粒子径の
大きなダストを効率よく除去して、熱回収室におけるダ
ストによる摩耗を防止することのできる熱回収燃焼設備
を提供することを課題とする。
In addition, since the amount of exhaust gas during soot blowing fluctuates abruptly by the amount of the soot blow fluid, stable operation of the equipment is impaired, and fluctuations in exhaust gas pressure fluctuate greatly or exceed the capacity of the exhaust gas treatment equipment, resulting in harmful gas. In order to avoid problems such as a decrease in removal efficiency and dust collection efficiency, it was necessary to perform an operation of reducing the combustion amount and narrowing the exhaust gas flow rate prior to soot blowing in order to avoid such a situation. In particular, when a substance containing a large amount of non-combustible material of 10 μm or less such as sludge is included in the combusted material, the rate of forming the heat insulating layer on the heat transfer surface is large, which is a serious problem. The present invention provides a heat recovery and combustion facility capable of efficiently removing dust having a large particle diameter from a combustion device and preventing abrasion due to dust in a heat recovery chamber in order to solve the above problems. The task is to provide.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、流動床燃焼装置より発生する燃焼排ガ
スを、定格運転時の平均流速が12〜20m/sである
傾斜ダクトにより、沈降室に導き、次いで該沈降室から
熱回収装置に流入させる熱回収燃焼設備において、前記
沈降室が上面に流入口を有し、その中央部は流路断面積
を前記ダクトより拡げて平均流速を定格運転時8〜14
m/sとし、その底部は壁面を水平面に対して50゜を
越える角度の灰排出ホッパを形成して最下部に灰排出装
置を設けると共に、灰排出ホッパよりも高い位置でかつ
流動床燃焼装置からのダクトにて流入する排ガス流のあ
たらぬ位置に熱回収装置への流出ノズルを設け、該流出
ノズル流路断面積は該沈降室流路断面積よりも小さいこ
ととしたものである。上記において、沈降室灰排出装置
から排出した灰を流動床燃焼装置に循環する手段を設け
るのがよい。また、傾斜ダクトは、排ガス流に従って上
昇する場合は少なくとも40°、下降する場合は少なく
とも30゜位水平に対して傾けるのがよい。
In order to solve the above-mentioned problems, in the present invention, a combustion exhaust gas generated from a fluidized bed combustion device is supplied to an inclined duct having an average flow velocity of 12 to 20 m / s during rated operation. In the heat recovery and combustion equipment, which guides the sedimentation chamber and then flows from the sedimentation chamber to the heat recovery device, the sedimentation chamber has an inflow port on the upper surface, and the central portion has a flow path cross-sectional area that is larger than that of the duct to increase the average flow velocity. 8 to 14 at rated operation
m / s, the bottom of which forms an ash discharge hopper whose wall surface is at an angle of more than 50 ° with respect to the horizontal plane, and an ash discharge device is provided at the lowest part. An outlet nozzle for the heat recovery device is provided at a position where the exhaust gas flowing into the duct from the outlet does not reach, and the cross-sectional area of the flow path of the outlet nozzle is smaller than the cross-sectional area of the settling chamber flow path. In the above, it is preferable to provide means for circulating the ash discharged from the settling chamber ash discharge device to the fluidized bed combustion device. Also, the inclined duct is preferably inclined at least 40 ° when it rises according to the exhaust gas flow, and at least 30 ° when it descends.

【0011】[0011]

【作用】通常排ガスに同伴するダストは排ガス流向の変
化に追従しきれない200μm以上のものまでが摩耗効
果を持つものと言われている。本発明によれば、沈降室
を設けることにより、排ガス流向を変えて衝突集じん効
果で粗大粒子径のダストを分離除去することができ、上
記のような200μm以上の粒径のダストを選択的に除
去し、アッシュカットと呼ばれる伝熱面のダストによる
摩耗を防止することができる。
It is said that the dust accompanying the exhaust gas has a wear effect up to 200 μm or more, which cannot follow the change in the exhaust gas flow direction. According to the present invention, by providing a settling chamber, it is possible to separate and remove dust having a large particle diameter by the impact dust collection effect by changing the exhaust gas flow direction, and selectively remove dust having a particle diameter of 200 μm or more as described above. To prevent abrasion due to dust on the heat transfer surface called ash cut.

【0012】また、熱回収室においては、排ガス中の2
00μm以上の運動量が大きくて摩耗性のある粒子の量
は微かであり、かつ、サイクロン等で除じんしたものに
比較して50〜200μmの比較的あらい粒子を多く混
入させている。このため、伝熱面に付着するダストは相
対的にかさ密度が上昇し、振動や気流等によって剥離し
やすくなる。この結果、平均的なダスト付着量がへり、
スートブローの必要頻度がへり、スートブローによって
払い落とされやすく、スートブローの強さを弱めること
即ち、スートブロー用蒸気又は空気量がへり、伝熱面の
余裕が大きな場合スートブローなしの自己剥離だけで運
転可能となる。
Further, in the heat recovery chamber, 2
The amount of particles having a large momentum of at least 00 μm and having abrasion is small, and relatively large particles having a particle size of 50 to 200 μm are mixed as compared with those obtained by dusting with a cyclone or the like. For this reason, dust adhering to the heat transfer surface has a relatively high bulk density, and is easily separated by vibration, airflow, or the like. As a result, the average dust deposition amount is reduced,
The required frequency of soot blow is reduced, it is easily washed off by soot blow, and the strength of soot blow is weakened. Become.

【0013】また、流動床燃焼装置からのダクトも傾斜
させ流速も12〜20m/sと大きめとして流動床から
の砂や荒いダストが沈降分離してもダストが重力や排ガ
ス流で移動して堆積しない様に工夫している。このた
め、これにより、流動床燃焼装置ならではの荒めのダス
トの高濃度飛散が、排ガス中に荒めのダストを混入させ
る事になり、この結果伝熱面付着ダストへの荒めのダス
ト混入が生じてダスト剥離の助長効果を強めている。
又、ダストは必ずしも付着による伝熱の阻害だけではな
く、逆に排ガスの熱を受けて輻射熱に変換する熱輻射促
進機能を持つ。
Further, the duct from the fluidized bed combustion device is also inclined and the flow velocity is set to be as large as 12 to 20 m / s. Even if sand or rough dust from the fluidized bed settles and separates, the dust moves by gravity or exhaust gas flow and accumulates. I try not to do it. As a result, the high-concentration scattering of coarse dust unique to a fluidized bed combustion device causes coarse dust to be mixed into exhaust gas, and as a result, coarse dust is mixed into dust attached to the heat transfer surface. The effect of promoting dust separation is enhanced.
In addition, dust does not necessarily hinder heat transfer due to adhesion, but has a heat radiation promoting function of receiving heat of exhaust gas and converting it to radiant heat.

【0014】本発明者達の経験値からすると、流動床か
ら出た高ダスト排ガスが黒体の70%前後の輻射を行う
データが多くあり、ダストの少ない排ガスのみに対して
倍以上の極めて大きな高温領域における伝熱を得る事が
できる。又、ダストは排ガスと伝熱面との伝熱抵抗のほ
とんどを占める境界層に対して、境界層を乱し、薄くす
る効果を持っており、熱回収燃焼設備は本発明を適用す
ることにより、2〜3倍程度の伝熱係数を持つことがで
きる。又、輻射伝熱が強化されることから、輻射伝熱は
もともと付着ダスト層による伝熱の低下は少く、付着ダ
ストに左右されにくいため、本発明の対象の設備にとっ
て好都合である。なお、沈降室は、排ガス流の向きの変
更に追従できない200〜500μ以上のものは除去分
離するが、それ未満のものは積極的に同伴させる様にし
たものであって、従来のサイクロンやプレダスタの様に
遠心分離効果や衝突集塵効果で払い落せるダストはでき
るだけ分離除去してやろうというものとはその目的を異
にする。
According to the empirical values of the present inventors, there are many data in which high dust exhaust gas discharged from the fluidized bed radiates about 70% of the black body, and is twice as large as exhaust gas with little dust. Heat transfer in a high temperature region can be obtained. In addition, dust has the effect of disturbing and thinning the boundary layer with respect to the boundary layer occupying most of the heat transfer resistance between the exhaust gas and the heat transfer surface. , 2 to 3 times the heat transfer coefficient. In addition, since the radiant heat transfer is enhanced, the radiant heat transfer is originally less likely to be reduced by the attached dust layer and is less affected by the attached dust, which is advantageous for the equipment of the present invention. The sedimentation chamber removes and separates those having a size of 200 to 500 μm or more which cannot follow the change in the direction of the exhaust gas flow, while those having a size less than 200 μm are positively entrained. The purpose of this is different from that of dust that can be removed by the centrifugal separation effect and the collision dust collection effect as described above.

【0015】[0015]

【実施例】以下、本発明を図面を用いて具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 図1に本発明の熱回収燃焼設備の概略工程図を示す。図
2に図1で用いる沈降室の拡大断面図を示す。図におい
て、流動床燃焼装置1は、流動床部2とフリーボード部
3とからなり、燃焼物14は一次燃焼空気16aによっ
て流動砂を流動化させた流動床2で燃焼させ、更にフリ
ーボード部3で二次燃焼空気16bの導入により二次燃
焼させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to the drawings, but the present invention is not limited thereto. Embodiment 1 FIG. 1 shows a schematic process diagram of a heat recovery combustion facility of the present invention. FIG. 2 shows an enlarged sectional view of the settling chamber used in FIG. In the figure, a fluidized bed combustion apparatus 1 comprises a fluidized bed section 2 and a freeboard section 3, and a combustion product 14 is burned in a fluidized bed 2 in which fluidized sand is fluidized by primary combustion air 16a. In step 3, secondary combustion is performed by introducing the secondary combustion air 16b.

【0016】不燃物は流動床の底から流動砂と共に取出
シュート10により排出され、排出コンベヤ11により
篩分装置12に導入されて不燃物13と流動砂に篩分け
られて、流動砂は循環砂25として燃焼装置1に循環さ
れる。流動砂の補充は18から行う。補助燃料15は、
流動床2の温度を燃焼に必要な温度域に上昇するために
添加され、また、冷却水17は、フリーボート部3の温
度を適正な温度に保持するために用いるものである。
The incombustibles are discharged from the bottom of the fluidized bed together with the fluidized sand by a take-out chute 10, introduced into a sieving device 12 by a discharge conveyor 11 and sieved into incombustibles 13 and fluidized sand. 25 is circulated to the combustion device 1. Replenishment of the fluidized sand is performed from 18. The auxiliary fuel 15 is
The cooling water 17 is added to raise the temperature of the fluidized bed 2 to a temperature range necessary for combustion, and the cooling water 17 is used to maintain the temperature of the free boat section 3 at an appropriate temperature.

【0017】流動床燃焼装置1から排出される排ガスは
傾斜ダクト19を通り、沈降室4に入る。ダクトから沈
降室4に入った排ガス流は、図2に示されるように直進
26して下部灰排出ホッパ24にあたり、含んでいる2
00μm前後以上のダスト粒子27はその際灰排出ホッ
パ24壁面と衝突し、捕捉され最下位のノズルより灰排
出装置5に入り、5から外部に排出される。灰排出ホッ
パ24の壁面は50°以上の角度となっているため、衝
突した粒子は、はねかえっても上方に飛びあがって再び
排ガス流に乗るものはわずかで、衝突による速度減衰に
より、効果的に捕捉される。衝突後の排ガス流は乱され
熱回収装置の廃熱ボイラ7へと加速しながら流入してゆ
く。
The exhaust gas discharged from the fluidized bed combustion device 1 passes through the inclined duct 19 and enters the settling chamber 4. The exhaust gas flow that has entered the sedimentation chamber 4 from the duct goes straight 26 as shown in FIG.
The dust particles 27 having a size of about 00 μm or more collide with the wall of the ash discharge hopper 24 at that time, are captured and enter the ash discharger 5 from the lowest nozzle, and are discharged to the outside from 5. Since the wall surface of the ash discharge hopper 24 is at an angle of 50 ° or more, even if it bounces, only a few particles jump upward and get on the exhaust gas flow again. Is captured by The exhaust gas flow after the collision is disturbed and flows into the waste heat boiler 7 of the heat recovery device while accelerating.

【0018】このように、再加速効果と排ガス流の向き
変更の効果で排ガスの偏流は少なくなる。廃熱ボイラ7
で熱交換された排ガスは、ダクト21を通り空気予熱器
8に入り、燃焼用空気16を加熱して、自からは温度を
下げて集塵装置9に到り、集塵され清浄空気として排出
22される。熱回収装置である廃熱ボイラ7及び空気予
熱器8においては、排ガス中に50〜200μmの比較
的あらい粒子が多く混入されているため、伝熱面に付着
するダストは相対的にかさ密度が上昇し、振動や気流等
により剥離しやすい。沈降室4から排出される粒子は、
灰排出装置5から、切換装置6により流動床燃焼装置1
に導入されるか、捕集飛灰23として排出される。ま
た、廃熱ボイラ7、空気予熱器8及び集塵装置9から排
出される灰はそれぞれ灰排出装置5を通り捕集飛灰23
として排出される。
As described above, the drift of the exhaust gas is reduced by the re-acceleration effect and the effect of changing the direction of the exhaust gas flow. Waste heat boiler 7
The exhaust gas heat-exchanged through the duct 21 enters the air preheater 8 through the duct 21, heats the combustion air 16 and lowers the temperature from itself to the dust collector 9, where it is collected and discharged as clean air. 22. In the waste heat boiler 7 and the air preheater 8 which are heat recovery devices, since relatively large particles of 50 to 200 μm are mixed in the exhaust gas, dust adhering to the heat transfer surface has a relatively high bulk density. It easily rises and peels off due to vibration, airflow, etc. Particles discharged from the settling chamber 4
From the ash discharge device 5, the fluidized bed combustion device 1 is switched by the switching device 6.
Or discharged as collected fly ash 23. The ash discharged from the waste heat boiler 7, the air preheater 8, and the dust collecting device 9 passes through the ash discharging device 5 and collects fly ash 23.
Is discharged as

【0019】この結果、ケースによってはダスト払い落
としは特にスートブローを行う事なく、設備的に伝熱面
積を増やすことなく、従来通りの熱回収を維持できるよ
うになる。又、流動砂が減って補充を行わねばならない
可能性のある設備では、沈降室からの排出灰は粒径が荒
く流動砂に近い粒径をもっているため、切り換え装置6
を設けて流動床燃焼装置へ戻すようにすれば、流動床の
砂の平均粒径を下げて流動を活発化し流動床中での燃焼
反応速度を加速する効果があり、かつ系外に排出する砂
量を少くするために補充砂を少くしたり不要としたりす
ることができ、実用上、利点が大きい。
As a result, depending on the case, it is possible to maintain the conventional heat recovery without particularly removing soot from dust and without increasing the heat transfer area in equipment. Also, in equipment where the amount of fluidized sand may decrease and replenishment must be performed, the ash discharged from the sedimentation chamber has a coarse particle size and a particle size close to that of fluidized sand.
Is provided to reduce the average particle size of sand in the fluidized bed to activate the flow and accelerate the combustion reaction rate in the fluidized bed, and to discharge the fluid out of the system. In order to reduce the amount of sand, it is possible to reduce or eliminate the need for supplementary sand, which is practically advantageous.

【0020】[0020]

【発明の効果】上記のように、本発明によれば、沈降室
を設けたことにより、200μm以上の粒径のダストを
選択的に除去することができ伝熱面のダストによる摩耗
を防止することができ、また、熱回収室には比較的荒い
粒子を多く混入させているため、伝熱面に付着するダス
トを剥離しやすくしており、長期間に渡って安定した運
転が可能となった。
As described above, according to the present invention, by providing the sedimentation chamber, dust having a particle diameter of 200 μm or more can be selectively removed, and wear of the heat transfer surface due to dust can be prevented. In addition, since relatively large particles are mixed in the heat recovery chamber, dust adhering to the heat transfer surface can be easily separated, enabling stable operation for a long period of time. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱回収燃焼設備の概略工程図。FIG. 1 is a schematic process diagram of a heat recovery combustion facility of the present invention.

【図2】図1で用いる沈降室の拡大断面図。FIG. 2 is an enlarged sectional view of a settling chamber used in FIG.

【図3】従来の熱回収燃焼設備の概略工程図。FIG. 3 is a schematic process diagram of a conventional heat recovery and combustion facility.

【符号の説明】[Explanation of symbols]

1:流動床燃焼装置、2:流動床部、3:フリーボード
部、4:沈降室、5:灰排出装置、6:切換装置、7:
廃熱ボイラ、8:空気予熱器、9:集塵装置、10:取
出シュート、11:排出コンベヤ、12:篩分装置、1
3:不燃物、14:燃焼物、15:補助燃料、16:燃
焼用空気、17:冷却水、18:補助砂、19:傾斜ダ
クト、20、21:ダクト、22:排出ガス、23:捕
集飛灰、24:灰排出ホッパ、25:循環砂、26:排
ガスの流れ、27:混入砂の軌跡、28:サイクロン、
29:バーナ
1: fluidized bed combustion apparatus, 2: fluidized bed section, 3: free board section, 4: settling chamber, 5: ash discharger, 6: switching apparatus, 7:
Waste heat boiler, 8: air preheater, 9: dust collecting device, 10: take-out chute, 11: discharge conveyor, 12: sieving device, 1
3: non-combustible, 14: combustion, 15: auxiliary fuel, 16: combustion air, 17: cooling water, 18: auxiliary sand, 19: inclined duct, 20, 21: duct, 22: exhaust gas, 23: trapping Fly ash, 24: Ash discharge hopper, 25: Circulating sand, 26: Exhaust gas flow, 27: Trajectory of mixed sand, 28: Cyclone,
29: Burner

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流動床燃焼装置より発生する燃焼排ガス
を、定格運転時の平均流速が12〜20m/sである傾
斜ダクトにより、沈降室に導き、次いで該沈降室から熱
回収装置に流入させる熱回収燃焼設備において、前記沈
降室が上面に流入口を有し、その中央部は流路断面積
を前記ダクトより拡げて平均流速を定格運転時8〜14
m/sとし、その底部は壁面を水平面に対して50゜を
越える角度の灰排出ホッパを形成して最下部に灰排出装
置を設けると共に、灰排出ホッパよりも高い位置でかつ
流動床燃焼装置からのダクトにて流入する排ガス流のあ
たらぬ位置に熱回収装置への流出ノズルを設け、該流出
ノズル流路断面積は該沈降室流路断面積よりも小さいこ
とを特徴とする熱回収燃焼設備。
1. A flue gas generated from a fluidized bed combustor is led to a settling chamber by an inclined duct having an average flow velocity of 12 to 20 m / s during rated operation, and then flows from the settling chamber to a heat recovery device. In the heat recovery and combustion equipment, the settling chamber has an inflow port on the upper surface, and the central portion thereof has a flow path cross-sectional area larger than that of the duct so that the average flow rate is 8 to 14 during rated operation.
m / s, the bottom of which forms an ash discharge hopper whose wall surface is at an angle of more than 50 ° with respect to the horizontal plane, and an ash discharge device is provided at the lowest part. Characterized in that an outflow nozzle to the heat recovery device is provided at a position where the exhaust gas flow flowing into the duct from the outside does not emerge, and the cross-sectional area of the flow path of the outflow nozzle is smaller than the cross-sectional area of the settling chamber flow path. Facility.
【請求項2】 前記沈降室灰排出装置は、排出した灰を
流動床燃焼装置に循環する手段を有することを特徴とす
る請求項1記載の熱回収燃焼設備。
2. The heat recovery and combustion equipment according to claim 1, wherein the settling chamber ash discharging device has means for circulating the discharged ash to a fluidized bed combustion device.
JP4184754A 1992-06-19 1992-06-19 Heat recovery combustion equipment Expired - Fee Related JP2651769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4184754A JP2651769B2 (en) 1992-06-19 1992-06-19 Heat recovery combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4184754A JP2651769B2 (en) 1992-06-19 1992-06-19 Heat recovery combustion equipment

Publications (2)

Publication Number Publication Date
JPH062813A JPH062813A (en) 1994-01-11
JP2651769B2 true JP2651769B2 (en) 1997-09-10

Family

ID=16158763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4184754A Expired - Fee Related JP2651769B2 (en) 1992-06-19 1992-06-19 Heat recovery combustion equipment

Country Status (1)

Country Link
JP (1) JP2651769B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172020A (en) * 2013-03-12 2014-09-22 Metawater Co Ltd Sludge combustion apparatus and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010076672A (en) * 2000-01-27 2001-08-16 정효현 Heat recovery installation using sludge fluidized bed destruction by fire apparatus and thereof method
SE528258C2 (en) * 2004-06-24 2006-10-03 Swedish Bioburner System Ab Plant for heating by combustion of solid fuel
JP5372976B2 (en) * 2011-01-31 2013-12-18 日立オートモティブシステムズ株式会社 Thermal flow sensor
JP2020158068A (en) 2019-03-28 2020-10-01 三菱造船株式会社 Vessel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079539U (en) * 1983-11-08 1985-06-03 三井造船株式会社 Fluidized bed equipment
JPH0355407A (en) * 1989-07-22 1991-03-11 Nippon Steel Corp Heat recovery method for circulating fluidized bed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172020A (en) * 2013-03-12 2014-09-22 Metawater Co Ltd Sludge combustion apparatus and method

Also Published As

Publication number Publication date
JPH062813A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
EP0236686B1 (en) Method of catalystless denitrification for fluidized bed incinerators
JPS59112113A (en) Waste incinerator
KR100304321B1 (en) Fluidized bed reactor using waste derived fuel and its operation method
JPH06241424A (en) Incinerating method of solid waste
CA2624054C (en) A boiler producing steam from flue gases with high electrical efficiency and improved slag quality
JP2008261527A (en) Combustion device and boiler device for solid fuel
JP2651769B2 (en) Heat recovery combustion equipment
CA2012642A1 (en) Ash classifier-cooler-combustor
JP4321823B2 (en) Fluidized medium separator for fluidized bed gasifier and fluidized medium circulation mechanism equipped with the apparatus
JP2005274015A (en) Circulation fluidized bed boiler device and its operation control method
JPH10506985A (en) Fluidized bed combustion furnace for heat treatment of waste
JP3906174B2 (en) High temperature corrosion countermeasure and cleaning system of convection heat transfer section in circulating fluidized bed boiler.
JP3442521B2 (en) Combined fluidized bed waste combustion boiler
JP3535835B2 (en) Fluidized bed incinerator
JPS63187001A (en) Fluidized-bed heat recovery device
JPH08240308A (en) Fluidized bed incinerator provided with heat-collecting shell, circulating medium outside
JPH1157362A (en) Treatment of waste gas of waste melting furnace
SU1703908A1 (en) Method of operation of boiler plant
JPH0826976B2 (en) Combustion device
JPH01131809A (en) Fluidized bed type waste incinerator
JPH06221534A (en) Combustion device and combustion method in fludized bed type dust incinerator
JP2002349817A (en) Gasification melting furnace and its operating method
JP2007147135A (en) Fluidized bed furnace
JPH06117601A (en) Circulated fluidized bed boiler
JPH0745923B2 (en) Fluidized bed boiler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees