JP2007147135A - Fluidized bed furnace - Google Patents

Fluidized bed furnace Download PDF

Info

Publication number
JP2007147135A
JP2007147135A JP2005340192A JP2005340192A JP2007147135A JP 2007147135 A JP2007147135 A JP 2007147135A JP 2005340192 A JP2005340192 A JP 2005340192A JP 2005340192 A JP2005340192 A JP 2005340192A JP 2007147135 A JP2007147135 A JP 2007147135A
Authority
JP
Japan
Prior art keywords
straight pipe
fluidized bed
heat transfer
transfer tube
bed furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005340192A
Other languages
Japanese (ja)
Inventor
Hidekazu Oike
秀和 大池
Takahiro Atsumi
貴弘 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2005340192A priority Critical patent/JP2007147135A/en
Publication of JP2007147135A publication Critical patent/JP2007147135A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluidized bed furnace capable of preventing snagging in a heat transfer tube, and clogging between heat transfer tubes of fluidized sand and incineration objects, and capable of efficiently adjusting temperatures of the fluidized sand and the incineration objects. <P>SOLUTION: In the fluidized bed furnace, a straight tube part 41 with a length direction arranged substantially linearly toward a horizontal direction is provided in the heat transfer tube 41 provided in a furnace body and adjusting a temperature of a bed material. Plural rows of straight tube part rows 42 wherein the straight tube parts 41a are plurally arranged in parallel with each other at the same height, are provided at mutually different heights with gaps in between. Gaps Gx formed between the straight tube parts 41a in each straight tube part row 42 are arranged such that they are mutually in the same position as seen from above. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,流動床炉に関する。   The present invention relates to a fluidized bed furnace.

廃棄物を焼却処理する施設の一つとして,流動床炉が知られている。流動床炉は,炉床部に珪砂等の流動砂を堆積させた流動層を備え,炉床から流動層中に空気等の気体を噴出させながら,流動砂を吹き上げて加熱するものであり,廃棄物等の焼却物を高温の流動砂と混合させながら攪拌し,乾燥,熱分解,燃焼させる構成になっている。   A fluidized bed furnace is known as one of the facilities that incinerate waste. The fluidized bed furnace is equipped with a fluidized bed in which fluidized sand such as silica sand is deposited on the hearth, and it blows and heats the fluidized sand while blowing gas such as air from the hearth into the fluidized bed. Incinerators such as waste are mixed with high-temperature fluidized sand, stirred, dried, pyrolyzed, and burned.

かかる流動床炉の炉体内には,流動砂や焼却物の温度を調節するための伝熱管(冷却管)が設けられている(特許文献1参照。)。伝熱管の内部には水等の冷媒が通流させられる。即ち,伝熱管内の冷媒と伝熱管の表面に接触した流動砂や焼却物が伝熱管の内外面を介して熱交換することにより,流動砂や焼却物が冷却されるようになっている。   A heat transfer tube (cooling tube) for adjusting the temperature of the fluidized sand and the incinerated material is provided in the furnace body of the fluidized bed furnace (see Patent Document 1). A refrigerant such as water flows through the heat transfer tube. That is, the fluidized sand and the incinerated material that are in contact with the refrigerant in the heat transfer tube and the surface of the heat exchanger tube exchange heat through the inner and outer surfaces of the heat exchanger tube, thereby cooling the fluidized sand and the incinerated material.

特開平11−82967号公報JP-A-11-82967

しかしながら,従来の流動床炉にあっては,流動砂や焼却物等が伝熱管に引っ掛かったり,伝熱管の間に詰まったりして,流動砂や焼却物の流動が円滑に行われない問題があった。この場合,焼却物の乾燥,熱分解,燃焼を効率的に行うことが難しかった。また,流動砂や焼却物が流動しにくいと,伝熱管の摩耗が起こりやすく,伝熱管の補修に要するコストが高くなる問題もあった。このような問題を解決するため,流動層内に配置する伝熱管を少なくすることも考えられるが,この場合,流動層と伝熱管とが接触する面積が小さくなり,流動砂や焼却物の温度を効率的に調節できなくなる問題があった。   However, in the conventional fluidized bed furnace, there is a problem that the fluidized sand and the incinerated material do not flow smoothly because the fluidized sand and the incinerated material are caught in the heat transfer tube or clogged between the heat transfer tubes. there were. In this case, it was difficult to efficiently dry, pyrolyze, and burn the incinerated product. In addition, if the fluidized sand or incinerated material is difficult to flow, the heat transfer tube is likely to wear, and the cost required for repairing the heat transfer tube increases. In order to solve such problems, it may be possible to reduce the number of heat transfer tubes arranged in the fluidized bed. In this case, however, the area where the fluidized bed and the heat transfer tube are in contact with each other is reduced, and the temperature of the fluidized sand and incinerated materials There is a problem that it becomes impossible to adjust efficiently.

本発明は,上記の点に鑑みてなされたものであり,流動砂や焼却物が伝熱管に引っ掛かったり伝熱管の間に詰まったりすることを防止でき,かつ,流動砂や焼却物の温度を効率的に調節できる流動床炉を提供することを目的とする。   The present invention has been made in view of the above points, and can prevent fluid sand and incinerated material from being caught in the heat transfer tube or clogging between the heat transfer tubes, and can control the temperature of the fluid sand and incinerated material. An object is to provide a fluidized bed furnace which can be adjusted efficiently.

上記課題を解決するため,本発明によれば,炉体内で流動媒体を流動させ焼却物を焼却させる流動床炉であって,前記炉体の炉床に,前記流動媒体を吹き上げて流動させるための流動化用ガスを供給する流動化用ガス供給口が設けられ,前記炉体内に,前記流動媒体の温度を調節する伝熱管が備えられ,前記伝熱管は,長さ方向を水平方向に向けて略直線状に配置される直管部を有し,前記直管部を同じ高さにおいて複数本平行に配置した直管部列が,互いに異なる高さに隙間を空けて複数段に設けられ,かつ,各直管部列において各直管部同士の間に形成された隙間が,平面視において互いに同じ位置になるように配置されていることを特徴とする,流動床炉が提供される。かかる構成によれば,直管部同士の間に,略鉛直方向に沿った流路と略水平方向に沿った流路が形成され,これらの流路において,流動媒体を円滑に流動させることができる。   In order to solve the above problems, according to the present invention, there is provided a fluidized bed furnace in which a fluidized medium is caused to flow in the furnace body and the incinerated product is incinerated, and the fluidized medium is blown and flowed to the hearth of the furnace body. A fluidizing gas supply port for supplying the fluidizing gas is provided, and a heat transfer tube for adjusting the temperature of the fluidizing medium is provided in the furnace body, and the heat transfer tube has a length direction oriented in a horizontal direction. A plurality of straight pipe portions arranged in parallel at the same height and provided in a plurality of stages with gaps at different heights. In addition, there is provided a fluidized bed furnace characterized in that the gaps formed between the straight pipe portions in each straight pipe portion row are arranged at the same position in plan view. . According to such a configuration, the flow path along the substantially vertical direction and the flow path along the substantially horizontal direction are formed between the straight pipe portions, and the flow medium can smoothly flow in these flow paths. it can.

前記各直管部列における前記各直管部同士の間の間隔は,互いに同じでも良い。さらに,前記各直管部列同士の間の間隔は,互いに同じでも良い。   The intervals between the straight pipe portions in the straight pipe portion rows may be the same as each other. Furthermore, the interval between the straight pipe part rows may be the same.

前記炉床は,略水平面に対して傾斜させても良い。前記直管部は,前記炉床の傾斜方向に対して略垂直に設けても良い。また,前記伝熱管は,前記炉床の傾斜方向において低所側に設けても良い。さらに,前記複数の直管部列は,流動媒体に接触する直管部列と,流動媒体の上方に配置される直管部列とを備えるようにしても良い。   The hearth may be inclined with respect to a substantially horizontal plane. The straight pipe portion may be provided substantially perpendicular to the inclination direction of the hearth. Further, the heat transfer tube may be provided on a low side in the inclination direction of the hearth. Further, the plurality of straight pipe portion rows may include a straight pipe portion row that contacts the fluid medium and a straight tube portion row disposed above the fluid medium.

本発明によれば,伝熱管の直管部の間に形成された隙間において,流動媒体や焼却物を円滑に流動させることができる。従って,焼却物の乾燥,熱分解,燃焼を効率的に行うことができる。また,流動媒体や焼却物を伝熱管に十分に接触させることができ,流動媒体や焼却物の温度を効率的に調節できる。さらに,流動媒体や焼却物が伝熱管に引っ掛かったり,直管部の間に詰まったりすることを防止できる。また,伝熱管の摩耗を抑制でき,伝熱管の補修に要するコストを抑えることができる。   ADVANTAGE OF THE INVENTION According to this invention, a fluid medium and incinerated material can be smoothly flowed in the clearance gap formed between the straight pipe parts of a heat exchanger tube. Therefore, incineration can be efficiently dried, pyrolyzed, and burned. In addition, the fluid medium and the incinerated material can be sufficiently brought into contact with the heat transfer tube, and the temperature of the fluid medium and the incinerated material can be adjusted efficiently. Furthermore, it is possible to prevent the fluid medium and the incinerated material from being caught by the heat transfer tube or clogging between the straight tube portions. In addition, wear of the heat transfer tube can be suppressed, and the cost required for repairing the heat transfer tube can be reduced.

以下,本発明の好ましい実施の形態を,焼却物(焼却原料)としての廃棄自動車のシュレッダーダストを焼却する流動床炉に基づいて説明する。図1に示す流動床炉1は,傾斜分散型流動層燃焼炉であり,略角型の炉体2を有する。炉体2の内部空間のうち,下部は焼却物の燃焼(一次燃焼)を行う一次燃焼室S1となっており,上部は,焼却物の一次燃焼で発生した排ガスの燃焼(二次燃焼)を行う二次燃焼室(フリーボード)S2となっている。   Hereinafter, a preferred embodiment of the present invention will be described based on a fluidized bed furnace that incinerates shredder dust of a scrapped vehicle as an incinerated product (incinerated raw material). A fluidized bed furnace 1 shown in FIG. 1 is an inclined dispersion type fluidized bed combustion furnace, and has a substantially square furnace body 2. The lower part of the internal space of the furnace body 2 is a primary combustion chamber S1 for burning the incinerated product (primary combustion), and the upper part is for burning the exhaust gas (secondary combustion) generated by the primary combustion of the incinerated product. The secondary combustion chamber (free board) S2 is performed.

炉体2の側壁部6は,略長方形状のほぼ一様な横断面形状を有する略角筒状をなし,略鉛直方向に立設された4つの内側面,即ち,図2に示す前内側面6a,後内側面6b,左内側面6c,右内側面6dを有している。炉体2の炉床7は,略長方形状をなし,幅方向を左右方向(図1においては手前側から後側へ向かう方向)に向け,前方(図1においては左方)から後方(図1においては右方)に向かうほど次第に低くなるように傾斜させて設けられている。即ち,炉床7は,互いに対向する一対の前内側面6aと後内側面6bとの間において,略水平面に対して傾斜させて設けられている。   The side wall portion 6 of the furnace body 2 has a substantially rectangular tube shape having a substantially rectangular cross section, and has four inner side surfaces erected in a substantially vertical direction, that is, the front inner side shown in FIG. It has a side surface 6a, a rear inner surface 6b, a left inner surface 6c, and a right inner surface 6d. The hearth 7 of the furnace body 2 has a substantially rectangular shape, with the width direction directed in the left-right direction (the direction from the front side to the rear side in FIG. 1), and from the front (left side in FIG. 1) to the rear (figure In FIG. 1, it is provided so as to be gradually lowered toward the right). That is, the hearth 7 is provided to be inclined with respect to a substantially horizontal plane between a pair of front inner side surface 6a and rear inner side surface 6b facing each other.

図1に示すように,炉床7上,即ち一次燃焼室S1の底部には,粒子状の流動媒体である例えば珪砂等の流動砂が堆積させられ,焼却物を攪拌しながら燃焼させる流動層10が形成されている。   As shown in FIG. 1, a fluidized bed in which fluidized sand such as silica sand, which is a particulate fluidized medium, is deposited on the hearth 7, that is, the bottom of the primary combustion chamber S 1, and burns incinerated materials with stirring. 10 is formed.

炉体2には,一次燃焼室S1に焼却物と流動砂とを投入するための投入口11が開口されている。投入口11は,流動層10の上方において,前内側面6aに開口されている。即ち,炉床7の傾斜方向において高所側(上部側)に設けられている。投入口11には通路12が接続されている。焼却物と流動砂は,ホッパー13に投入され,ブレンダ14によって混合されてから,給塵装置15の稼動によって,所定の供給容量で,通路12及び投入口11を介して,一次燃焼室S1に連続的に供給されるようになっている。   The furnace body 2 is provided with an inlet 11 for introducing incinerated materials and fluidized sand into the primary combustion chamber S1. The inlet 11 is opened to the front inner side surface 6 a above the fluidized bed 10. That is, it is provided on the high side (upper side) in the inclination direction of the hearth 7. A passage 12 is connected to the input port 11. The incinerated material and the fluidized sand are put into the hopper 13 and mixed by the blender 14, and then the dust supply device 15 is operated to enter the primary combustion chamber S <b> 1 through the passage 12 and the inlet 11 with a predetermined supply capacity. It is supplied continuously.

図2に示すように,投入口11は,平面視において前内側面6aのほぼ中央に配置された中央の投入口11aと,前内側面6aにおいてこの投入口11aの左右両側に配置された投入口11b,11bからなっている。これら投入口11a及び投入口11b,11bのそれぞれに給塵装置15及び通路12が接続してあり,各給塵装置15の稼動を制御することによって,中央の投入口11aから供給される焼却物及び流動砂の供給量と,両側の投入口11b,11bから供給される焼却物及び流動砂の供給量とを,それぞれ任意に設定できるようになっている。   As shown in FIG. 2, the insertion port 11 has a central insertion port 11a disposed substantially at the center of the front inner side surface 6a in plan view, and an insertion port disposed on the left and right sides of the insertion port 11a on the front inner side surface 6a. It consists of mouths 11b and 11b. The dust supply device 15 and the passage 12 are connected to the input port 11a and the input ports 11b and 11b, respectively, and the incineration material supplied from the central input port 11a by controlling the operation of each dust supply device 15. The supply amount of fluidized sand and the supply amount of incinerated material and fluidized sand supplied from the inlets 11b, 11b on both sides can be set arbitrarily.

図1に示すように,炉床7には,流動砂を吹き上げて流動化させるための流動化用ガスを一次燃焼室S1に供給する複数の流動化用ガス供給口20が,炉床7全体に設けられている。炉床7の下方には,複数に分割された吹込み部21が形成されている。図3に示すように,この実施の形態では,吹込み部21は,炉床7の傾斜方向に沿って4つに分割されて配置されると共に,炉床7の幅方向に沿って3つに分割されて配置されている。即ち,合計で,傾斜方向に4×幅方向に3=12に分割された吹込み部21が,炉床7の下方全体に取り付けられている。そして,各吹込み部21から流動化用ガス供給口20を介して流動化用ガスを吹き込み,流動化用ガスを上方に向かって吐出させることによって,一次燃焼室S1内の流動砂を吹き上げて攪拌,流動化させ,流動層10を形成させるようになっている。   As shown in FIG. 1, the hearth 7 has a plurality of fluidizing gas supply ports 20 that supply fluidizing gas for blowing fluidized sand to fluidize the primary combustion chamber S <b> 1. Is provided. A blow part 21 divided into a plurality of parts is formed below the hearth 7. As shown in FIG. 3, in this embodiment, the blow-in portion 21 is divided into four parts along the inclination direction of the hearth 7 and three parts along the width direction of the hearth 7. It is divided and arranged. That is, in total, the blow-in part 21 divided into 4 × width direction and 3 = 12 in the inclination direction is attached to the entire lower part of the hearth 7. Then, the fluidizing gas is blown from each blowing portion 21 through the fluidizing gas supply port 20, and the fluidizing gas is discharged upward to blow up the fluidized sand in the primary combustion chamber S1. The fluidized bed 10 is formed by stirring and fluidizing.

図1に示すように,炉床7には,焼却物の燃えがら(不燃物)及び流動砂を一次燃焼室S1から取り出すための取出し口30が設けられている。取出し口30は,炉床7の傾斜方向において低所側(下部側)の最下部に設けられている。この取出し口30には通路31が接続してある。一次燃焼室S1から取出し口30を通って通路31に落下した焼却物の燃えがら及び流動砂は,排出装置32,図示しないコンベア等の稼動によって搬出される。そして,図示しない篩等によって燃えがらと流動砂との選別が行われた後,流動砂が再びホッパー13に戻されるようになっている。   As shown in FIG. 1, the hearth 7 is provided with a take-out port 30 for taking out incinerated combustibles (non-combustible material) and fluidized sand from the primary combustion chamber S1. The take-out port 30 is provided at the lowermost part (lower side) in the inclination direction of the hearth 7. A passage 31 is connected to the outlet 30. Incinerator debris and fluidized sand that have fallen into the passage 31 from the primary combustion chamber S1 through the take-out port 30 are carried out by operation of the discharge device 32, a conveyor (not shown), and the like. Then, after the combustor and the fluidized sand are selected by a sieve (not shown), the fluidized sand is returned to the hopper 13 again.

また,一次燃焼室S1には,流動砂の温度を調節するための伝熱管群40が設けられている。伝熱管群40は,炉床7からみて斜め上方(低所側の上方)に設けられており,複数本,例えば6つの伝熱管(冷却管)41を備えている。各伝熱管41の内部の流路には,例えば水(水蒸気)などの冷媒が通されるようになっている。そして,伝熱管群40の内部に通水された冷媒と,伝熱管群40の表面に接した流動砂が,伝熱管群40の内外面を介して熱交換し,これによって流動砂が冷却され,温度が調節されるようになっている。   The primary combustion chamber S1 is provided with a heat transfer tube group 40 for adjusting the temperature of the fluidized sand. The heat transfer tube group 40 is provided obliquely upward (upward on the lower side) when viewed from the hearth 7 and includes a plurality of, for example, six heat transfer tubes (cooling tubes) 41. A refrigerant such as water (water vapor) is passed through the flow path inside each heat transfer tube 41. The refrigerant passed through the inside of the heat transfer tube group 40 and the fluidized sand in contact with the surface of the heat transfer tube group 40 exchange heat through the inner and outer surfaces of the heat transfer tube group 40, thereby cooling the fluidized sand. , The temperature is adjusted.

各伝熱管41は,例えば金属製のパイプであり,例えばほぼ一定の外径及び内径を有する略円管状をなし,図4に示すように,複数箇所(図示の例では5箇所)で交互に反対側へ折り返すように湾曲させられ,複数本(図示の例では6本)の略直管状の直管部41aが互いに略平行に並ぶように配設された形状をなしている。これら6本の直管部41aは,それぞれ隣り合う直管部41aとの間に所定の間隔hを空けた状態で,並列に並べて設けられている。   Each of the heat transfer tubes 41 is, for example, a metal pipe, and has, for example, a substantially circular tubular shape having a substantially constant outer diameter and inner diameter. As shown in FIG. 4, the heat transfer tubes 41 are alternately arranged at a plurality of locations (5 locations in the illustrated example). A plurality of (six in the illustrated example) substantially straight straight pipe portions 41a are bent so as to be folded back to the opposite side, and are arranged so as to be arranged substantially parallel to each other. The six straight pipe portions 41a are arranged in parallel with a predetermined interval h between each of the adjacent straight pipe portions 41a.

また,炉体2内に配設された状態では,直管部41aは,左内側面6cと右内側面6dとの間において,左内側面6cと右内側面6dに対して略垂直に,長さ方向を略水平方向に向けて略直線状に配置される。また,直管部41aは,略鉛直方向においては上下に並ぶように備えられ,炉床7の傾斜方向に対しては略垂直に設けられている。各伝熱管41において直管部41a同士の間を連結している湾曲部41bは,左内側面6c側及び右内側面6d側において,側壁部6中に埋め込まれるようにして固定されている。従って,湾曲部41bは一次燃焼室S1の外側に配置され,一次燃焼室S1内には,直管部41aのみが配設されている。   Further, in the state of being disposed in the furnace body 2, the straight pipe portion 41a is substantially perpendicular to the left inner surface 6c and the right inner surface 6d between the left inner surface 6c and the right inner surface 6d. It is arranged in a substantially straight line with its length direction oriented in a substantially horizontal direction. Further, the straight pipe portion 41 a is provided so as to be lined up and down in a substantially vertical direction, and is provided substantially perpendicular to the inclination direction of the hearth 7. The curved portions 41b connecting the straight tube portions 41a in each heat transfer tube 41 are fixed so as to be embedded in the side wall portion 6 on the left inner side surface 6c side and the right inner side surface 6d side. Therefore, the curved portion 41b is disposed outside the primary combustion chamber S1, and only the straight pipe portion 41a is disposed in the primary combustion chamber S1.

冷媒は,伝熱管41の最も下側に設けられた直管部41aの端部から伝熱管41内にそれぞれ供給され,直管部41a内と湾曲部41b内を交互に流れ,各直管部41a内においては交互に逆向きに流れながら,下方から上方に向かい,最も上側に設けられた直管部41aの端部から排出されるようになっている。   The refrigerant is respectively supplied into the heat transfer pipe 41 from the end of the straight pipe portion 41a provided on the lowermost side of the heat transfer pipe 41, and flows alternately in the straight pipe portion 41a and the curved portion 41b. In 41a, while flowing alternately in the opposite direction, the fluid flows from the bottom to the top and is discharged from the end of the straight pipe portion 41a provided on the uppermost side.

上記のような互いにほぼ同様の形状を有する6つの伝熱管41は,図1に示すように,炉体2内で前後方向(直管部41aの長さ方向と略直交する略水平方向)において,等間隔を空けて互いに略平行に並べられている。また,各伝熱管41に設けられた6本の直管部41aは,その伝熱管41対して前方又は後方にて隣り合う他の伝熱管41の6本の直管部41aと一つずつ対応するように,互いに同じ高さにそれぞれ配置されている。即ち,各伝熱管41に設けられた各直管部41aは,その伝熱管41と隣り合う伝熱管41に設けられた直管部41aのいずれかと同じ高さに設けられている。   As shown in FIG. 1, the six heat transfer tubes 41 having substantially the same shape as described above are arranged in the front-rear direction (substantially horizontal direction substantially orthogonal to the length direction of the straight pipe portion 41a) in the furnace body 2. Are arranged substantially parallel to each other at equal intervals. Further, the six straight pipe portions 41a provided in each heat transfer tube 41 correspond to the six straight pipe portions 41a of the other heat transfer tubes 41 adjacent to the heat transfer tube 41 at the front or the rear one by one. Are arranged at the same height. That is, each straight tube portion 41 a provided in each heat transfer tube 41 is provided at the same height as any of the straight tube portions 41 a provided in the heat transfer tube 41 adjacent to the heat transfer tube 41.

こうして,一次燃焼室S1内には,直管部41aが異なる6つの高さに6本ずつ配置されており,合計で36本の直管部41aが備えられている。即ち,6本の直管部41aを同じ高さにおいて互いに平行に並べて配置した横向きの直管部列42が,6組形成されており,この直管部列42が,互いに異なる6段の高さに隙間を空けてそれぞれ配置されている。図5に示すように,各直管部列42において,隣り合う直管部41a同士の間には,互いに同じ間隔(幅)bの隙間Gがそれぞれ形成されている。各直管部列42同士の間には,互いに同じ間隔(高さ)hの隙間Gがそれぞれ形成されている。 Thus, six straight pipe portions 41a are arranged at six different heights in the primary combustion chamber S1, and a total of 36 straight pipe portions 41a are provided. That is, six sets of horizontal straight pipe portion rows 42 in which six straight pipe portions 41a are arranged in parallel with each other at the same height are formed, and the straight pipe portion rows 42 are formed in six different heights. They are arranged with a gap between them. As shown in FIG. 5, in the straight pipe portion row 42, between each other straight pipe portion 41a adjacent to each other a gap G x of the same interval (width) b are formed. A gap G y having the same interval (height) h is formed between the straight pipe portion rows 42.

さらに,各直管部列42に備えられた6本の直管部41aは,平面視において互いに同じ位置に重なるように配置されている。即ち,各直管部列42に形成された5つの隙間Gが,平面視において互いに同じ位置に重なるように配置されている。従って,6本の直管部41aを互いに平行に並べて配置した縦向きの直管部列43が,6組形成された状態になっている。本実施形態においては,各直管部列43はそれぞれ独立した一本の伝熱管41によって構成されている。 Further, the six straight pipe portions 41a provided in each straight pipe portion row 42 are arranged so as to overlap each other in plan view. That is, the five gaps G x formed in the straight pipe portion row 42 are arranged to overlap each other the same position in a plan view. Accordingly, six sets of vertical straight pipe portion rows 43 in which six straight pipe portions 41a are arranged in parallel to each other are formed. In the present embodiment, each straight tube section 43 is configured by a single independent heat transfer tube 41.

また,各直管部列42同士の間には,各隙間Gを含み略水平方向に沿って貫通した流路Cがそれぞれ形成されており,各直管部列43同士の間には,各隙間Gを含み略鉛直方向に沿って貫通した流路Cがそれぞれ形成されている。本実施の形態においては,5つの流路Cと5つの流路Cが形成されている。伝熱管群40を左内側面6c側又は右内側面6d側からみた側面視においては,各流路Cと各流路Cは互いに略直交しており,略格子状の流路が形成された状態になっている。 Further, between the straight pipe portion row 42 to each other, it is formed a flow path C x penetrating along a substantially horizontal direction includes the gaps G y, respectively, between each straight pipe portion row 43 to each other is , the flow path C y penetrating along a substantially vertical direction comprise a respective gap G x are formed. In the present embodiment, five flow paths Cx and five flow paths Cy are formed. In the side view viewed the heat transfer tube group 40 from the left inner surface 6c side or the right inner side surface 6d side, each channel C x and each channel C y are substantially perpendicular to each other, substantially lattice-shaped flow path formed It is in the state that was done.

以上のように直管部41aを配列することで,流動砂や焼却物を好適に流動させることができる。例えば,平面視において各直管部列42の隙間Gを互いに同じ位置にせず,下段の直管部列42の隙間Gの真上に上段の直管部列42の直管部41aが配置されるようにすると,下方の隙間Gから吹き上げられる流動砂や焼却物の流れが,上段の直管部41aによって妨げられてしまい,上段の隙間Gに上昇しにくくなったり,流れの勢いが弱められたりするおそれがある。この場合,流動砂や焼却物が円滑に流動せず,伝熱管群40による温度調節が十分に行えなくなる。また,直管部41aの周囲における流動砂や焼却物の流れが複雑になり,直管部41aの損傷が進行しやすくなる。これに対し,本実施形態のように,平面視において各直管部列42の隙間Gを互いに同じ位置に揃え,隙間Gが略鉛直方向において並ぶようにすれば,直管部41a同士の間に,真っ直ぐ上下に向かう流路Cが形成され,図5に示すように,流動砂や焼却物は,下段の隙間Gから上段の隙間Gに向かって,円滑に吹き上げられる。また,上段の隙間Gから下段の隙間Gに向かって,円滑に下降できる。さらに,隙間Gが互いに異なる高さにおいて略水平方向に並んでおり,流路Cと交差する横向きの真っ直ぐな流路Cが形成されていることにより,流動砂や焼却物は,横方向にも円滑に移動することができる。即ち,各流路C同士の間で,隙間Gを通って横向きに流動することができる。こうして,流動砂や焼却物を円滑に流動させることができる。 By arranging the straight pipe portions 41a as described above, fluid sand and incinerated materials can be suitably flowed. For example, without mutually the same position a gap G x of the straight pipe portion row 42 in a plan view, the straight pipe section 41a of the upper straight pipe column 42 just above the gap G x of the lower straight pipe portion rows 42 When to be placed, the flow of the fluidized sand and the material to be incinerated blown up from below the gap G x is will been hampered by the upper straight pipe portion 41a, it may become difficult rise in the upper part of the gap G x, the flow The momentum may be weakened. In this case, the fluidized sand and the incinerated material do not flow smoothly, and the temperature control by the heat transfer tube group 40 cannot be sufficiently performed. In addition, the flow of fluid sand and incineration around the straight pipe portion 41a becomes complicated, and damage to the straight pipe portion 41a is likely to proceed. In contrast, as in this embodiment, aligns the gap G x of the straight pipe portion row 42 to each other the same position in plan view, if such a gap G x are aligned in the substantially vertical direction, the straight-tube portion 41a with each other during the straight flow channel C y toward the upper and lower is formed, as shown in FIG. 5, the fluidized sand and the material to be incinerated is, from the lower gap G x toward the upper gap G x, flawlessly blown up. Also, from the top of the gap G x towards the lower gap G x, it can be smoothly lowered. Furthermore, by are arranged in a substantially horizontal direction, the flow channel C y a straight flow path C x transverse crossing is formed in the gap G y having different heights, the fluidized sand and the material to be incinerated, the horizontal It can move smoothly in the direction. That is, between between each passage C y, can flow transversely through the gap G y. In this way, fluidized sand and incinerated materials can flow smoothly.

なお,伝熱管41の伝熱の効果を大きくしたい場合,通常であれば,炉床7の上面に対して伝熱管41の投影面積が大きくなる配置,例えば,平面視において各直管部列42の隙間Gを互いに同じ位置にせず,下段の直管部列42の隙間Gの真上に上段の直管部列42の直管部41aが配置されるような構成が好まれる。しかし,本発明者らの実験によれば,上記のように平面視において各直管部列42の隙間Gを互いに同じ位置に揃えた構成のほうが,伝熱効率を確実に向上できることが確認された。炉体2内で生じる流動砂や焼却物の流動状態は,予測困難なほど複雑であるが,上記のような平面視において隙間Gを互いに同じ位置に揃えた直管部41aの配列によれば,炉床7からの流動化用ガスの吹き込みが巧みに作用して,各直管部41a周辺での流動が自在に行われやすく,流動性が好条件に保てると考えられる。 When it is desired to increase the heat transfer effect of the heat transfer tubes 41, normally, an arrangement in which the projected area of the heat transfer tubes 41 is increased with respect to the upper surface of the hearth 7, for example, each straight tube section 42 in a plan view. It is preferable that the straight pipe portions 41a of the upper straight pipe portion row 42 be arranged directly above the gap G x of the lower straight pipe portion row 42 without setting the gaps Gx to the same position. However, according to experiments of the present inventors, towards the structure aligned to each other the same position a gap G x of the straight pipe portion row 42 in the plan view as described above, it is confirmed to be able to reliably improve the heat transfer efficiency It was. Fluidized state of the fluidized sand and the material to be incinerated occurring furnace within 2 is a complex as unpredictable, according to the arrangement of the straight tube portion 41a having uniform gap G x to each other the same position in a plan view as described above For example, it is considered that the flow of the fluidizing gas from the hearth 7 works skillfully, the flow around each straight pipe portion 41a is easily performed, and the fluidity can be maintained under favorable conditions.

また,各伝熱管41は,流動層10に下側の一部の直管部41aのみが埋没し,上部に設けられた直管部41aは,流動層10より上方に配置されるような高さに配置されている。即ち,複数段の直管部列42のうち,下側の直管部列42が流動層10に埋没し,上側に設けられた直管部列42は,流動層10の上方に配置されるようになっている。例えば,流動層10が流動していない状態では,下から1段目と2段目に位置する直管部列42,即ち合計12本の直管部41aが流動砂に埋没し,流動層10流動している状態では,下から1段目〜3段目に位置する直管部列42,即ち合計18本の直管部41aが流動砂に埋没するようになっている。このように,複数本の直管部41aのうち一部の直管部41aのみを流動砂に接触させるようにすれば,総ての直管部41aを流動層10に埋没させる場合よりも,流動層10の流動を円滑にすることができる。   In addition, each heat transfer tube 41 is such that only a part of the lower straight pipe portion 41 a is buried in the fluidized bed 10, and the straight pipe portion 41 a provided at the upper portion is disposed above the fluidized bed 10. Is arranged. That is, among the plurality of straight pipe part rows 42, the lower straight pipe part row 42 is buried in the fluidized bed 10, and the straight pipe part row 42 provided on the upper side is disposed above the fluidized bed 10. It is like that. For example, in a state where the fluidized bed 10 is not flowing, the straight pipe portion rows 42 located in the first and second stages from the bottom, that is, a total of 12 straight pipe parts 41a are buried in the fluidized sand, and the fluidized bed 10 In the flowing state, the straight pipe section row 42 located in the first to third stages from the bottom, that is, a total of 18 straight pipe sections 41a are buried in the fluidized sand. Thus, if only a part of the plurality of straight pipe portions 41a is brought into contact with the fluidized sand, than when all the straight pipe portions 41a are buried in the fluidized bed 10, The fluidized bed 10 can flow smoothly.

また,各伝熱管41は,例えば投入口11が開口されている高さとほぼ同じ高さの範囲に備えられているが,炉床7の傾斜方向において低所側に並べて設けられている。即ち,前内側面6a側よりも後内側面6b側に近い後側の位置に備えられており,例えば,取出し口30の上方に設けられている。このようにすると,投入口11と最も前方に設けられた伝熱管41との間に,十分な空間が形成されるので,投入口11から投入され落下した流動砂や焼却物が伝熱管41に対して直接衝突せず,炉床7上に余裕を持って落下させられる。従って,伝熱管41が損傷することを防止できる。また,伝熱管41を炉体2内の前側(炉床7の傾斜方向において高所側)において同様の高さに設ける場合よりも,炉床7と伝熱管41の最下部の直管部41aとの間の高さを大きく確保することができる。従って,炉床7と伝熱管41との間の空間において,流動砂や焼却物を十分に流動させることができる。   The heat transfer tubes 41 are provided in a range of almost the same height as the opening 11 is opened, for example, but are arranged side by side on the low side in the inclination direction of the hearth 7. That is, it is provided at a position on the rear side closer to the rear inner side surface 6b side than the front inner side surface 6a side, and is provided above the take-out port 30, for example. In this way, a sufficient space is formed between the charging port 11 and the heat transfer tube 41 provided at the foremost side, so that fluid sand and incinerated material dropped from the charging port 11 and dropped into the heat transfer tube 41. On the other hand, it does not collide directly and can be dropped on the hearth 7 with a margin. Therefore, damage to the heat transfer tube 41 can be prevented. In addition, the straight pipe portion 41a at the lowermost part of the hearth 7 and the heat transfer tube 41 is provided rather than the case where the heat transfer tube 41 is provided at the same height on the front side in the furnace body 2 (high side in the inclination direction of the hearth 7). A large height can be secured between the two. Therefore, in the space between the hearth 7 and the heat transfer tube 41, the fluidized sand and the incinerated material can be sufficiently flowed.

図1に示すように,炉体2の側壁部6には,二次燃焼室S2に火炎を噴射するバーナの噴射口45が備えられている。この噴射口45から火炎が噴射されることにより,一次燃焼室S1から上昇した排ガスの燃焼が促進させられる。   As shown in FIG. 1, the side wall 6 of the furnace body 2 is provided with a burner injection port 45 for injecting a flame into the secondary combustion chamber S2. By injecting flame from the injection port 45, combustion of the exhaust gas rising from the primary combustion chamber S1 is promoted.

後内側面6bの上端部には,二次燃焼室S2内の雰囲気を排気する排気口50が開口されている。排気口50には排気路51が接続されている。この排気路51はバグフィルタ52に接続されている。一次燃焼室S1,二次燃焼室S2内の雰囲気は,二次燃焼室S2内を上昇して,排気口50から排気される。そして,バグフィルタ52で塵埃が捕捉された後,外部に排気されるようになっている。また,バグフィルタ52で塵埃を捕捉された排ガスの一部は,戻し経路53を通って,給気経路54から供給された例えば空気等の酸素含有気体と混合されるようになっている。戻し経路53及び給気経路54は,供給経路55を介して前述したガス吹込み部21に接続されている。   An exhaust port 50 for exhausting the atmosphere in the secondary combustion chamber S2 is opened at the upper end of the rear inner surface 6b. An exhaust passage 51 is connected to the exhaust port 50. This exhaust passage 51 is connected to a bag filter 52. The atmosphere in the primary combustion chamber S1 and the secondary combustion chamber S2 rises in the secondary combustion chamber S2 and is exhausted from the exhaust port 50. Then, after dust is captured by the bag filter 52, it is exhausted to the outside. A part of the exhaust gas in which dust is captured by the bag filter 52 passes through the return path 53 and is mixed with an oxygen-containing gas such as air supplied from the air supply path 54. The return path 53 and the air supply path 54 are connected to the gas blowing unit 21 described above via the supply path 55.

図3に示すように,供給経路55は,各ガス吹込み部21ごとに接続されている。二次燃焼室S2から排気された排ガスを供給する戻し経路53と空気等の酸素含有気体を供給する給気経路54は,2つの混合チャンバ60a,60bに接続してあり,これら混合チャンバ60a,60b内において排ガスと空気が混合され,その混合ガスが各供給経路55から各ガス吹込み部21にそれぞれ流動化用ガスとして供給される。一方の混合チャンバ60aでは,炉床7の傾斜する方向において高所側となる位置に配置された半分の各ガス吹込み部21(炉床7の高所側において幅方向に2列に並んで配置された6つの各ガス吹込み部21)に供給される流動化用混合ガスが作られる。また他方の混合チャンバ60bでは,炉床7の傾斜する方向において低所側となる位置に配置された半分の各ガス吹込み部21(炉床7の低所側において幅方向に2列に並んで配置された6つの各ガス吹込み部21)に供給される流動化用ガスが作られるようになっている。   As shown in FIG. 3, the supply path 55 is connected to each gas blowing part 21. A return path 53 for supplying exhaust gas exhausted from the secondary combustion chamber S2 and an air supply path 54 for supplying an oxygen-containing gas such as air are connected to the two mixing chambers 60a and 60b. The exhaust gas and air are mixed in 60b, and the mixed gas is supplied from each supply path 55 to each gas blowing section 21 as a fluidizing gas. In one mixing chamber 60a, each of the half gas blowing portions 21 arranged at positions higher in the direction in which the hearth 7 inclines (in two rows in the width direction on the higher side of the hearth 7). A fluidized mixed gas to be supplied to each of the six arranged gas blowing portions 21) is produced. Further, in the other mixing chamber 60b, the half gas blowing portions 21 (lined in two rows in the width direction on the lower side of the hearth 7) arranged at the lower side in the direction in which the hearth 7 inclines. The fluidizing gas to be supplied to each of the six gas blowing sections 21) arranged in the above is made.

戻し経路53には,混合チャンバ60a,60b内に供給する排ガスの供給量を調整する排ガス流量調整弁61が,各混合チャンバ60a,60bごとにそれぞれ装着され,同様に,給気経路54には,混合チャンバ60a,60b内に供給する空気の供給量を調整する空気流量調整弁62が,各混合チャンバ60a,60bごとにそれぞれ装着されている。そして,排ガス流量調整弁61と空気流量調整弁62を調整することによって,各混合チャンバ60a,60b内で作られる流動化用ガスにおける空気と排ガスの混合比がそれぞれ独立して可変に構成されている。排ガスは焼却で酸素が消費されたことによって酸素濃度が空気よりも低くなっているので,このように各混合チャンバ60a,60b内で流動化用ガスを作る際に,空気と排ガスの混合比を変えることにより,各混合チャンバ60a,60bにおいて,流動化用ガス中の酸素量(即ち,流動化用ガス中の酸素濃度)をそれぞれ任意に制御することが可能である。   An exhaust gas flow rate adjustment valve 61 for adjusting the supply amount of exhaust gas supplied into the mixing chambers 60a and 60b is mounted on the return path 53 for each of the mixing chambers 60a and 60b. The air flow rate adjusting valve 62 for adjusting the supply amount of air supplied into the mixing chambers 60a and 60b is mounted for each of the mixing chambers 60a and 60b. By adjusting the exhaust gas flow rate adjusting valve 61 and the air flow rate adjusting valve 62, the mixing ratio of air and exhaust gas in the fluidizing gas produced in each mixing chamber 60a, 60b is made variable independently. Yes. Since the exhaust gas consumes oxygen by incineration, the oxygen concentration is lower than that of air. Thus, when making the fluidizing gas in each mixing chamber 60a, 60b, the mixing ratio of air and exhaust gas is set. By changing it, it is possible to arbitrarily control the amount of oxygen in the fluidizing gas (that is, the oxygen concentration in the fluidizing gas) in each mixing chamber 60a, 60b.

また各供給経路55にも,各ガス吹込み部21に供給する流動化用ガスの供給量を調整する流動化用ガス流量調整弁63がそれぞれ装着されている。これら流動化用ガス流量調整弁63を調整することによって,各ガス吹込み部21に供給される流動化用ガスの流量がそれぞれ可変に構成されている。従って,各ガス吹込み部21からの流動化用ガスの吹込み速度を増減させることによって,流動砂の吹き上げ高さを調整することができる。また,例えば幅方向において中央部分に配置されている4つのガス吹込み部21からの流動化用ガスの吹込み量を相対的に少なくし,その左右両端部分に配置されるガス吹込み部21からの流動化用ガスの吹込み量を相対的に多くするなど,任意に制御できるように構成されている。   Each supply path 55 is also provided with a fluidizing gas flow rate adjustment valve 63 for adjusting the supply amount of the fluidizing gas supplied to each gas blowing section 21. By adjusting the fluidizing gas flow rate adjusting valve 63, the flow rate of the fluidizing gas supplied to each gas blowing section 21 is variable. Accordingly, the height of the fluidized sand can be adjusted by increasing or decreasing the fluidization gas blowing speed from each gas blowing section 21. Further, for example, the amount of fluidizing gas blown from the four gas blowing portions 21 arranged at the center portion in the width direction is relatively reduced, and the gas blowing portions 21 arranged at both left and right end portions thereof. It is configured to be arbitrarily controlled, for example, by relatively increasing the amount of fluidizing gas blown from.

次に,以上のように構成された流動床炉1を用いた焼却物の焼却処理について説明する。先ず,ホッパー13に投入された焼却物と流動砂をブレンダ14で混合し,給塵装置15の稼動によって,所定の供給流量で,通路12及び投入口11を介して一次燃焼室S1内に連続的に供給する。   Next, the incineration process of the incinerated product using the fluidized bed furnace 1 configured as described above will be described. First, the incinerated material and fluidized sand introduced into the hopper 13 are mixed by the blender 14, and continuously in the primary combustion chamber S <b> 1 through the passage 12 and the inlet 11 at a predetermined supply flow rate by the operation of the dust supply device 15. To supply.

このように一次燃焼室S1内に供給される焼却物は,例えば廃棄自動車からリサイクル備品を取除いた残りを粉砕したシュレッダーダスト(ASR)である。ASRは,例えば廃棄自動車処理場などで粉砕され発生する。ASRの如き焼却物は,無機物としてFe,Cu,Zn,Pb等の金属,ガラス等を含み,また,有機化合物として,ゴム,繊維くずやウレタンなどの軟質樹脂,塩ビなどの硬質プラスチック等を含む。また,ASRの如き焼却物は大きさや形状はまちまちであるので,焼却を安定させるために,破砕機やローラーミルによる粉砕などの前処理し,焼却物の最大の粒径を50mm以下としておくことが望ましい。また,振動ふるい機,風力選別機等による分級によって焼却物中から微細に粉砕されたガラスを選択的に除去し,焼却物の粒径のばらつきを小さくしておくことが望ましい。その他,磁力選別や渦電流選別,比重選別等によって,焼却物中からFe,Cu,Alなどの金属成分を除去してから焼却することが望ましい。   The incinerated material supplied into the primary combustion chamber S1 in this way is, for example, shredder dust (ASR) obtained by pulverizing the remainder obtained by removing recycled equipment from a discarded vehicle. The ASR is generated by being pulverized, for example, at a waste automobile treatment plant. Incinerators such as ASR include metals such as Fe, Cu, Zn, and Pb as inorganic substances, glass, etc., and organic compounds include soft resins such as rubber, fiber scrap and urethane, and hard plastics such as vinyl chloride. . Incinerators such as ASR vary in size and shape, so in order to stabilize the incineration, pretreatment such as crushing with a crusher or roller mill should be performed, and the maximum particle size of the incinerator should be 50 mm or less. Is desirable. In addition, it is desirable to selectively remove finely crushed glass from the incinerated product by classification using a vibration sieve, a wind sorter, etc., and to reduce the variation in the particle size of the incinerated product. In addition, it is desirable to incinerate after removing metal components such as Fe, Cu, and Al from the incinerated material by magnetic sorting, eddy current sorting, specific gravity sorting, and the like.

なお,炉体2内において,伝熱管群40は後方に設けられており,投入口11と伝熱管41との間に十分な空間があるので,投入口11から投入された流動砂や焼却物は,伝熱管41に衝突することなく,炉床7上に円滑に供給される。従って,伝熱管41が損傷することを防止できる。   In the furnace body 2, the heat transfer tube group 40 is provided at the rear, and there is a sufficient space between the input port 11 and the heat transfer tube 41. Is smoothly supplied onto the hearth 7 without colliding with the heat transfer tube 41. Therefore, damage to the heat transfer tube 41 can be prevented.

一次燃焼室S1内に流動砂と焼却物を連続的に供給する一方で,各ガス吹込み部21から,空気と二次燃焼室S2からの排ガスとの混合ガスを流動化ガスとして一次燃焼室S1内に上向きに吹込み,流動砂を吹き上げて流動化させる。これにより,流動砂と一緒に投入した焼却物を,流動化した流動砂により攪拌させながら加熱して,焼却する。すると,焼却物中の樹脂,繊維くず等の可燃物が熱分解又は燃焼させられて,熱分解ガス,酸化ガス等のガス成分を含む排ガス(一次燃焼ガス)が生じる。排ガスは流動層10から上昇して,流動層10の上方に設けられた二次燃焼室S2に向かう。   While the fluidized sand and the incinerated material are continuously supplied into the primary combustion chamber S1, the primary combustion chamber uses a mixed gas of air and exhaust gas from the secondary combustion chamber S2 from each gas blowing portion 21 as a fluidizing gas. Blows upward into S1, and fluidized sand is blown up and fluidized. In this way, the incinerated product introduced together with the fluidized sand is heated while being agitated by the fluidized fluidized sand and incinerated. Then, combustibles such as resin and fiber waste in the incinerated product are pyrolyzed or burned, and exhaust gas (primary combustion gas) containing gas components such as pyrolysis gas and oxidizing gas is generated. The exhaust gas rises from the fluidized bed 10 and travels to the secondary combustion chamber S2 provided above the fluidized bed 10.

また,流動層10は,伝熱管群40の各伝熱管41に接触し,直管部41aの内部に通水された冷媒により冷却され,温度が調整される。これにより,焼却物のカロリーが高い場合であっても,流動層10の温度が過度に高くなることが防止され,安定した燃焼処理ができる。ASRのような焼却物についても安定した燃焼処理ができ,燃えがらを低減することができる。   In addition, the fluidized bed 10 is in contact with each heat transfer tube 41 of the heat transfer tube group 40 and is cooled by the refrigerant passed through the straight tube portion 41a to adjust the temperature. Thereby, even if the calories of the incinerated product are high, the temperature of the fluidized bed 10 is prevented from becoming excessively high, and a stable combustion process can be performed. An incinerated product such as ASR can also be subjected to a stable combustion treatment, and the amount of burnt can be reduced.

この伝熱管群40では,直管部41aの略水平方向の位置と略鉛直方向の高さがそれぞれ揃えられ,流路C,Cからなる略格子状の流路が形成されていることにより,流動砂や焼却物は,直管部41aの間で円滑に流動できるようになっている。即ち図5に示すように,流動砂や焼却物は,略鉛直方向に向かう各流路Cに沿って,各隙間Gを介して円滑に上昇又は下降することができる。また,略水平方向に向かう各流路Cに沿って,各隙間Gを介して横方向へ円滑に移動することができる。例えば,下方から吹き上げられた流動砂や焼却物は,いずれかの流路C中に上昇した後,その流路Cに連通する隙間Gを介して横向きに流れ,その隣に位置する流路Cに流入し,かかる流路Cにおいて再び下方に落下することができる。こうして,流動砂や焼却物は,各直管部41aの周囲で円滑に流動させられる。従って,焼却物の乾燥,熱分解,燃焼を効率的に行うことができる。 In this heat transfer tube group 40, the substantially horizontal position of the straight tube portion 41a and the height in the substantially vertical direction are aligned, and a substantially lattice-shaped flow path composed of flow paths C x and C y is formed. Thus, fluidized sand and incinerated materials can flow smoothly between the straight pipe portions 41a. That is, as shown in FIG. 5, the fluidized sand and the material to be incinerated may be along each flow path C y toward the substantially vertical direction, smoothly raised or lowered through the gaps G x. Further, it is possible along each flow path C x toward the substantially horizontal direction, smoothly moving laterally through the gaps G y. For example, the fluidized sand and the material to be incinerated blown up from below may rise during any of the channel C y, it flows transversely through the gap G y communicating with the flow path C y, located next to it flows into the flow path C y, it can again fall down in such a flow path C y. Thus, the fluidized sand and the incinerated material are smoothly flowed around each straight pipe portion 41a. Therefore, incineration can be efficiently dried, pyrolyzed, and burned.

また,各伝熱管41は,炉床7の傾斜方向において低所側に設けられており,投入口11と伝熱管41との間や,炉床7と伝熱管41との間に,それぞれ十分な空間が形成されているので,これらの空間において,流動砂や焼却物を自在に流動させることができる。このように,流動砂や焼却物を円滑に流動させることで,焼却物の乾燥,熱分解,燃焼を効率的に行うことができる。また,直管部41a同士の間を通って流動が活発に行われることにより,伝熱管群40による温度調節を効率的に行うことができる。なお,流動層10の温度は,例えば約600〜800℃程度に維持される。   Further, each heat transfer tube 41 is provided on the lower side in the inclination direction of the hearth 7, and is sufficient between the inlet 11 and the heat transfer tube 41 and between the hearth 7 and the heat transfer tube 41. As these spaces are formed, fluid sand and incinerated materials can flow freely in these spaces. In this way, by allowing fluidized sand and incinerated materials to flow smoothly, incinerated materials can be efficiently dried, pyrolyzed, and burned. In addition, since the flow is actively performed between the straight pipe portions 41a, the temperature control by the heat transfer tube group 40 can be performed efficiently. The temperature of the fluidized bed 10 is maintained at about 600 to 800 ° C., for example.

焼却後に残った焼却物の燃えがらと流動砂は,取出し口30から排出される。そして,篩等によって燃えがらが選別除去された後,流動砂がホッパー13に戻される。   Incinerator debris and fluidized sand remaining after the incineration are discharged from the outlet 30. Then, after the debris is sorted and removed by a sieve or the like, the fluidized sand is returned to the hopper 13.

一方,一次燃焼室S1から二次燃焼室S2に上昇した排ガスは,二次燃焼室S2の下端部において,噴射口45から供給された火炎が混合させられることにより加熱される。排ガスは二次燃焼させられながら二次燃焼室S2内を上昇し,未燃ガスや微細な焼却物の燃焼が行われた後,排気口50から排出される。そして,バグフィルタ52によって排ガス中の飛灰等が集塵された後,外部に排出される。   On the other hand, the exhaust gas rising from the primary combustion chamber S1 to the secondary combustion chamber S2 is heated by mixing the flame supplied from the injection port 45 at the lower end of the secondary combustion chamber S2. The exhaust gas rises in the secondary combustion chamber S2 while being subjected to secondary combustion, and after being burned with unburned gas and fine incinerated matter, it is discharged from the exhaust port 50. And after the fly ash etc. in exhaust gas are collected by the bag filter 52, it is discharged | emitted outside.

かかる流動床炉1によれば,流動砂や焼却物を隙間G,流路Cにおいて円滑に上昇又は下降させ,隙間G,流路Cにおいて横向きに円滑に移動させることができる。従って,流動砂や焼却物を各直管部41aの周囲で円滑に流動させることができる。これにより,焼却物の乾燥,熱分解,燃焼を効率的に行うことができる。また,流動砂や焼却物と伝熱管41とを十分に接触させることができ,流動砂や焼却物の温度を効率的に調節できる。さらに,流動砂や焼却物が伝熱管41に引っ掛かったり,直管部41aの間(隙間G,Gや流路C,C)に詰まったりすることを防止できる。また,伝熱管41の摩耗を抑制でき,伝熱管41の清掃や補修に要するコストを抑えることができる。 According to the fluidized bed furnace 1, the fluidized sand and the material to be incinerated gap G x, smoothly raised or lowered in the through channel C y, can be smoothly moved sideways gap G y, in the channel C x. Therefore, fluid sand and incineration can be smoothly flowed around each straight pipe portion 41a. Thereby, incineration can be efficiently dried, pyrolyzed, and burned. In addition, the fluidized sand or incinerated material and the heat transfer tube 41 can be brought into sufficient contact, and the temperature of the fluidized sand or incinerated material can be adjusted efficiently. Furthermore, it is possible to prevent fluid sand and incinerated material from being caught by the heat transfer tube 41 and clogging between the straight pipe portions 41a (gap G x , G y and flow paths C x , C y ). Moreover, wear of the heat transfer tube 41 can be suppressed, and the cost required for cleaning and repairing the heat transfer tube 41 can be suppressed.

以上,本発明の好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において,各種の変更例または修正例に想到しうることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes and modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば以上の実施形態では,伝熱管群40における伝熱管41の数は6つとしたが,5つ以下,7つ以上であっても良い。また,直管部41aの総数は36本であり,直管部列42の数(段の数)は6つ,直管部列43の数は6つとしたが,これらの数は任意の複数に設定できる。即ち,流路Cの数は5つ,流路Cの数は5つとしたが,これらの数も任意に変更できる。また,流動層10に埋没させられる直管部列42の数,直管部41aの本数も,実施の形態に例示したものには限定されず,任意の数にすることができる。 For example, in the above embodiment, the number of heat transfer tubes 41 in the heat transfer tube group 40 is six, but may be five or less, or seven or more. Further, the total number of straight pipe portions 41a is 36, the number of straight pipe portion rows 42 (the number of stages) is six, and the number of straight pipe portion rows 43 is six. Can be set. That is, the number of the channel C x is five, the number of the channel C y are the 5 bracts, these numbers can be arbitrarily changed. Further, the number of straight pipe part rows 42 embedded in the fluidized bed 10 and the number of straight pipe parts 41a are not limited to those exemplified in the embodiment, and can be any number.

また,直管部41aは,湾曲させた伝熱管41の一部である構成とし,冷媒は下方から上方に通流させられるとしたが,かかる構成には限定されない。例えば,湾曲部41bを有しない直管状の伝熱管であっても良い。   In addition, the straight pipe portion 41a is configured to be a part of the curved heat transfer tube 41, and the refrigerant is allowed to flow upward from below, but the configuration is not limited thereto. For example, a straight tubular heat transfer tube that does not have the curved portion 41b may be used.

以上の実施形態では,焼却物としてASRを例示したが,焼却物はかかるものに限定されず,各種の廃棄物,例えば,都市ごみの粉砕物,産業廃棄物の粉砕物,汚泥,木屑等であっても良い。また,例えばASRと産業廃棄物の粉砕物との混合物など,異なる種類の廃棄物を混合したものであっても良い。本発明にかかる流動床炉によれば,様々な性質の廃棄物を,例えば難燃性の廃棄物であっても,効率的に焼却処理することが可能である。   In the above embodiment, ASR is illustrated as an incineration material, but the incineration material is not limited to such an incineration material. For example, various types of waste materials such as municipal waste, industrial waste, sludge, wood waste, etc. There may be. Further, for example, a mixture of different types of waste such as a mixture of ASR and pulverized industrial waste may be used. According to the fluidized bed furnace according to the present invention, it is possible to efficiently incinerate wastes of various properties even if they are, for example, flame retardant wastes.

また,以上の実施形態では,流動床炉1は角型の傾斜分散型流動層燃焼炉としたが,本発明はかかるものには限定されず,各種の方式の流動床炉に適用できる。例えば,実施の形態に示した流動床炉1において,燃えがら及び流動砂の取出し方式は,傾斜した炉床5の最低部から取り出す片端抜き出し式であったが,かかる取出し方式は,炉床の中央部から燃えがら及び流動砂を取出すいわゆるセンター抜き出し式等であっても良い。   Further, in the above embodiment, the fluidized bed furnace 1 is a square inclined dispersion type fluidized bed combustion furnace, but the present invention is not limited to this and can be applied to various types of fluidized bed furnaces. For example, in the fluidized bed furnace 1 shown in the embodiment, the method of taking out the debris and the fluid sand is a one-end extraction method that takes out from the lowest part of the inclined hearth 5, but this removal method is performed at the center of the hearth. A so-called center extraction type or the like may be used for taking out debris and fluidized sand from the part.

本発明は,ボイラーや発電設備等を付設した流動床炉1に適用することもできる。例えば,側壁部6に冷媒配管を内設して,冷媒配管の内部に通された冷媒と排ガスが冷媒配管の内外面を介して熱交換することで,排ガスの熱が回収される構成としても良い。また,二次燃焼後の排ガスをボイラに導入して,ボイラーの熱交換器において排ガスの熱を回収する構成としても良い。その場合,ボイラーは二次燃焼室S2とバグフィルタ52との間に設け,排ガスをボイラーによって冷却した後,バグフィルタ52において集塵することが好ましい。   The present invention can also be applied to a fluidized bed furnace 1 provided with a boiler, power generation equipment, and the like. For example, a configuration may be adopted in which a refrigerant pipe is provided in the side wall 6 and the heat of the exhaust gas is recovered by heat exchange between the refrigerant and the exhaust gas passed through the refrigerant pipe via the inner and outer surfaces of the refrigerant pipe. good. Moreover, it is good also as a structure which introduce | transduces the exhaust gas after secondary combustion into a boiler, and collect | recovers the heat | fever of exhaust gas in the heat exchanger of a boiler. In that case, it is preferable that the boiler is provided between the secondary combustion chamber S2 and the bag filter 52, and dust is collected in the bag filter 52 after exhaust gas is cooled by the boiler.

また,以上の実施形態では,流動床炉1は廃棄物の焼却処理に用いるものとしたが,例えば石炭やごみ固形化燃料(RDF:Refuse Derived Fuel)等を燃料(焼却物)として用いる発電施設の燃焼炉に適用することもできる。   Further, in the above embodiment, the fluidized bed furnace 1 is used for incineration of waste. However, for example, a power generation facility that uses coal, refuse solidified fuel (RDF), or the like as fuel (incinerated). It can also be applied to other combustion furnaces.

本発明は,各種焼却物を焼却処理する流動床炉及び流動床炉の焼却方法に適用できる。   The present invention can be applied to a fluidized bed furnace for incinerating various incinerated products and a method for incinerating a fluidized bed furnace.

本実施の形態にかかる流動床炉の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the fluidized bed furnace concerning this Embodiment. 流動床炉の概略横断面図である。It is a schematic cross-sectional view of a fluidized bed furnace. 流動化用ガスの吹込み部の斜視図である。It is a perspective view of the blowing part of the fluidizing gas. 図2におけるA−A線による断面図である。It is sectional drawing by the AA line in FIG. 直管部付近の構成を拡大して示した縦断面図である。It is the longitudinal cross-sectional view which expanded and showed the structure of the straight pipe part vicinity.

符号の説明Explanation of symbols

,C 流路
,G 隙間
S1 一次燃焼室
S2 二次燃焼室
1 流動床炉
2 炉体
6 側壁部
6a 前内側面
6b 後内側面
6c 左内側面
6d 右内側面
7 炉床
10 流動層
40 伝熱管群
41 伝熱管
41a 直管部
42 直管部列
C x, C y passage G x, G y gap S1 primary combustion housing S2 secondary combustion chamber 1 fluidized bed furnace 2 furnace inner surfaces 6c after 6 side wall portion 6a inner front surface 6b left inner side surface 6d right inner side surface 7 furnace Floor 10 Fluidized bed 40 Heat transfer tube group 41 Heat transfer tube 41a Straight tube portion 42 Straight tube portion row

Claims (7)

炉体内で流動媒体を流動させ焼却物を焼却させる流動床炉であって,
前記炉体の炉床に,前記流動媒体を吹き上げて流動させるための流動化用ガスを供給する流動化用ガス供給口が設けられ,
前記炉体内に,前記流動媒体の温度を調節する伝熱管が備えられ,
前記伝熱管は,長さ方向を水平方向に向けて略直線状に配置される直管部を有し,
前記直管部を同じ高さにおいて複数本平行に配置した直管部列が,互いに異なる高さに隙間を空けて複数段に設けられ,かつ,各直管部列において各直管部同士の間に形成された隙間が,平面視において互いに同じ位置になるように配置されていることを特徴とする,流動床炉。
A fluidized bed furnace in which a fluid medium is flowed in a furnace to incinerate incinerated materials,
A fluidizing gas supply port for supplying a fluidizing gas for blowing and fluidizing the fluidizing medium is provided in the hearth of the furnace body,
A heat transfer tube for adjusting the temperature of the fluidized medium is provided in the furnace body,
The heat transfer tube has a straight tube portion arranged in a substantially straight line with its length direction oriented in the horizontal direction,
A plurality of straight pipe portions arranged in parallel at the same height are provided in a plurality of stages with gaps at different heights, and in each straight pipe portion row, A fluidized bed furnace characterized in that the gaps formed therebetween are arranged at the same position in plan view.
前記各直管部列における前記各直管部同士の間の間隔は,互いに同じであることを特徴とする,請求項1に記載の流動床炉。 The fluidized bed furnace according to claim 1, wherein the distance between the straight pipe portions in the straight pipe portion row is the same. 前記各直管部列同士の間の間隔は,互いに同じであることを特徴とする,請求項1又は2に記載の流動床炉。 The fluidized bed furnace according to claim 1 or 2, wherein the interval between the straight pipe sections is the same. 前記炉床は,略水平面に対して傾斜させて設けられていることを特徴とする,請求項1〜3のいずれかに記載の流動床炉。 The fluidized bed furnace according to any one of claims 1 to 3, wherein the hearth is inclined with respect to a substantially horizontal plane. 前記直管部は,前記炉床の傾斜方向に対して略垂直に設けられていることを特徴とする,請求項4に記載の流動床炉。 The fluidized bed furnace according to claim 4, wherein the straight pipe portion is provided substantially perpendicular to the inclination direction of the hearth. 前記伝熱管は,前記炉床の傾斜方向において低所側に設けられていることを特徴とする,請求項4又は5に記載の流動床炉。 The fluidized bed furnace according to claim 4 or 5, wherein the heat transfer tube is provided on a lower side in an inclination direction of the hearth. 前記複数の直管部列は,流動媒体に接触する直管部列と,流動媒体の上方に配置される直管部列とを備えることを特徴とする,請求項1〜6のいずれかに記載の流動床炉。 The plurality of straight pipe part rows each include a straight pipe part row that comes into contact with the fluid medium, and a straight pipe part row that is disposed above the fluid medium. Fluidized bed furnace as described.
JP2005340192A 2005-11-25 2005-11-25 Fluidized bed furnace Pending JP2007147135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340192A JP2007147135A (en) 2005-11-25 2005-11-25 Fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340192A JP2007147135A (en) 2005-11-25 2005-11-25 Fluidized bed furnace

Publications (1)

Publication Number Publication Date
JP2007147135A true JP2007147135A (en) 2007-06-14

Family

ID=38208753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340192A Pending JP2007147135A (en) 2005-11-25 2005-11-25 Fluidized bed furnace

Country Status (1)

Country Link
JP (1) JP2007147135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121059A (en) * 2011-01-26 2011-07-13 陈忠和 Method for directly making iron and producing sulfuric acid by using pyrite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858201A (en) * 1981-09-30 1983-04-06 Kawasaki Steel Corp Atomized iron powder for powder metallurgy with low apparent density having superior compressibility as well as superior fluidity and moldability
JPS63108109A (en) * 1986-10-27 1988-05-13 Ebara Corp Heat transfer surface for heat recovery device
JPH01181005A (en) * 1988-01-12 1989-07-19 Mitsubishi Heavy Ind Ltd Fluidized-bed combustion
JP2005315566A (en) * 2004-03-31 2005-11-10 Dowa Mining Co Ltd Fluid bed furnace and its incineration method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858201A (en) * 1981-09-30 1983-04-06 Kawasaki Steel Corp Atomized iron powder for powder metallurgy with low apparent density having superior compressibility as well as superior fluidity and moldability
JPS63108109A (en) * 1986-10-27 1988-05-13 Ebara Corp Heat transfer surface for heat recovery device
JPH01181005A (en) * 1988-01-12 1989-07-19 Mitsubishi Heavy Ind Ltd Fluidized-bed combustion
JP2005315566A (en) * 2004-03-31 2005-11-10 Dowa Mining Co Ltd Fluid bed furnace and its incineration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121059A (en) * 2011-01-26 2011-07-13 陈忠和 Method for directly making iron and producing sulfuric acid by using pyrite

Similar Documents

Publication Publication Date Title
EP0628767A2 (en) Fluidized bed reactor and method utilizing refuse derived fuel
JP4830140B2 (en) Combustion control method and incinerator
JP4565279B2 (en) Fluidized bed furnace and its incineration method
WO2024012182A1 (en) Method for using vertical segmented incinerator to dispose of complex combustible solid waste
JP2006308226A (en) Fluidized bed furnace and incineration method of fluidized bed furnace
CA2505001A1 (en) Fluidized-bed gasification furnace
JP2007147135A (en) Fluidized bed furnace
KR100916684B1 (en) Gasification boiler for solid fuels
JP4756154B2 (en) Fluidized bed furnace
JP4432047B2 (en) Waste treatment furnace and waste treatment equipment that treats dust and sludge together
JP4048945B2 (en) Combustion method of flame retardant fuel in rotary kiln
JP3542280B2 (en) Fluid bed incinerator
JP4660757B2 (en) Fluidized bed furnace and its incineration method
JP2651769B2 (en) Heat recovery combustion equipment
JP2003074819A (en) Waste melting equipment, and its operation method
JP3989333B2 (en) Operation method of waste incinerator
JP4378528B2 (en) Fluidized bed furnace and its incineration method.
JP2003074817A (en) Waste gasifying/melting equipment, and its operation method
JP2888396B2 (en) Fluidized bed combustion device
JP2681140B2 (en) Incineration / melting treatment equipment for waste and incineration / melting treatment method
CN220061735U (en) Flue gas post-combustion device comprising more than one flue gas vortex combustion chamber
JP2671078B2 (en) Fluidized bed combustion device
JP2991638B2 (en) Waste incineration equipment
RU2032125C1 (en) Primary furnace
JP3995237B2 (en) Operation method of waste incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A02 Decision of refusal

Effective date: 20110830

Free format text: JAPANESE INTERMEDIATE CODE: A02