JPS62196522A - Heat recovery method from fluidized bed and its equipment - Google Patents

Heat recovery method from fluidized bed and its equipment

Info

Publication number
JPS62196522A
JPS62196522A JP3529186A JP3529186A JPS62196522A JP S62196522 A JPS62196522 A JP S62196522A JP 3529186 A JP3529186 A JP 3529186A JP 3529186 A JP3529186 A JP 3529186A JP S62196522 A JPS62196522 A JP S62196522A
Authority
JP
Japan
Prior art keywords
fluidized
fluidized bed
air
fuel
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3529186A
Other languages
Japanese (ja)
Other versions
JPH0370124B2 (en
Inventor
Osamu Matsuda
修 松田
Tsutomu Higo
勉 肥後
Takeshi Naito
剛 内藤
Hajime Kawaguchi
川口 一
Shigeru Kosugi
茂 小杉
Naoki Inumaru
犬丸 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP3529186A priority Critical patent/JPS62196522A/en
Publication of JPS62196522A publication Critical patent/JPS62196522A/en
Publication of JPH0370124B2 publication Critical patent/JPH0370124B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To be able to recover heat efficiently by a method wherein fluidized solids are moved with revolution in a fluidized bed and heat is recovered from the part of the fluidized where a small amount of air is blown off so as not to disturb the revolving movement and fuel is supplied to the place near the upper surface of the fluidized bed or the part where a large number of air is blown off. CONSTITUTION:At the neighborhood of a fluidized bed installed at the upper part of a wind box 9 heat transfer pipe groups 16 are arranged and the intervals of the groups 16 between the right and left sides in the horizontal direction are sufficiently widened and at their upper and lower parts sufficiently wide paths are formed so as not to obstruct or resist the movement of fluidized solids. Air 2 is sent to the box 9 in such an extent that granular solids are able to be fluidized but not brought in a violent fluidized condition and air amount in excess of two times that sent to the center is sent to wind boxes 8, 10. Fuel is charged from a hopper 20 into an incinerator and an air to fuel ratio in the incinerator is kept properly. By the air 2, blow-up velocity is small at the upper part of the box 9 to lower the granular solids and at the right and left boxes 8, 10, blow-up velocity is large to raise the granular solids. After combustible wastes and fuel are charged from a fuel charge hole 22, they are moved to the center of a blow-off surface 3 and sink together with the fluidized medium and move along a revolving stream in the incinerator and are completely burnt by large excess air ratio and violent fluidization.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、都市ごみ・下水汚泥・し原汚泥や油蒸留残渣
・各種可燃加工くず・含油汚泥・タンクスラッジ・廃活
性炭をはじめとする産業廃棄物、泥炭・洗炭スラッジ・
選炭残渣までも含む石炭等の液状、泥状物や固形物を燃
料とし、流動床により燃焼又は焼却すると共にその熱回
収を行うための方法及びその装置に関するものである。
[Detailed description of the invention] [Industrial application field] The present invention is applicable to industries such as municipal waste, sewage sludge, raw sludge, oil distillation residue, various combustible processing waste, oil-impregnated sludge, tank sludge, and waste activated carbon. Waste, peat, coal washing sludge,
The present invention relates to a method and an apparatus for burning or incinerating coal in a fluidized bed and recovering its heat using liquid, mud, or solid materials such as coal, including even coal preparation residue, as fuel.

〔従来の技術〕[Conventional technology]

従来、流動床を利用して熱を回収する技術は、高い熱伝
導率が得られ、巾広い燃料を使用することができ、装置
をコンパクトにすることができるところから多用される
ようになってきた。
Conventionally, heat recovery technology using a fluidized bed has become widely used because it provides high thermal conductivity, allows the use of a wide range of fuels, and allows for compact equipment. Ta.

ところで、従来の流動床においては、流動化のための空
気等の酸素を含有する吹込気体は流動床全体にわたって
単位面積当たりの吹込み風量をほぼ均一とし、また燃料
もスプレッダや噴流等によって流動床全面に均一に分散
させる形式をとり、流動床内に設けた熱回収のための伝
熱面も流動床全面に配備していた。
By the way, in conventional fluidized beds, the air or other oxygen-containing blown gas for fluidization has a substantially uniform flow rate per unit area over the entire fluidized bed, and the fuel is also blown into the fluidized bed by spreaders, jets, etc. The heat was distributed uniformly over the entire surface of the bed, and a heat transfer surface for heat recovery was also provided over the entire surface of the fluidized bed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、従来技術においては、固形燃料としては、粒径
を細かくして石灰石やケイ砂などの流動媒体と呼ばれる
1〜31前後の粒状固体と同程度か、それよりもやや大
きな程度に破砕しなくては、底部からの吹込気体では流
動できずに沈降してそのまま底部に溜まり、流動不良や
クリンカ生成を引き起こしていた。また、液状や泥状物
の供給も分散させる必要があり、それでも投入量を少量
に抑えなくては底に溜まって流動不良から、燃焼の停止
を引き起こす恐れがあった。
Therefore, in the conventional technology, solid fuel is produced by reducing the particle size to the same size as, or slightly larger than, granular solids of 1 to 31, which are called fluidized media such as limestone and silica sand. However, the gas blown from the bottom cannot flow and settles and remains at the bottom, causing poor flow and clinker formation. In addition, it is necessary to disperse the supply of liquid or muddy substances, and even then, unless the amount of input is kept to a small amount, there is a risk that they will accumulate at the bottom and cause poor flow, causing combustion to stop.

また、流動媒体や燃料固形分・燃焼残渣などの粒状固体
の流動床内での動きは、吹込気体の上昇に伴う上下方向
の運動のみ激しくて左右方向はほとんどなく、燃料の供
給が不均一になると、過剰なところではクリンカが生成
し、少ないところでは温度低下による燃焼不良を引き起
こしていた。
In addition, the movement of particulate solids such as the fluidized medium, fuel solids, and combustion residue within the fluidized bed is intense only in the vertical direction as the blown gas rises, and there is almost no movement in the horizontal direction, resulting in uneven fuel supply. When this happens, clinker is produced in areas where there is an excess amount, and where there is less clinker, a drop in temperature causes poor combustion.

このために、炉床面積が大きくなると、分散しかつ均一
化した燃料の投入を意図して供給機構が複雑となり、し
かもそれでも十分とは言えなかった。
For this reason, as the area of the hearth becomes larger, the supply mechanism becomes more complicated in order to feed the fuel in a distributed and uniform manner, and even this is not sufficient.

さらに、燃焼部と熱回収部が同じ場所であるために、燃
焼負荷を下げると流動床の温度が低下して良好な燃焼に
必要な温度を維持することができなかった。たとえ燃焼
できなくなる温度まで低下しなくとも、流動床温度が低
くなると流動床内での燃焼量が低下し、流動床の上方の
燃焼空間であるフリーボード部では燃料が燃焼しきれず
に燃焼域から排出され、飛灰中の未燃物が増加してしま
う。逆に燃焼負荷を高めると、横方向での混合が少ない
ことから、供給の不均一の結果により、部分的に流動床
温度が加熱されてクリンカを生成したり、流動床内では
燃焼できない量が増加して未燃物が排ガスに同伴するこ
とになる。また、投入燃料の分散と沈降防止のために、
吹込気体を一定量以上吹き込んで激しい流動状態としな
いと運転が困難なこともあり、その場合必要以上に流動
を激しくして伝熱面の摩耗を激増させてしまう結果につ
ながることも多かった。
Furthermore, since the combustion section and the heat recovery section are located in the same location, lowering the combustion load lowers the temperature of the fluidized bed, making it impossible to maintain the temperature necessary for good combustion. Even if the temperature does not drop to the point where combustion is no longer possible, when the temperature of the fluidized bed decreases, the amount of combustion within the fluidized bed decreases, and the fuel is not completely combusted in the freeboard section, which is the combustion space above the fluidized bed, and leaves the combustion zone. This increases the amount of unburned materials in the fly ash. Conversely, when the combustion load is increased, the lateral mixing is less, and as a result of non-uniform feeding, the temperature of the fluidized bed is partially heated and clinker is formed, or the amount that cannot be combusted in the fluidized bed is increased. As a result, unburned substances will be entrained in the exhaust gas. In addition, to disperse the input fuel and prevent sedimentation,
Operation may be difficult unless a certain amount or more of blown gas is blown into a state of intense fluidity, and in this case, the fluidity is often more intense than necessary, leading to a drastic increase in wear on the heat transfer surface.

従って、燃焼負荷変動には限界があり、それでも後燃焼
室や排ガス中から高温サイクロン等で未燃焼物を捕集し
再び流動床へ戻してやるとか、別途捕集灰などのための
燃焼炉を設けるなどの工夫が一般的に必要であり、かつ
クリンカトラブルや伝熱面の激しい摩耗を避けることは
困難であった。
Therefore, there is a limit to fluctuations in combustion load, and even then, it is possible to collect unburned materials from the after-combustion chamber or exhaust gas using a high-temperature cyclone and return them to the fluidized bed, or to install a separate combustion furnace for collected ash. It is generally necessary to take measures such as these, and it is difficult to avoid clinker trouble and severe wear on the heat transfer surface.

その上、前述したように燃料を細かく破砕せねばならな
いなど、問題が多く、従来の技術では、折角の流動床熱
回収の利点である床内脱硫、完全燃焼、小さな伝熱面で
大きな熱交換、応答性の高い燃焼量制御等を実用化する
ことは困難であった。
Furthermore, as mentioned above, there are many problems such as the need to crush the fuel into small pieces, and with conventional technology, the advantages of fluidized bed heat recovery include in-bed desulfurization, complete combustion, and large heat exchange with a small heat transfer surface. However, it has been difficult to put into practical use highly responsive combustion amount control.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記従来の問題点を解決し、先に本出願人が
提案した特願昭56−1052(1号(特開昭57−1
24608号公報)、特願昭60−60149号、特願
昭60−60893号等の流動床熱反応炉を応用したも
のであって、燃料も微破砕する必要なく、燃料投入が容
易で、タリンカートラブルや流動不良を起こすことなく
、かなりの部分負荷が可能であり、伝熱面の摩耗を軽減
させ、効率良く熱回収を行うことができる流動床からの
熱回収方法及びその装置を提供することを目的とするも
のである。
The present invention solves the above-mentioned conventional problems, and the present invention has been made in Japanese Patent Application No. 56-1052 (No.
24608), Japanese Patent Application No. 60-60149, and Japanese Patent Application No. 60-60893, etc., the fuel does not need to be finely pulverized, the fuel can be easily inputted, and the Tallinn To provide a method and device for recovering heat from a fluidized bed, which can perform a considerable partial load without causing car trouble or poor fluidization, reduce wear on heat transfer surfaces, and efficiently recover heat. The purpose is to

そして、本発明の特徴とする手段は、炉内底部に吹き込
む酸素を含有する吹込気体の吹込面の単位面積当たりの
流量を部位により変化させて吹込面上に流動床を形成し
、前記吹込気体の流量の相対的に多い部分では全体とし
て流動固体が上昇し、流量の相対的に少ない部分では全
体として流動固体が下降し、流動床上層では前記吹込気
体の流量の相対的に多い部分から少ない部分へ、また流
動床下層では前記吹込気体の流量の相対的に少ない部分
から多い部分へと流動固体が流動床内を旋回移動する如
くし、前記吹込気体の流量の相対的に少ない部分の流動
床内から前記流動固体の旋回移動を妨げないように熱回
収すると共に、前記流動床の上表面近く又は前記吹込気
体の流量の相対的に多い方の部分へ燃料を供給するよう
にした流動床からの熱回収方法とそれを実施するための
装置である。
The feature of the present invention is to vary the flow rate per unit area of the blowing surface of the blowing gas containing oxygen into the bottom of the furnace to form a fluidized bed on the blowing surface, and to In areas where the flow rate of the blown gas is relatively high, the fluidized solids rise as a whole, and in areas where the flow rate is relatively low, the fluidized solids as a whole fall, and in the upper layer of the fluidized bed, the flow rate of the blown gas decreases from the area where the flow rate is relatively high. In the lower layer of the fluidized bed, the fluidized solid rotates in the fluidized bed from a region where the flow rate of the blown gas is relatively low to a region where the flow rate of the blown gas is relatively low. A fluidized bed configured to recover heat from within the bed so as not to impede the swirling movement of the fluidized solid, and to supply fuel to a portion near the upper surface of the fluidized bed or to a portion where the flow rate of the blown gas is relatively large. A method for recovering heat from heat sources and equipment for carrying out the method.

〔実施例〕〔Example〕

以下に本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図示例においては、炉1内底部には酸素を含有する
吹込気体、例えば空気2を分散させて吹き込むための吹
込面3が備えられ、この吹込面3は両側縁部が中央部よ
り低くほぼ対称な山形断面状(屋根状)に傾斜し、その
最低部である両側縁部付近には不燃物取出口4が設けら
れ、垂直シュート5を介して不燃物排出装置6に接続さ
れ、この不燃物排出装置6はさらに分級装置7に連なっ
ている。空気2は、吹込面3の下側に形成された風箱8
. 9. 10から吹込面3を経て上方に分散噴出する
ようになっており、両側縁部の風箱8゜10からの空気
2の単位面積当たりの流量は粒状固体(流動媒体及び燃
料固形分、燃焼残渣等)を十分に流動させて流動床を形
成するのに十分な量とするが、中央部の風箱9からの空
気2の流量は前者よりも小さく選ばれ、これら風箱8,
9.10への空気2は流量調節弁11等の風量調節機構
によって調節されるようになっている。
In the first illustrated example, the inner bottom of the furnace 1 is provided with a blowing surface 3 for dispersing and blowing oxygen-containing blowing gas, for example, air 2, and the blowing surface 3 has both side edges lower than the center. It slopes in an almost symmetrical chevron-shaped cross-section (roof-like), and a noncombustible material outlet 4 is provided near the lowest part of both edges, which is connected to a noncombustible material discharge device 6 via a vertical chute 5. The incombustible material discharge device 6 is further connected to a classification device 7. Air 2 is supplied to a wind box 8 formed below the blowing surface 3.
.. 9. The flow rate per unit area of the air 2 from the wind boxes 8 and 10 on both sides of the air is dispersed upward from the air blowing surface 3 through the blowing surface 3. ) is sufficiently fluidized to form a fluidized bed, but the flow rate of air 2 from the central wind box 9 is selected to be smaller than the former;
The air 2 to 9.10 is regulated by an air volume regulating mechanism such as a flow rate regulating valve 11.

また、両側縁部の風箱8,10の上方には、吹き込まれ
る空気2の上向き流路を部分的にさえぎり、空気2を炉
1内中央に向けて反射転向せしめる反射壁12が設けら
れており、流動化用ガスを兼ねた空気2とは別に、形成
される流動床よりも高い位置の炉1の側壁側又は燃焼域
に接したボイラ15壁には二次燃焼空気13の吹込口1
4,14’を設け、排ガス流路に排ガスボイラ15を一
体構造として設けて炉1やその上部空間の燃焼域からの
排ガスから直接熱回収するようにしである。
Further, above the wind boxes 8 and 10 on both side edges, reflective walls 12 are provided that partially block the upward flow path of the air 2 blown in and reflect the air 2 toward the center of the furnace 1. In addition to the air 2 that also serves as fluidizing gas, there is an inlet 1 for secondary combustion air 13 on the side wall of the furnace 1 at a higher position than the fluidized bed to be formed, or on the wall of the boiler 15 in contact with the combustion zone.
4 and 14' are provided, and an exhaust gas boiler 15 is integrally provided in the exhaust gas passage to directly recover heat from the exhaust gas from the combustion area of the furnace 1 and its upper space.

さらに、風箱9の上方に形成される流動床の高さの中間
付近には、伝熱管群16を水平に又は僅かに傾斜させて
ごばん目状に配備するが、この伝熱管群16の左右の水
平方向間隔は、少なくとも炉1に投入される粗大不燃物
の径よりも十分広くし、伝熱管群16で動きを阻止する
ことのないようにしなければならず、また伝熱管群16
が流動床の上層及び下層部分における流動固体の移動を
阻止したり、抵抗とならないように、伝熱管群16の上
下に十分広い通路をとる必要がある。またこの伝熱管群
16には、排ガスボイラ15と共有の気水ドラム17の
水面下より循環ポンプ18にて缶水を抜き出し、伝熱管
群16を通して再び気水ドラム17に戻す強制循環を行
うようになっている。19は排ガスボイラ15の下ヘッ
ダを示す。
Further, near the middle of the height of the fluidized bed formed above the wind box 9, a group of heat transfer tubes 16 are arranged horizontally or slightly inclined in a grid pattern. The horizontal distance between the left and right sides must be at least sufficiently wider than the diameter of the bulky non-combustible material to be charged into the furnace 1, so that the heat exchanger tube group 16 does not block its movement, and the heat exchanger tube group 16
It is necessary to provide sufficiently wide passages above and below the heat exchanger tube group 16 so that the passages do not block or create resistance to the movement of the fluidized solid in the upper and lower portions of the fluidized bed. The heat transfer tube group 16 is also configured to perform forced circulation by drawing out canned water from below the water surface of the air-water drum 17 shared with the exhaust gas boiler 15 using a circulation pump 18 and returning it to the air-water drum 17 through the heat transfer tube group 16. It has become. Reference numeral 19 indicates a lower header of the exhaust gas boiler 15.

そして、吹込面3の上方に、ホッパ20及び供給装置2
1に連なる燃料投入口22を設けるが、第1図示例では
吹込面3中夫の高い部分の真上付近に設けである。
A hopper 20 and a supply device 2 are placed above the blowing surface 3.
In the first illustrated example, a fuel inlet 22 connected to the fuel inlet 1 is provided, and in the first illustrated example, it is provided in the vicinity of right above the high part of the blowing surface 3.

しかして、その作用を説明すれば、吹込面3の中央の高
い部分の風箱9には、吹込面3上の粒状固体が流動化は
するが、激しい流動状態に至らない程度となるように、
流動開始速度Gmfの1〜3倍程度の流量の空気2を送
り、その左右の風箱8゜10には中央の2倍以上の単位
面積当たりの流量となるように空気2を送る。ここで、
必要な蒸気量に応じ、ホッパ20及び供給装置21を経
て燃料投入口22から燃料を炉1内に投入し、またそれ
に応じて流動床内の空燃比が適切に保持されるように、
中央の風箱9からの風量がGmfに近い場合は左右の風
箱8,10からの吹込風量のみを調節するが、中央の風
箱9からの風量がGmfに対しかなり多めの場合には空
気2を分岐する手前にて全体の流動空気量を加減する。
To explain its operation, the granular solids on the blowing surface 3 are fluidized in the wind box 9 at the high central part of the blowing surface 3, but not to the extent that it becomes a violent fluid state. ,
Air 2 is sent at a flow rate of about 1 to 3 times the flow start speed Gmf, and the air 2 is sent to the left and right wind boxes 8° 10 so that the flow rate per unit area is more than twice that of the center. here,
Fuel is introduced into the furnace 1 from the fuel inlet 22 via the hopper 20 and the supply device 21 according to the required amount of steam, and the air-fuel ratio in the fluidized bed is maintained appropriately accordingly.
If the air volume from the central wind box 9 is close to Gmf, only the air volume from the left and right wind boxes 8 and 10 is adjusted, but if the air volume from the central wind box 9 is considerably higher than Gmf, the air volume is adjusted. Adjust the total amount of flowing air before branching out.

このようにして、吹き込まれた空気2により、中央風箱
9の上では全体に吹上げ速度が小さいことから粒状固体
は下降流を示し、左右風箱8.10上では吹上げ速度が
大きいことから粒状固体は上昇流となり、かつ反射壁1
2の作用で吹き上げる空気2が反射壁12に沿って加速
され、吹き飛ばす形で大きく粒状固体を中央側へ移動さ
せる。すなわち、第1図矢印にて示すような旋回移動し
ながら全体が良く混合される。
In this way, due to the blown air 2, the granular solids show a downward flow because the overall blowing speed is low above the central wind box 9, and the blowing speed is high above the left and right wind boxes 8.10. The granular solid flows upward from the reflection wall 1.
The air 2 blown up by the action of 2 is accelerated along the reflecting wall 12 and moves large granular solids toward the center in a blown-off manner. That is, the entire mixture is thoroughly mixed while rotating as shown by the arrow in FIG.

従って、不燃物を多く含む低品位の石炭、泥炭、洗炭ス
ラッジ、選炭残渣、あるいは汚泥や都市ごみ等の各種生
産、処理過程で生ずる可燃性廃棄物その他の液状、泥状
又は固形の燃料が燃料投入口22から流動床表面に投入
されると、左右から移動したり飛ばされてふりそそぐ流
動媒体の旋回流の流れによって流動床内に埋められなか
ら吹込面3の高い側の中央に寄せられ、さらに埋められ
るような形で流動媒体と共に沈みながら熱と若干の燃焼
空気を供給されてばらばらになり、部分的に燃焼しなが
ら旋回流に沿って流動床内を分散しつつ移動してゆき、
吹込空気量の多い部分に至って大きな空気過剰率と激し
い流動によって完全燃焼することになる。
Therefore, low-grade coal, peat, coal washing sludge, coal cleaning residue containing a large amount of incombustibles, sludge, municipal waste, and other combustible wastes generated during various production and treatment processes and other liquid, muddy, or solid fuels are When fuel is injected onto the surface of the fluidized bed from the fuel inlet 22, it is not buried in the fluidized bed but is brought to the center of the high side of the blowing surface 3 due to the swirling flow of the fluidized medium that moves or is blown from the left and right. Then, as it sinks with the fluidized medium in a buried manner, it is supplied with heat and a small amount of combustion air, breaks up, and partially burns while dispersing and moving within the fluidized bed along the swirling flow.
At the portion where the amount of blown air is large, complete combustion occurs due to the large excess air ratio and intense flow.

従って、比較的大きな径の塊状燃料であっても、また燃
料が部分的にまとめて投入されても何ら支障なく燃焼さ
せることができる。
Therefore, even if the fuel is a lump of fuel having a relatively large diameter, or even if the fuel is partially injected all at once, it can be burned without any problem.

また、燃料の灰分のうち微細な焼却灰は吹き上げられ、
燃焼排ガスと共に流動床の上から飛び去るが、それ以外
は旋回流に吹き寄せられて左右の不燃物取出口4に至る
が、流動媒体に近い径又は流動媒体に近い通風抵抗を持
つ焼却残渣は流動媒体と同化してしまう。従って、不燃
物排出装置6により流動媒体と共に残留する不燃物を抜
き出し、分級袋W7によって流動媒体と同等の径以下の
ものは再び炉1内に戻し、蓄積すると流動状態を悪くす
る大きい径の不燃物を系外に排出する。なお、これら不
燃物取出しは、燃料に含まれる不燃物が流動媒体よりも
小さい場合には不要であり、流動床の底である吹込面3
は必ずしも傾斜させなくてもよい。
In addition, fine incineration ash among the ash content of the fuel is blown up,
The incineration residue flies away from the top of the fluidized bed along with the combustion exhaust gas, but the rest is blown away by the swirling flow and reaches the left and right incombustible material extraction ports 4, but the incineration residue has a diameter close to that of the fluidized medium or has a ventilation resistance similar to that of the fluidized medium. It becomes assimilated with the medium. Therefore, the incombustibles remaining together with the fluidized medium are extracted by the incombustible material discharging device 6, and the incombustibles with a diameter equal to or smaller than that of the fluidized medium are returned to the furnace 1 by the classification bag W7. Discharge the material out of the system. Note that these removals of incombustibles are unnecessary if the incombustibles contained in the fuel are smaller than the fluidized medium, and the
does not necessarily have to be inclined.

さらに、伝熱管群16においては、内部缶水が強制循環
であること、外部は流動床によって境界層を形成するこ
となくかつ流動床との接触伝熱もあり、粒状固体が良く
攪拌されることから、大きな伝熱量を期待することがで
き、排ガスとの伝熱量がたかだか数十kcaff / 
rd h ’Cなのに対して200〜300 kca1
7%h”c以上の値となる。
Furthermore, in the heat transfer tube group 16, the internal can water is forcedly circulated, and the external fluidized bed does not form a boundary layer, and there is contact heat transfer with the fluidized bed, so that the granular solids are well stirred. Therefore, a large amount of heat transfer can be expected, and the amount of heat transfer with the exhaust gas is at most several tens of kcaff/
200-300 kca1 for rd h'C
The value is 7%h''c or more.

自然循環の場合には若干傾斜させ上面に蒸気が溜まるの
を防ぐことが好ましいが、気水ドラム17までは高さを
十分とれるので、伝熱量に見合った循環量を与えること
は十分可能である。
In the case of natural circulation, it is preferable to tilt it slightly to prevent steam from accumulating on the top surface, but since there is sufficient height up to the air/water drum 17, it is quite possible to provide a circulation amount commensurate with the amount of heat transfer. .

流動床は燃焼を維持するために、500〜600℃以上
、望ましくは700〜800℃とするが、900〜10
00℃以上では流動媒体たる砂や燃焼残渣が熔けはじめ
るために流動床を冷却しなければならないが、流動床へ
の水注入や吹込風量増加等を行うことなく、すべて熱回
収の形で冷却が行われ、しかもそのための伝熱面積が僅
かですむという利点がある。
In order to maintain combustion, the temperature of the fluidized bed is 500 to 600°C or higher, preferably 700 to 800°C, but 900 to 10°C.
At temperatures above 00°C, the fluidized bed, such as sand and combustion residue, begins to melt, so the fluidized bed must be cooled. However, this cooling is achieved entirely through heat recovery without the need to inject water into the fluidized bed or increase the amount of air blown into the bed. This has the advantage that the heat transfer area for this purpose is small.

加えて、流動床内に巻き込む形で燃焼が行われることか
ら、流動床層高を高くすることで、流動床内で燃える割
合を高めて部分負荷時の流動床への燃焼熱入熱量減少を
抑えることが可能となる。
In addition, since combustion takes place in a fluidized bed, increasing the height of the fluidized bed increases the rate of combustion within the fluidized bed and reduces the amount of combustion heat input into the fluidized bed during partial load. It is possible to suppress it.

このこと及び前述した風量調節と流動状態調節の原理か
ら木刀式によれば部分負荷運転が容易であり、50%以
上の部分負荷も空気比を変えず、従って熱回収効率を下
げることなしに可能である。
Based on this and the principles of air volume adjustment and flow condition adjustment described above, partial load operation is easy with the Bokuto method, and partial loads of 50% or more are possible without changing the air ratio and therefore without reducing heat recovery efficiency. It is.

また、伝熱管群16の部分での流動状態の強弱の変化も
前述した風量調節の原理から常に弱い状態とすることが
できる。従って、スケーリングも起こさず、摩耗も生し
ない良好な状態での運転が可能となる。
In addition, the change in the strength of the flow state in the heat transfer tube group 16 can always be made weak based on the principle of air volume adjustment described above. Therefore, it is possible to operate under good conditions without causing scaling or wear.

流動床内の伝熱管群16への缶水の流し方は、第1図示
例のように必ずしもする必要はなく、例えば発生蒸気の
過熱器や気水ドラム17への供給缶水を加熱するエコノ
マイザ的使用法、排ガスボイラ15とは全く独立した気
水ヘッダを持たせる方法、熱媒ボイラや温水発生器とし
て使用する方法など、多様に対応できることは言うまで
もない。
The method of flowing the canned water to the heat transfer tube group 16 in the fluidized bed does not necessarily have to be as shown in the first illustrated example. Needless to say, it can be used in a variety of ways, such as a method of using it as a general purpose, a method of having an air/water header completely independent of the exhaust gas boiler 15, a method of using it as a heat medium boiler or a hot water generator, etc.

しかし、流動床内の伝熱管群16では発生する排ガスか
らの熱回収はできないので、第1図示例のように排ガス
ボイラ15と組み合わせたり、その他空気予熱器、エコ
ノマイザなどの排ガスからの熱回収装置と組み合わせて
使用し、燃料からの熱回収量をあげることが好ましい。
However, since the heat transfer tube group 16 in the fluidized bed cannot recover heat from the generated exhaust gas, it is necessary to combine it with the exhaust gas boiler 15 as shown in the first example, or use other heat recovery equipment from the exhaust gas such as an air preheater or an economizer. It is preferable to use it in combination with the fuel to increase the amount of heat recovered from the fuel.

以上のような実施例において、伝熱管群16の摩耗と伝
熱量を測定したところ、次のような良好な結果を得るこ
とができた。
In the above examples, when the wear and heat transfer amount of the heat transfer tube group 16 were measured, the following favorable results were obtained.

伝熱管減肉  はとんど認められず スケーリング 異色スケールの薄層が形成されたが、経
時による生長は認めら れず 伝熱量    200〜300 kca12/%h℃温
度条件   缶水温度、入ロ10℃前後出ロ50℃前後 流動床温度780〜840 ’C 伝熱管材質  5TB40A 炉床熱負荷  15(1−250X 10’ kca 
14 / g h ’Cさらにまた、処理量が大きく熱
負荷が増大したり、また燃料の発熱量が高く、伝熱面積
をさらに必要とするような大形又は高負荷たらしめる必
要がある場合には、第2図に示すように、山形の吹込面
3を炉1の中心線に対してほぼ対称に並設し、各風箱9
上の流動床部に伝熱管群16を配備し、炉1中央底部に
も不燃物取出口4を設けることによって対処することが
できる。
Heat transfer tube thinning was hardly observed and scaling A thin layer with unusual scale was formed, but no growth was observed over time and heat transfer amount was 200 to 300 kca12/%h℃ Temperature conditions Canned water temperature, input temperature 10℃ Front and back fluidized bed temperature around 50℃ 780-840'C Heat exchanger tube material 5TB40A Hearth heat load 15 (1-250X 10' kca
14 / g h 'C Furthermore, when the throughput is large and the heat load increases, or the calorific value of the fuel is high and it is necessary to make it large or high load that requires an additional heat transfer area. As shown in FIG.
This problem can be dealt with by providing a group of heat transfer tubes 16 in the upper fluidized bed section and also providing an incombustible material outlet 4 in the bottom center of the furnace 1.

第3図示例は、第2図示例のさらに変形であって、各吹
込面3,3の炉中心側の側縁部の上方にも粒状固体の旋
回移動流を誘導するための反射壁12を設け、第2図示
例のように燃料投入口22を中央1ケ所に開口すること
なく、各吹込面3の上方に分割して開口した例である。
The third illustrated example is a further modification of the second illustrated example, in which a reflecting wall 12 is also provided above the side edge of each blowing surface 3, 3 on the furnace center side for guiding the swirling flow of granular solids. This is an example in which the fuel inlet 22 is not opened at one central location as in the second illustrated example, but is divided and opened above each blowing surface 3.

第4図示例は、吹込面3を一方向に傾斜させ、その最細
部付近に不燃物取出口4を設け、反射壁12を省略した
例であり、第5図示例のように、この傾斜吹込面を炉中
心線に対してほぼ対称に並設し、中央に共通の不燃物取
出口4を設け、炉1の両側壁上部にそれぞれ固形燃料投
入口22を開口することもできる。
The fourth illustrated example is an example in which the blowing surface 3 is inclined in one direction, the incombustible material outlet 4 is provided near the smallest part, and the reflecting wall 12 is omitted. It is also possible to arrange the surfaces substantially symmetrically with respect to the furnace center line, provide a common incombustible material outlet 4 in the center, and open solid fuel inlets 22 at the upper portions of both side walls of the furnace 1, respectively.

なお、第4図及び第5図に示すように、吹込面3は必ず
しも炉1の底面とは一致せず、空気等の酸素を含む気体
を吹き込むことによって、その近傍レヘル以上において
流動媒体が流動化しているおよその区分できる面を指し
、多孔板、散気管、散気ノズルその他どの様なものであ
っても同様の効果を得ることができる。流動床内の不燃
物や流動媒体、燃料、燃焼残渣などの挙動も、この吹込
面を流動床の底として考えても何ら問題はない。
Note that, as shown in FIGS. 4 and 5, the blowing surface 3 does not necessarily coincide with the bottom surface of the furnace 1, and by blowing in a gas containing oxygen such as air, the fluidized medium flows in the vicinity above the level. The same effect can be obtained using any type of device such as a perforated plate, air diffuser pipe, air diffuser nozzle, etc. Regarding the behavior of incombustibles, fluidized media, fuel, combustion residue, etc. in the fluidized bed, there is no problem in considering this blowing surface as the bottom of the fluidized bed.

その面の下は動きがなく、流動媒体により充填され固定
されて実質的な容器の意味をなさないのである。
There is no movement beneath that surface, and it is filled with a fluid medium and is fixed, meaning that it does not serve as a substantial container.

そして、これらの第2〜5図示例の作用も第1図示例の
作用とほとんど変わるところはない。
The operations of the second to fifth illustrated examples are also almost the same as those of the first illustrated example.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、燃料を数鶴以下に
微破砕する必要は全くなく、燃焼速度が爆発的でなけれ
ば無破砕や100+n程度までの粗破砕でもタリン力ト
ラブルや流動不良を起こすことなく運転することができ
、かなりの部分負荷が可能であって、大きな不燃物が混
入しているものであっても運転を停止することなく炉外
へ取り出すことができる。
As explained above, according to the present invention, there is no need to finely crush the fuel into smaller pieces than a few cranes, and if the combustion rate is not explosive, no crushing or coarse crushing up to about 100+N can cause problems with talin force and poor flow. It can be operated without causing any problems, is capable of a considerable partial load, and can be taken out of the furnace without stopping operation, even if large amounts of incombustible material are mixed in.

また、部分的に激しい流動部もあることから、ドロマイ
トやライムストーンなどの脱硫剤などを砕いて活性化さ
せることも容易であり、固形燃料を一旦流動床内に巻き
込んでから燃焼させることにより、爆発的な燃焼を抑え
て二段燃焼などのNOX対策も行うことができるなど、
公害防止の観点からも優れた性能を持っている。
In addition, since there are some areas with intense fluidity, it is easy to crush and activate desulfurization agents such as dolomite and limestone, and by first involving solid fuel in the fluidized bed and then burning it, It is possible to suppress explosive combustion and implement NOx countermeasures such as two-stage combustion.
It also has excellent performance from the perspective of pollution prevention.

さらに加えて、伝熱面の摩耗も大幅に軽減させ、しかも
スケーリングによる伝熱低下も防ぐことができ、効率の
良い熱回収を行い、かつ従来の流動床の約2倍の高負荷
運転までが可能となる等多くの極めて有益なる効果を有
するものである。
In addition, wear on the heat transfer surface is significantly reduced, heat transfer reduction due to scaling is prevented, efficient heat recovery is achieved, and high load operation is approximately twice that of conventional fluidized beds. It has many extremely beneficial effects, such as making it possible to

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はその一例を示す
全体の縦断面図、第2〜5図はそれぞれ他の例を示す炉
の部分の縦断面図である。 1・・・炉、2・・・空気、3・・・吹込面、4・・・
不燃物取出口、5・・・垂直シュート、6・・・不燃物
排出装置、7・・・分級装置、8,9.10・・・風箱
、11・・・流量調節弁、12・・・反射壁、13・・
・二次燃焼空気、14.14’・・・吹込口、15・・
・排ガスボイラ、16・・・伝熱管群、17・・・気水
ドラム、18・・・循環ポンプ、19・・・下ヘッダ、
20・・・ホッパ、21・・・供給装置、22・・・燃
料投入口。
The drawings show embodiments of the present invention, and FIG. 1 is a longitudinal cross-sectional view of the entire furnace showing one example, and FIGS. 2 to 5 are longitudinal cross-sectional views of parts of a furnace showing other examples. 1...Furnace, 2...Air, 3...Blowing surface, 4...
Non-combustible material outlet, 5... Vertical chute, 6... Non-combustible material discharge device, 7... Classifier, 8, 9.10... Wind box, 11... Flow rate control valve, 12...・Reflection wall, 13...
・Secondary combustion air, 14.14'...Inlet, 15...
・Exhaust gas boiler, 16... Heat exchanger tube group, 17... Air/water drum, 18... Circulation pump, 19... Lower header,
20... Hopper, 21... Supply device, 22... Fuel input port.

Claims (1)

【特許請求の範囲】 1、炉内底部に吹き込む酸素を含有する吹込気体の吹込
面の単位面積当たりの流量を部位により変化させて吹込
面上に流動床を形成し、前記吹込気体の流量の相対的に
多い部分では全体として流動固体が上昇し、流量の相対
的に少ない部分では全体として流動固体が下降し、流動
床上層では前記吹込気体の流量の相対的に多い部分から
少ない部分へ、また流動床下層では前記吹込気体の流量
の相対的に少ない部分から多い部分へと流動固体が流動
床内を旋回移動する如くし、前記吹込気体の流量の相対
的に少ない部分の流動床内から前記流動固体の旋回移動
を妨げないように熱回収すると共に、前記流動床の上表
面近く又は前記吹込気体の流量の相対的に多い方の部分
へ燃料を供給することを特徴とする流動床からの熱回収
方法。 2、炉内底部に酸素を含有する吹込気体の吹込面を備え
、前記吹込面における吹込気体の単位面積当たりの流量
を前記吹込面の部位により変化するように流量調節機構
を備え、前記吹込面の吹込気体の相対的に少ない部分の
上部に流動固体の移動を妨げないように熱回収のための
伝熱面を配備し、さらに炉壁上方部に燃料投入口を設け
たことを特徴とする流動床からの熱回収装置。
[Claims] 1. A fluidized bed is formed on the blowing surface by changing the flow rate per unit area of the blowing surface of the blowing gas containing oxygen into the bottom of the furnace, and the flow rate of the blowing gas is changed depending on the part. In areas where the flow rate is relatively high, the fluidized solids rise as a whole, and in areas where the flow rate is relatively low, the fluidized solids as a whole fall, and in the upper layer of the fluidized bed, from the area where the flow rate of the blown gas is relatively high to the area where it is low, Further, in the lower layer of the fluidized bed, the fluidized solid is rotated in the fluidized bed from a portion where the flow rate of the blown gas is relatively low to a portion where the flow rate is high. A fluidized bed characterized in that heat is recovered so as not to impede swirling movement of the fluidized solid, and fuel is supplied near the upper surface of the fluidized bed or to a portion where the flow rate of the blown gas is relatively large. heat recovery method. 2. A blowing surface for blowing gas containing oxygen is provided at the bottom of the furnace, and a flow rate adjustment mechanism is provided to change the flow rate per unit area of the blowing gas on the blowing surface depending on the portion of the blowing surface, and the blowing surface A heat transfer surface for heat recovery is provided above the portion where there is relatively little blown gas so as not to impede the movement of the fluidized solid, and a fuel inlet is provided in the upper part of the furnace wall. Heat recovery device from fluidized bed.
JP3529186A 1986-02-21 1986-02-21 Heat recovery method from fluidized bed and its equipment Granted JPS62196522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3529186A JPS62196522A (en) 1986-02-21 1986-02-21 Heat recovery method from fluidized bed and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3529186A JPS62196522A (en) 1986-02-21 1986-02-21 Heat recovery method from fluidized bed and its equipment

Publications (2)

Publication Number Publication Date
JPS62196522A true JPS62196522A (en) 1987-08-29
JPH0370124B2 JPH0370124B2 (en) 1991-11-06

Family

ID=12437668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3529186A Granted JPS62196522A (en) 1986-02-21 1986-02-21 Heat recovery method from fluidized bed and its equipment

Country Status (1)

Country Link
JP (1) JPS62196522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244101A (en) * 1988-08-05 1990-02-14 Sumitomo Metal Ind Ltd Fluidized bed boiler
JP2016031204A (en) * 2014-07-30 2016-03-07 株式会社Ihi環境エンジニアリング Powder burning burner
JP2017198372A (en) * 2016-04-26 2017-11-02 三菱重工業株式会社 Fluidized-bed combustion furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4995470A (en) * 1972-10-20 1974-09-10
JPS52118858A (en) * 1976-03-12 1977-10-05 Dagurasu Arisun Mitsuchieru Thermal reactor
JPS5455826A (en) * 1977-08-19 1979-05-04 Flameless Furnaces Ltd Fluid bed combustor
JPS57124608A (en) * 1981-01-27 1982-08-03 Ebara Corp Fluidized bed type heat-reactive furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4995470A (en) * 1972-10-20 1974-09-10
JPS52118858A (en) * 1976-03-12 1977-10-05 Dagurasu Arisun Mitsuchieru Thermal reactor
JPS5455826A (en) * 1977-08-19 1979-05-04 Flameless Furnaces Ltd Fluid bed combustor
JPS57124608A (en) * 1981-01-27 1982-08-03 Ebara Corp Fluidized bed type heat-reactive furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244101A (en) * 1988-08-05 1990-02-14 Sumitomo Metal Ind Ltd Fluidized bed boiler
JP2016031204A (en) * 2014-07-30 2016-03-07 株式会社Ihi環境エンジニアリング Powder burning burner
JP2017198372A (en) * 2016-04-26 2017-11-02 三菱重工業株式会社 Fluidized-bed combustion furnace

Also Published As

Publication number Publication date
JPH0370124B2 (en) 1991-11-06

Similar Documents

Publication Publication Date Title
US5156099A (en) Composite recycling type fluidized bed boiler
US4823712A (en) Multifuel bubbling bed fluidized bed combustor system
US5957066A (en) Fluidized-bed thermal reaction apparatus
US4253409A (en) Coal burning arrangement
US5081937A (en) System for treating waste material in a molten state
US4303023A (en) Fluidized bed fuel burning
WO1999066264A1 (en) Operating method of fluidized-bed incinerator and the incinerator
WO1999023431A1 (en) Fluidized bed gasification combustion furnace
US5138982A (en) Internal circulating fluidized bed type boiler and method of controlling the same
US6709636B1 (en) Method and apparatus for gasifying fluidized bed
EP0431163A1 (en) Composite circulation fluidized bed boiler
JP2009019870A (en) Fluidized bed gasification combustion furnace
EP0369004B1 (en) Internal circulation type fluidized bed boiler and method of controlling same
JPS62196522A (en) Heat recovery method from fluidized bed and its equipment
JPH102543A (en) Fluidized bed gasifying combustion furnace
JP3625817B2 (en) Composite fluidized bed furnace and method of operating composite fluidized bed furnace
JP2001221405A (en) Circulating type fluidized bed combustion furnace
JP2989783B2 (en) Heat recovery device from fluidized bed
JPH0399106A (en) Fuel supply for fluidized bed burner
Shang An overview of fluidized-bed combustion boilers
KR100763775B1 (en) Internal circulating fluidized bed incinerator for refuse derived fuel
JPS62272089A (en) Method and apparatus for retrieving heat from fluidized bed
JP3625818B2 (en) Pressurized fluidized bed furnace
KR100391703B1 (en) Method and apparatus for providing bed media for fluidized bed combustor
JPS61143610A (en) Multi-stage fluidized-bed boiler