JPS6251112A - Al stabilized nb-ti superconductor - Google Patents

Al stabilized nb-ti superconductor

Info

Publication number
JPS6251112A
JPS6251112A JP60191692A JP19169285A JPS6251112A JP S6251112 A JPS6251112 A JP S6251112A JP 60191692 A JP60191692 A JP 60191692A JP 19169285 A JP19169285 A JP 19169285A JP S6251112 A JPS6251112 A JP S6251112A
Authority
JP
Japan
Prior art keywords
wire
matrix
stabilized
alloy
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60191692A
Other languages
Japanese (ja)
Inventor
武井 広見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60191692A priority Critical patent/JPS6251112A/en
Publication of JPS6251112A publication Critical patent/JPS6251112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明はパルスマグネット用N安定化Nb  Ti超
電導線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an N-stabilized Nb Ti superconducting wire for pulsed magnets.

〈従来の技術とその問題点〉 核融合ポロイダルマグネット、電力系統安定化のための
エネルギー貯蔵用マグネット、発電機の界磁用マグネッ
ト等においては、急速励磁および消磁を繰返すパルス運
転が行なわれるので、このパルス運転に伴ない線材には
繰返し応力が印加されることになる。従って、パルスマ
グネット用超電導線材としては、疲労強度が大きいこと
が不可欠である。
<Conventional technology and its problems> Nuclear fusion poloidal magnets, energy storage magnets for power system stabilization, field magnets for generators, etc. are operated in pulses with repeated rapid excitation and demagnetization. As a result of this pulsed operation, repeated stress is applied to the wire. Therefore, it is essential that the superconducting wire for pulsed magnets has high fatigue strength.

しかしながら、従来パルスマグネット用超電導線材とし
て用いられているN安定化Nb  Ti極細多芯線(M
マトリックスの中にフィラメント状のNb  Ti超電
導体を多数本埋込んだもの)では機械的強度、特に疲労
強度が低いことが欠点とされている。
However, N-stabilized Nb Ti ultrafine multifilamentary wire (M
The disadvantage of the method (in which many NbTi superconductors in the form of filaments are embedded in a matrix) is that its mechanical strength, particularly its fatigue strength, is low.

これは超電導の安定性を良くするために、最終工程でN
のひずみ取り焼鈍を行ない、Nを軟化させているために
、疲労クラックは線材の表面から発生し、内部へ伝播す
るものであるが、表面のNを軟化させているために、疲
労クラックが発生しやすく、また疲労強度が低くなるた
めである。
In order to improve the stability of the superconductor, N is added in the final process.
Because strain relief annealing is performed to soften the N, fatigue cracks occur from the surface of the wire and propagate to the inside, but fatigue cracks occur because the N on the surface is softened. This is because it is easier to wear and has lower fatigue strength.

〈問題点を解決するための手段〉 この発明は上記の点に鑑みて、疲労強度の大きい/V安
定化隆−T、超電導線を得るべく検討の結果、見出され
たものである。
<Means for Solving the Problems> In view of the above points, the present invention was discovered as a result of studies to obtain a /V stabilized ridge-T superconducting wire with high fatigue strength.

即ち、この発明はA&71〜リックス中にフィラメント
状の隆TL合金を埋め込んだNマトリックスNb −T
*多芯線において、外周層がTL1F8、l’In、c
r。
That is, the present invention is an N matrix Nb-T in which filamentary ridges TL alloy are embedded in A&71~Rix.
*In multifilamentary wire, the outer layer is TL1F8, l'In, c
r.

■の中から選ばれた1種類の元素を0.1〜0.8重量
%含有したN合金であることを特徴とするN安定化Nb
−TL超電導線を提供せんとするものである。
N-stabilized Nb characterized by being an N alloy containing 0.1 to 0.8% by weight of one type of element selected from (1)
-It aims to provide a TL superconducting wire.

〈作用〉 以下、この発明を図面を参照して説明する。<Effect> The present invention will be explained below with reference to the drawings.

この発明は第1図に断面図として示すように、Nマトリ
ックス1の中にNb −TLフィラメント2が埋込まれ
ており、Nマトリックスコの外周層としてN合金層3を
設けた構造のN安定化r−TL超電導線である。
As shown in the cross-sectional view in FIG. 1, this invention has a structure in which an Nb-TL filament 2 is embedded in an N matrix 1, and an N alloy layer 3 is provided as an outer peripheral layer of the N matrix. This is an R-TL superconducting wire.

そして3のA&合金層としては、耳、FB、1、Cr。And the A&alloy layer of 3 is ear, FB, 1, and Cr.

■の中から1種類の元素を0.1〜0.8重量%含有し
たA1合金を用いるものである。
An A1 alloy containing 0.1 to 0.8% by weight of one type of element selected from (1) is used.

ここでN合金中に含むTi、Fe、I”tn、Cr、V
の元素の量を0.1〜0.8重量%とするのは、0.1
重量%以下ではいたずらにマトリックスの電気抵抗を増
加させ、超電導の安定性を低下させるだけであって、疲
労強度を増加させる効果はなく、また0、8重量%以上
では加工硬化が大きくなり、線材の加工性が低下するこ
と、および/Vマトリックスへの第3元素の拡散が大き
くなってマトリックスの電気抵抗を増加させるためであ
る。
Here, Ti, Fe, I"tn, Cr, V contained in the N alloy
Setting the amount of the element to 0.1 to 0.8% by weight is 0.1
If it is less than 0.8% by weight, it will only increase the electrical resistance of the matrix and reduce the stability of the superconductor, but it will not have the effect of increasing fatigue strength.If it is more than 0.8% by weight, work hardening will increase and the wire will This is because the processability of /V decreases, and the diffusion of the third element into the /V matrix increases, increasing the electrical resistance of the matrix.

かくして得られるこの発明のM安定化超電導線Aは、こ
れを撚り合わせて第2図(a)にその断面図として示す
ような成形平角撚線として、または第2図(b)に示す
ように、超電導線Aを撚り合せてこれをコンジットチュ
ーブ4で囲んだバンドル型撚線としてケーブル導体など
に使用することができるのである。
The thus obtained M-stabilized superconducting wire A of the present invention can be twisted into a shaped rectangular stranded wire as shown in FIG. 2(a) as a cross-sectional view, or as shown in FIG. 2(b). The superconducting wires A are twisted together and surrounded by a conduit tube 4 to form a bundle-type twisted wire, which can be used as a cable conductor.

〈実施例〉 以下、実施例にてこの発明の詳細な説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

第1表に示す組成のN合金を最外層とする外径70、、
肉厚2.5調の管と内側が純アルミニウムからなる外径
65Irvn、肉厚3#の管からなる2重管内部に、N
を被覆した隆−T、六角線を127本稠密充填し、真空
チャンバー中で内部を真空引きし、上、下に銅の蓋を電
子ビーム溶接して複合ビレットを作製した。
Outer diameter 70, with the outermost layer made of N alloy with the composition shown in Table 1.
Inside the double tube consisting of a tube with a wall thickness of 2.5 tone and a tube with an outer diameter of 65Irvn and a wall thickness of 3#, the inner side is made of pure aluminum.
A composite billet was fabricated by densely packing 127 hexagonal wires and hexagonal wires coated with the ridge-T, evacuating the inside in a vacuum chamber, and electron beam welding copper lids on the top and bottom.

これを押出機を用いて外径25#φに押出した。This was extruded using an extruder to have an outer diameter of 25 #φ.

ここでA&金合金純#、Nb−Tjの断面積割合はそれ
ぞれ15%、48%、31%でめった。
Here, the cross-sectional area ratios of A&gold alloy pure # and Nb-Tj were set to 15%, 48%, and 31%, respectively.

次に押出材を3履φに伸線、320℃で1時間の焼鈍を
行ったのち、回転曲げ疲労試験により耐疲労強度を調べ
た。その結果は第1表に示したが、比較のために示した
A&マトリックスのNb  Ti多芯線<Nb  ”l
の断面積割合、37%、フィラメント本数127本)に
比べ著しく疲労強度が改善されていることが認められた
Next, the extruded material was wire-drawn to a diameter of 3 shoes, annealed at 320° C. for 1 hour, and then fatigue strength was examined by a rotary bending fatigue test. The results are shown in Table 1, but the Nb Ti multifilamentary wire of A & matrix shown for comparison <Nb ”l
It was recognized that the fatigue strength was significantly improved compared to the cross-sectional area ratio of 37% and the number of filaments of 127.

第1表 〈発明の効果〉 この発明は、上記のように外周層をN合金層としたこと
により、 線材の外周層が強化され、疲労強度が増加するという効
果が得られるのである。これは外周層をM合金化させた
ことにより再結晶温度が上昇し、最終工程でNマトリッ
クスのひずみ取り焼鈍を行っても、外周の合金層は加工
硬化状態のまま存在するためである。
Table 1 <Effects of the Invention> In this invention, by using the N alloy layer as the outer peripheral layer as described above, the outer peripheral layer of the wire rod is strengthened and the fatigue strength is increased. This is because the recrystallization temperature increases due to the M alloying of the outer peripheral layer, and even if the strain relief annealing of the N matrix is performed in the final step, the outer peripheral alloy layer remains in a work-hardened state.

ざらにこの発明の超電導線を撚り合わせてケーブル導体
として使用する場合には、上記の疲労強度が増加すると
いう効果に加えて、変動磁界に伴なう電気的損失が減少
するという効果も得られるのである。これは合金化する
ことにより外周層の電気抵抗が増加して、素線間の実効
抵抗が増加し、変動磁界に誘起される結合電流が減少す
るためである。
When the superconducting wires of the present invention are twisted together and used as a cable conductor, in addition to the effect of increasing the fatigue strength mentioned above, it is also possible to obtain the effect of reducing electrical loss caused by a fluctuating magnetic field. It is. This is because alloying increases the electrical resistance of the outer peripheral layer, increases the effective resistance between the strands, and reduces the coupling current induced by the fluctuating magnetic field.

【図面の簡単な説明】 第1図はこの発明の超電導線の断面図、第2図(a)お
よび(b)はこの発明の超電導線を撚り合わせたケーブ
ル導体の断面図である。 1・・・Nマトリックス  2・・・Nb −TLフィ
ラメント3・・・N合金層 出願人代理人  弁理士  和 1)昭第1図 第2図 第2図 (b) 八
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a superconducting wire of the present invention, and FIGS. 2(a) and 2(b) are sectional views of a cable conductor obtained by twisting the superconducting wires of the present invention. 1...N matrix 2...Nb-TL filament 3...N alloy layer Patent attorney Kazu 1) Showa 1, 2, 2 (b) 8

Claims (1)

【特許請求の範囲】[Claims] Alマトックス中にフィラメント状のNb−Ti合金を
埋め込んたAlマトリックスNb−Ti多芯線において
、外周層がTi、Fe、Mn、Cr、Vの中から選ばれ
た1種類の元素を0.1〜0.8重量%含有したAl合
金であることを特徴とするAl安定化Nb−Ti超電導
線。
In an Al matrix Nb-Ti multifilamentary wire in which a filamentary Nb-Ti alloy is embedded in an Al matrix, the outer peripheral layer contains one type of element selected from Ti, Fe, Mn, Cr, and V at 0.1 to An Al-stabilized Nb-Ti superconducting wire characterized by being an Al alloy containing 0.8% by weight.
JP60191692A 1985-08-29 1985-08-29 Al stabilized nb-ti superconductor Pending JPS6251112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60191692A JPS6251112A (en) 1985-08-29 1985-08-29 Al stabilized nb-ti superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60191692A JPS6251112A (en) 1985-08-29 1985-08-29 Al stabilized nb-ti superconductor

Publications (1)

Publication Number Publication Date
JPS6251112A true JPS6251112A (en) 1987-03-05

Family

ID=16278873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60191692A Pending JPS6251112A (en) 1985-08-29 1985-08-29 Al stabilized nb-ti superconductor

Country Status (1)

Country Link
JP (1) JPS6251112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500101A1 (en) * 1991-02-20 1992-08-26 The Furukawa Electric Co., Ltd. Aluminum-stabilized superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500101A1 (en) * 1991-02-20 1992-08-26 The Furukawa Electric Co., Ltd. Aluminum-stabilized superconducting wire
US5266416A (en) * 1991-02-20 1993-11-30 The Furukawa Electric Co., Ltd. Aluminum-stabilized superconducting wire

Similar Documents

Publication Publication Date Title
JP2897776B2 (en) Electrical conductor in wire or cable form
JPH054766B2 (en)
Pyon et al. Nb/sub 3/Sn conductors for high energy physics and fusion applications
Ozeryansky et al. A new internal tin Nb/sub 3/Sn conductor made by a novel manufacturing process
JPS6251112A (en) Al stabilized nb-ti superconductor
EP0405405B1 (en) Multifilament superconducting wire of nb3al
JPS6251113A (en) Copper stabilized nb-ti superconductor
JPH0619930B2 (en) Niobium / Titanium extra fine multi-core superconducting wire
JPS63216212A (en) Nb3sn-based superconductive wire and production of it
JP3086487B2 (en) Method for manufacturing Nb3Sn AC superconducting wire
US6810276B1 (en) Method to reduce magnetization in high current density superconductors formed by reaction of multi-component elements in filamentary composite superconductors
JP2926774B2 (en) Nb for AC (3) Sn multi-core superconducting wire
Pyon et al. Some effects of matrix additions to internal tin processed multifilamentary Nb/sub 3/Sn superconductors
JPS58189909A (en) Method of producing nb3sn superconductor
JPS63164115A (en) Nb3sn compound superconductive wire
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPS61201766A (en) Manufacture of cu-stabilized nb-ti superconducting wire
JPH0570887B2 (en)
JPS61101913A (en) Manufacture of nbti very fine multicore superconducting wire
JP2000036221A (en) Compression molded conductor of oxide superconductor and manufacture thereof
JP2001057118A (en) SUPERCONDUCTING WIRE OF Nb3Sn COMPOUND AND MANUFACTURE THEREOF
JPS61231143A (en) Manufacture of stabilizing material for composite superconductor
JPS60250512A (en) Method of producing nb3sn composite superconductive wire
Sampson New Superconducting Material for Magnet Applications
JPH08212847A (en) Composite multicore superconducting wire