JPS6250664B2 - - Google Patents

Info

Publication number
JPS6250664B2
JPS6250664B2 JP54109290A JP10929079A JPS6250664B2 JP S6250664 B2 JPS6250664 B2 JP S6250664B2 JP 54109290 A JP54109290 A JP 54109290A JP 10929079 A JP10929079 A JP 10929079A JP S6250664 B2 JPS6250664 B2 JP S6250664B2
Authority
JP
Japan
Prior art keywords
stage
runner
turbine
pump
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54109290A
Other languages
Japanese (ja)
Other versions
JPS5634966A (en
Inventor
Sachio Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10929079A priority Critical patent/JPS5634966A/en
Priority to DE3032058A priority patent/DE3032058C2/en
Priority to CH655080A priority patent/CH638276A5/en
Publication of JPS5634966A publication Critical patent/JPS5634966A/en
Publication of JPS6250664B2 publication Critical patent/JPS6250664B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/10Machines or engines of reaction type; Parts or details peculiar thereto characterised by having means for functioning alternatively as pumps or turbines
    • F03B3/103Machines or engines of reaction type; Parts or details peculiar thereto characterised by having means for functioning alternatively as pumps or turbines the same wheel acting as turbine wheel and as pump wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

【発明の詳細な説明】 本発明は単速度可逆式多段ポンプ水車に係り、
特に定常運転時に高性能運転が行える単速度可逆
式多段ポンプ水車に関する。
[Detailed description of the invention] The present invention relates to a single speed reversible multi-stage pump water turbine,
In particular, the present invention relates to a single-speed reversible multi-stage pump water turbine that can perform high-performance operation during steady operation.

近時においては高落差地点に揚水発電所を建設
する傾向があり、多段ポンプ水車に対する需要度
が高まつている。多段ポンプ水車は最高圧段部か
ら最低圧段部までの各段部にランナを備え、各段
部は返り通路によつて連絡されており、各段部の
ランナの外周に設けたガイドベーンによつて各段
部の水流状態を制御し運転状態の制御を行つてい
る。
In recent years, there has been a trend to construct pumped storage power plants at high head locations, and the demand for multistage pump turbines is increasing. A multistage pump-turbine is equipped with a runner at each stage from the highest pressure stage to the lowest pressure stage, and each stage is connected by a return passage, and the guide vanes provided on the outer periphery of the runner at each stage Therefore, the state of water flow in each stage is controlled to control the operating state.

しかしながら、このような最高圧段部から最低
圧段部までの各段部が返り通路を介して順次直列
に連絡されている複雑な流路構成の多段ポンプ水
車において、各段部のランナの外周にガイドベー
ンを設けかつ各段部のガイドベーンに開閉操作機
構を連結させて開閉操作を行なわせることは困難
である。とくに3段以上のポンプ水車では、構造
上の制約を受けて極めて困難であり、実用化の上
で問題となつている。
However, in such a multistage pump-turbine with a complicated flow path configuration in which each stage from the highest pressure stage to the lowest pressure stage is successively connected in series via a return passage, the outer periphery of the runner of each stage It is difficult to provide a guide vane at each step and connect an opening/closing operation mechanism to the guide vane at each step to perform the opening/closing operation. In particular, pump turbines with three or more stages are extremely difficult due to structural constraints, which poses a problem in practical use.

このような事情から、従来の多段ポンプ水車に
おいては、通常、各段部のランナの外周に水口開
度が一定のまま変えられない固定ベーンのみを設
けた構造にし、入口弁の開閉制御によつて水流量
を調整して運転状態を制御している。各段部のラ
ンナ外周部で水流を流量に応じて適性に調整する
ことができないので、設計点から離れた小流量及
び大流量の運転領域に入ると各段部とも一様に水
力性能が低下し、その結果、水力機械の総合水力
性能が低下した状態で運転されることになる。
For this reason, conventional multi-stage pump turbines usually have a structure in which only fixed vanes are installed around the outer periphery of the runner of each stage, and the opening of the water inlet remains constant and cannot be changed, and the opening and closing of the inlet valve is controlled. The operating conditions are controlled by adjusting the water flow rate. Since it is not possible to appropriately adjust the water flow according to the flow rate at the outer periphery of the runner in each stage, hydraulic performance deteriorates uniformly in each stage when entering the operating range of small and large flow rates away from the design point. As a result, the hydraulic machine is operated with a reduced overall hydraulic performance.

このように、各段部に水口開度を調整できない
固定ベーンを設けて入口弁によつて流量を調整制
御するようにした従来一般に用いられている多段
ポンプ水車は水力性能の低下を招来し、好ましく
ないなどいずれも問題を有していた。
As described above, the conventionally commonly used multi-stage pump-turbine, in which fixed vanes whose water openings cannot be adjusted are installed at each stage, and the flow rate is adjusted and controlled by an inlet valve, results in a decrease in hydraulic performance. All of them had problems such as being undesirable.

そこで、本発明者は、先に最高圧段部だけに可
動ガイドベーンを設けて水口開度を調整できるよ
うにし、他の低圧側段部には固定ベーンを配置す
るという構成の多段ポンプ水車を提供してきた。
このように構成上実用化が容易である最高圧段部
だけに水口開度を変えられる可動ガイドベーンを
備えた多段ポンプ水車では、問題の定常運転時に
おける各段部の総合水力特性は、入口弁によつて
流量を調整する従来の多段ポンプ水車の場合より
も大巾に向上できる。けれども低圧側段部におい
て水流状態を流量に応じて適性に調整制御できな
いので、各段部に可動ガイドベーンを設けるとい
う水力性能上理想的な多段ポンプ水車の場合より
も相対的に低下せざるを得ない実状にある。
Therefore, the present inventor developed a multi-stage pump-turbine in which a movable guide vane was first provided only on the highest pressure stage so that the water mouth opening degree could be adjusted, and fixed vanes were arranged on the other low pressure side stages. have provided.
In a multi-stage pump turbine equipped with a movable guide vane that can change the water inlet opening only in the highest pressure stage, which is easy to put into practical use due to its configuration, the overall hydraulic characteristics of each stage during steady operation are: This is a huge improvement over conventional multi-stage pump turbines that use valves to adjust the flow rate. However, since it is not possible to appropriately adjust and control the water flow condition according to the flow rate in the low-pressure side stage, the hydraulic performance must be relatively lower than in the case of a multi-stage pump turbine, which has movable guide vanes at each stage, which is ideal in terms of hydraulic performance. The reality is that it is not possible.

したがつて、実用的な構造からなる最高圧段部
だけに可動ガイドベーンを設置した多段ポンプ水
車において各段部の総合水力性能の向上を如何に
して図るかが問題となつており、これを解決でき
る技術が強く要望されている。
Therefore, the problem is how to improve the overall hydraulic performance of each stage in a multistage pump turbine with a practical structure in which a movable guide vane is installed only in the highest pressure stage. There is a strong demand for technology that can solve this problem.

そこで、本発明の目的は、最高圧段部のみに可
動ガイドベーンを備えた多段ポンプ水車の定常運
転時における低圧側段部の水力性能を高めること
により各段部の総合水力性能を向上させることが
できるようにした単速度可逆式多段ポンプ水車を
提供することにある。
Therefore, an object of the present invention is to improve the overall hydraulic performance of each stage by increasing the hydraulic performance of the low-pressure side stage during steady operation of a multi-stage pump turbine equipped with a movable guide vane only in the highest pressure stage. The purpose of the present invention is to provide a single-speed reversible multi-stage pump water turbine that enables the following.

しかして、本発明によれば、上記目的は、最高
圧段部から最低圧段部までの各段部を返り通路に
よつて直列に連絡し、最高圧段部のランナの外周
に水口開度を変えられる可動ガイドベーンを設け
る一方、他の低圧側段部のランナの外周には水口
開度が一定の固定ベーンをそれぞれ設けて各段部
のランナを単一の回転軸に直結し回転方向だけを
変えて同一回転速度のもとにそれぞれ水車および
ポンプの運転を行なうようにした単速度可逆式多
段ポンプ水車において、固定ベーンを備えた低圧
側段部のランナ羽根の外径が最高圧段部のランナ
羽根の外径の0.86〜0.96倍の範囲内になるように
低圧側段部のランナを構成したことにより高圧段
ランナの水力性能に対して低圧段ランナの水力性
能を全体的に単位回転速度が大きくなる低落差側
へ移行させることができるから、各段部とも同等
のランナ羽根外径を有する従来の場合に比べて、
特に水車発電運転の高性能化運転を通じて総合水
力性能の向上をはかれる。
According to the present invention, the above object is achieved by connecting the stages from the highest pressure stage to the lowest pressure stage in series through return passages, and attaching the water port opening to the outer periphery of the runner of the highest pressure stage. A movable guide vane is provided that can change the rotation direction, while a fixed vane with a constant water opening is installed on the outer periphery of the runners on the other low-pressure side tiers. In a single-speed reversible multi-stage pump-turbine in which the turbine and pump are operated at the same rotational speed by changing only the By configuring the runners on the low-pressure side to be within the range of 0.86 to 0.96 times the outer diameter of the runner blades on the lower side, the hydraulic performance of the low-pressure stage runner is generally equal to the hydraulic performance of the high-pressure stage runner. Since it is possible to shift to the lower head side where the rotational speed is higher, compared to the conventional case where the runner blades have the same outer diameter at each step,
In particular, the overall hydraulic performance will be improved through high-performance operation of the water turbine power generation operation.

以下本発明による単速度可逆式多段ポンプ水車
の実施例を図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of a single-speed reversible multi-stage pump turbine according to the present invention will be described below with reference to the drawings.

本発明の理解を容易にするために、第1図は多
段ポンプ水車の一例としてフランシス形の2段ポ
ンプ水車を示しており、単一の水車主軸1の軸上
には高圧段ランナ2と低圧段ランナ3とが軸方向
の距離をおいて固着されている。上記高圧段ラン
ナ2は上カバー4および下カバー5で包囲される
一方、低圧段ランナ3は上カバー6および下カバ
ー7で包囲され高圧段ランナ室8および低圧段ラ
ンナ室9を構成している。上記高圧段ランナ室8
と低圧段ランナ室9とは返り通路10で連絡され
ている。
In order to facilitate understanding of the present invention, FIG. 1 shows a Francis-type two-stage pump-turbine as an example of a multi-stage pump-turbine, in which a single main shaft 1 has a high-pressure stage runner 2 and a low-pressure stage runner 2. A stage runner 3 is fixedly spaced apart from the stage runner 3 in the axial direction. The high pressure stage runner 2 is surrounded by an upper cover 4 and a lower cover 5, while the low pressure stage runner 3 is surrounded by an upper cover 6 and a lower cover 7, forming a high pressure stage runner chamber 8 and a low pressure stage runner chamber 9. . The above high pressure stage runner chamber 8
and the low pressure stage runner chamber 9 are connected by a return passage 10.

また、高圧段ランナ室8の外側には、うず巻ケ
ーシング11が配置され、そのうず室12と上記
高圧段ランナ室8とは連通され、うず室12の入
口は入口弁13を介して水圧鉄管14に接続され
ている。
Further, a spiral casing 11 is disposed outside the high pressure stage runner chamber 8, and the spiral casing 11 communicates with the high pressure stage runner chamber 8. 14.

さらにまた、高圧段ランナ2の外周には、水口
開度を変えられる可動ガイドベーン15が設けら
れる一方、低圧段ランナ3の外周には水口開度が
一定のまま変えられない固定ガイドベーン16が
設けられている。この実施例では2段ポンプ水車
であるが3段以上の多段ポンプ水車においては、
うず室12と連通する最高圧段部のランナの外周
にのみ可動ガイドベーンを設け、次段以下の低圧
段部の全てには固定ベーンを設ける。
Furthermore, a movable guide vane 15 is provided on the outer periphery of the high-pressure stage runner 2, which can change the water port opening, while a fixed guide vane 16 is provided on the outer periphery of the low-pressure stage runner 3, which does not allow the water port opening to be changed. It is provided. In this example, a two-stage pump-turbine is used, but in a multi-stage pump-turbine with three or more stages,
A movable guide vane is provided only on the outer periphery of the runner at the highest pressure stage that communicates with the whirlpool chamber 12, and fixed vanes are provided at all of the lower pressure stages below.

上記最高圧段部の可動ガイドベーン15には、
操作機構が連結されていて制御装置により開度が
調整され定常運転されるようになつている。
The movable guide vane 15 of the highest pressure stage section includes:
An operating mechanism is connected, and the opening degree is adjusted by a control device for steady operation.

上記のように構成された2段ポンプ水車を水車
運転させる場合、入口弁13を開口した状態で水
圧鉄管14からこれに接続されたうず巻ケーシン
グ11に水が流入し、この水流は高圧段部の可動
ガイドベーン15、高圧段ランナ2を通過し返り
通路10を経てさらに低圧側段部の固定ベーン1
6、低圧段ランナ3を流通し、図示しない放水路
に接続された吸出し管17に流通する。
When operating the two-stage pump turbine configured as described above, water flows from the penstock 14 into the spiral casing 11 connected to the penstock with the inlet valve 13 open, and this water flow flows into the high pressure stage section. The movable guide vane 15 of
6. The water flows through the low-pressure stage runner 3 and then into the suction pipe 17 connected to a discharge channel (not shown).

一方、水車と同じ回転速度で反対の方向にラン
ナを回転するポンプ運転時の場合には、低圧段ラ
ンナ3によつて揚水された水流は前記した水車運
転時の場合と逆の順路を経て吸出し管17から水
圧鉄管14へ流通して行く。
On the other hand, in the case of pump operation in which the runner rotates in the opposite direction at the same rotational speed as the water turbine, the water flow pumped by the low-pressure stage runner 3 is sucked out through the reverse route as in the case of the water turbine operation described above. It flows from the pipe 17 to the penstock 14.

このように各段部を返り通路によつて直列に連
絡した単速度可逆式多段ポンプ水車の総合水力性
能は各段部における単速度可逆式単段ポンプ水車
としての水力性能を合成することにより与えられ
る。したがつて、単速度可逆式多段ポンプ水車の
水力性能上の問題を検討するにあたつては、先ず
単速度可逆式単段ポンプ水車の水力性能上の問題
を的確に把握しておく必要があるので、次に考察
を行なう。
In this way, the overall hydraulic performance of a single-speed reversible multistage pump-turbine in which each stage is connected in series through a return passage is given by combining the hydraulic performance of each stage as a single-speed reversible single-stage pump-turbine. It will be done. Therefore, when considering the hydraulic performance problems of single-speed reversible multi-stage pump-turbines, it is first necessary to accurately understand the hydraulic performance problems of single-speed reversible single-stage pump-turbines. Therefore, we will consider it next.

一般に、単速度可逆式単段ポンプ水車におい
て、ポンプ水車の回転速度をN(rpm)、水車の
有効落差をHt(m)、効率をηt、またポンプの
全揚程をHp(m)、効率をηpとして、単位回転
速度N/√、N/√に対する各ガイドベー
ン開度の効率曲線の包絡線を水車とポンプの各々
について例示すると第2図のようになる。
Generally, in a single-speed reversible single-stage pump-turbine, the rotational speed of the pump-turbine is N (rpm), the effective head of the turbine is Ht (m), the efficiency is ηt, the total head of the pump is Hp (m), and the efficiency is As ηp, the envelope of the efficiency curve of each guide vane opening degree with respect to the unit rotational speed N/√, N/√ is illustrated as shown in FIG. 2 for the water turbine and the pump.

すなわち、第2図に示すように、水車とポンプ
の最高効率点を与える単位回転速度N/√0
N/√0は合致せず必らずN/√0の方が大
きくなり、これは可逆式ポンプ水車においては避
けることができない水力性能上の問題点の一つで
ある。この相異を極力近づけるように努力が払わ
れてきているが、実用的には通常次のような範囲
内にある。
In other words, as shown in Figure 2, the unit rotational speed N/√ 0 that gives the highest efficiency point of the water turbine and pump does not match with N/√ 0 , and N/√ 0 is always larger. This is one of the unavoidable hydraulic performance problems in reversible pump turbines. Efforts have been made to make this difference as close as possible, but in practice it usually falls within the following range.

すなわち、第2図および上記(1)式で示されるよ
うに、単速度可逆式ポンプ水車においては、ポン
プの最高効率点が水車の最高効率点に対して単位
回転速度比で大きく離れているので、水車最高効
率点相当の単位回転速度におけるポンプ運転時の
効率は極めて低く、また同様にポンプ最高効率点
相当の単位回転速度における水車効率も極めて低
いという水力特性関係を有している。このため、
揚水発電所の基準運転水位において、通常行なわ
れているようにポンプが最高効率もしくはその近
傍で運転を行なえるようにポンプ水車の運用条件
を定めた場合、第2図及び式(1)に示される水力特
性関係の制約を受けて、水車は最高効率より離れ
た高単位回転速度状態のもとに換言すれば最高効
率状態相当運転落差Ht0より低落差側に水力性能
が低い領域に基準運転状態を選定せざるを得ない
ことになる。このように、ポンプ水車の水力特性
関係を考察する場合、単位回転速度(N/√
、N/√)は重要な意味をもつているが、
この単位回転速度とポンプ水車の水力特性を基本
的に支配するランナ羽根の外径Dとの相関関係に
ついて次に考察を行なう。
In other words, as shown in Figure 2 and Equation (1) above, in a single-speed reversible pump-turbine, the maximum efficiency point of the pump is far away from the maximum efficiency point of the turbine in terms of unit rotational speed ratio. , the efficiency during pump operation at a unit rotational speed corresponding to the maximum efficiency point of the water wheel is extremely low, and similarly, the efficiency of the waterwheel at a unit rotational speed corresponding to the maximum efficiency point of the pump is also extremely low. For this reason,
If the operating conditions of the pump-turbine are determined so that the pump can operate at or near its maximum efficiency at the standard operating water level of a pumped storage power plant, as is normally done, the conditions shown in Figure 2 and Equation (1) are Due to constraints related to hydraulic characteristics, the water turbine is operated under a high unit rotational speed state far from the maximum efficiency, in other words, the standard operation is performed in a region with low hydraulic performance on the lower head side than the operating head Ht 0 , which corresponds to the maximum efficiency state. You will have no choice but to choose the state. In this way, when considering the hydraulic characteristics of a pump-turbine, the unit rotational speed (N/√
, N/√) has an important meaning,
Next, we will discuss the correlation between this unit rotational speed and the outer diameter D of the runner blade, which basically controls the hydraulic characteristics of the pump-turbine.

一般に、ポンプ水車の水力特性上の設計点を代
表するポンプ最高効率点において、ランナの回転
速度をN(rpm)、ランナ羽根の外径をD(m)、
ランナ羽根の外周速度をu(m/s)、ランナ羽
根の外周速度係数をφ、ポンプ全揚程をHp
(m)、重力加速度をg(m/s2)とすれば、水力
的に次式(2)、(3)が与えられる。
Generally, at the highest efficiency point of the pump, which represents the design point in terms of the hydraulic characteristics of a pump-turbine, the rotational speed of the runner is N (rpm), the outer diameter of the runner blade is D (m),
The outer peripheral speed of the runner blade is u (m/s), the outer peripheral speed coefficient of the runner blade is φ, and the total head of the pump is Hp.
(m) and the gravitational acceleration is g (m/s 2 ), the following equations (2) and (3) are given in terms of hydraulic power.

u=πDN/60=φ√20 ……(2) または φ=(π/60√2)(N/√0)D =(1/√2)(u/√0 ……(3) 一方、ポンプ最高効率点の流量をQp(m3
s)とすると、ポンプ水車設計上の基本条件であ
る比速度Nsは、Ns=N・(Qp)〓/(Hp0)〓と
して与えられる。ある一定の比速度Nsの条件で
設計されたポンプ水車において、ランナの羽根外
径Dを順次系統的に加工することにより実施した
模型水力特性試験の結果によれば、羽根外径Dの
縮小変化に対し単位回転速度N/√0は増大変
化し、実用的性能が得られる範囲内では下記(4)式
で示されるように、双方が相反比例する関係にあ
ることが確認されている。
u=πDN/60=φ√2 0 …(2) or φ=(π/60√2)(N/√ 0 )D = (1/√2)(u/√ 0 …(3) On the other hand , the flow rate at the pump's highest efficiency point is Qp (m 3 /
s), the specific speed Ns, which is a basic condition for pump-turbine design, is given as Ns=N・(Qp)〓/(Hp 0 )〓. According to the results of a model hydraulic characteristic test conducted by systematically modifying the outer diameter D of the runner blades in a pump-turbine designed under the condition of a certain specific speed Ns, the reduction change in the outer diameter D of the blades On the other hand, the unit rotational speed N/√ 0 increases and changes, and it has been confirmed that within the range where practical performance can be obtained, both are in a reciprocal proportional relationship as shown by the following equation (4).

(N/√0)・D〓一定 ……(4) このことは、与えられた比速度Nsの条件で設
計されたポンプ水車において羽根外形Dを小さく
した場合、実用的性能が得られる範囲内では、上
記(3)式の羽根外周速度係数φはほとんど変化せ
ず、したがつてその結果が上記(4)式の関係をもた
らすことを示している。
(N/√ 0 )・D=constant ...(4) This means that if the blade outer diameter D is made small in a pump turbine designed under the condition of a given specific speed Ns, it will be within the range where practical performance can be obtained. This shows that the blade outer circumferential velocity coefficient φ in the above equation (3) hardly changes, and therefore the result brings about the relationship in the above equation (4).

なお、このように羽根外径Dを小さくした場合
には、ポンプ最高効率点の単位回転速度N/√
0の増加変化に対し水車最高効率点の単位回転
速度N/√0も増加変化し、各々の単位回転速
度比は上記(1)式で限定した範囲にあり、またポン
プ、水車とも水力特性は全体的に高単位回転速度
側すなわち低落差側に移行したものにすることが
できる。
In addition, when the outer diameter D of the blade is reduced in this way, the unit rotational speed N/√ of the pump maximum efficiency point is
0 , the unit rotation speed N/√ 0 at the highest efficiency point of the water turbine also increases, and each unit rotation speed ratio is within the range defined by equation (1) above, and the hydraulic characteristics of both the pump and the water turbine are It is possible to shift the overall rotational speed to the high unit rotational speed side, that is, to the low head side.

次に、上記した単速度可逆式単段ポンプ水車特
有の水力特性上の基本問題についての考察結果を
踏まえ、最高圧段部には水口開度が変えられる可
動ガイドベーンをまた低圧側段部には水口開度が
変えられない固定ベーンをそれぞれ備えた単速度
可逆式多段ポンプ水車において各段部のランナ羽
根の外径が同一で水力的に相似なものから構成し
た従来の場合(第1図においてD1=D2とした場
合)における水力特性上の問題点について、第1
図の2段ポンプ水車を参考にして説明する。この
場合の水車定常運転時における各段部の水力特性
関係を第3図に示す。第3図において、H1は高
圧段部の有効落差、H2は低圧側段部の有効落
差、Qは流量、これらに添字0を付けたものは基
準運転状態(図中□0)における値、a0は基準運転
状態時のガイドベーンの水口開度、aに正の整数
を添字したもの(例えばa1)は基準開度より過開
した場合の高圧段部水口開度、aに負の整数を添
字したもの(例えばa-1)は基準開度により小開し
た場合の高圧段部水口開度、△ηは水車最高効率
との相対差で表わした水車の相対効率差である。
第3図は、横軸に流量比Q/Q0をとつて、また
縦軸に高圧段部及び低圧側段部の有効落差比H1
〜H10及びH2/H20をそれぞれとつて、流量に対
する有効落差の水力特性の関係を各段部について
表示したものであり、したがつて、2段ポンプ水
車としての総合有効落差は各段部の有効落差を
各々合算して与えられる。第3図において、入口
弁13を全開にして各段部が水力的に同等の運転
状態である基準運転状態□0では、各段部の有効落
差は2段ポンプ水車に作用する総合有効落差H0
を2等分したものに等しく、次のようになる。
Next, based on the above-mentioned results of the study on the basic problems of hydraulic characteristics unique to single-speed reversible single-stage pump turbines, we installed a movable guide vane that can change the opening of the water port on the highest pressure stage, and installed a movable guide vane on the low pressure side stage. The conventional case is a single-speed reversible multi-stage pump-turbine with fixed vanes whose water openings cannot be changed, in which the runner blades in each stage have the same outer diameter and are hydraulically similar (Fig. 1). Regarding the problems in hydraulic characteristics when D 1 = D 2 ), the first
This will be explained with reference to the two-stage pump turbine shown in the figure. In this case, the relationship between the hydraulic characteristics of each stage during steady operation of the water turbine is shown in FIG. 3. In Figure 3, H 1 is the effective head of the high-pressure stage, H 2 is the effective head of the low-pressure stage, Q is the flow rate, and the values with a suffix 0 are for the standard operating condition (□0 in the figure). , a 0 is the water port opening of the guide vane in the standard operating state, a with a positive integer subscripted (for example, a 1 ) is the high pressure stage water port opening when the opening is more than the standard opening, and a is the negative The subscript with an integer (for example, a -1 ) is the high-pressure step water mouth opening when the opening is slightly opened according to the standard opening, and Δη is the relative efficiency difference of the water turbine expressed as the relative difference from the maximum efficiency of the water turbine.
In Figure 3, the horizontal axis shows the flow rate ratio Q/Q 0 , and the vertical axis shows the effective head ratio H 1 of the high pressure step and the low pressure side step.
~ H 10 and H 2 /H 20 are respectively taken, and the relationship between the hydraulic characteristics of the effective head and the flow rate is displayed for each stage. Therefore, the total effective head as a two-stage pump turbine is calculated at each stage. It is given by adding up the effective heads of each section. In Fig. 3, in the standard operating state □0 in which the inlet valve 13 is fully opened and each stage is in a hydraulically equivalent operating state, the effective head of each stage is the total effective head H acting on the two-stage pump turbine. 0
It is equal to dividing into two equal parts, and becomes as follows.

ここで、特に留意すべきことは、前記した単速
度可逆式ポンプ水車特有の水力特性上の問題に起
因して、各段部の基準運転状態□0(運転落差
H10、H20)を水車最高効率状態(△η=0)より
もかなり低落差側(単位回転速度が大きい側)で
水力性能が相対的に低い領域に選定せざるを得な
いことである。したがつて、第3図において、低
圧側段部の水口開度を一定のまま高圧段部の可動
ガイドベーンの水口開度を閉めて行く場合、次式
(6)で与えられる落差関係のもとに、高圧段部の運
転状態は水力性能が相対的に高くなる□0→□Bの軌
跡をたどることができるが、一方水口開度が固定
されている低圧側段部は一定開度a0上を□0→□Aの
軌跡をたどり水力性能が逆に増々低下して行くこ
とになる。
What should be especially noted here is that due to the above-mentioned problem with the hydraulic characteristics peculiar to single-speed reversible pump turbines, the reference operating state of each stage section is □0 (operating head
H 10 , H 20 ) must be selected in an area where the hydraulic performance is relatively low and on the side with a much lower head (on the side where the unit rotational speed is larger) than the highest efficiency state of the turbine (△η = 0). . Therefore, in Fig. 3, when closing the water port opening of the movable guide vane in the high pressure step while keeping the water port opening in the low pressure side section constant, the following formula is used.
Based on the head relationship given by (6), the operating state of the high-pressure stage section can follow the trajectory □0 → □B, where the hydraulic performance is relatively high, but on the other hand, when the water mouth opening is fixed, The low-pressure side step section follows a trajectory of □0 → □A above a constant opening degree a 0 , and its hydraulic performance, on the contrary, decreases more and more.

このように、基準運転状態□0より小流量の運転
領域では高圧段部の水力性能は向上するが、低圧
側段部の水力性能は逆に低下の一途をたどるた
め、各段部の総合水力性能としては向上が望めな
いことになる。
In this way, in the operating range where the flow rate is smaller than the standard operating condition □0, the hydraulic performance of the high-pressure stage section improves, but the hydraulic performance of the low-pressure side stage section conversely continues to decline. This means that no improvement in performance can be expected.

そこで、本発明では、最高圧段部可動ガイドベ
ーンの制御により小流量領域において高性能水車
運転が行なえる最高圧段部については従来のよう
に水車最高効率点から離れた低落差側(単位回転
速度の大きい側)の領域で水車基準運転を行なう
ようにランナを形成するが、しかし水口開度が変
えられない固定ベーンを備えている問題の低圧側
段部については低圧段ランナの羽根の外径を小さ
くすることにより水力特性を全体的に単位回転速
度が大きくなる低落差側へ移行させて水車基準運
転時に水車の最高効率運転が行なえるようにさら
には小流量領域においても相対的に高性能運転が
行なえるようにランナを形成することにより、各
段部の総合水力特性を向上させるようにしたもの
である。
Therefore, in the present invention, the highest pressure stage part, which can perform high-performance water turbine operation in a small flow area by controlling the highest pressure stage part movable guide vane, is moved to the low head side (unit rotation The runners are formed so as to perform standard operation of the turbine in the area (high speed side), but for the low-pressure side stage in question, which has fixed vanes that cannot change the opening of the water port, the outside of the blades of the low-pressure stage runner is By reducing the diameter, the overall hydraulic characteristics are shifted to the low head side where the unit rotational speed is large, and the maximum efficiency of the turbine can be achieved during standard operation of the turbine. By forming the runners to enable performance operation, the overall hydraulic characteristics of each stage are improved.

本発明の具体的実施例を第1図に示す単速度可
逆式2段ポンプ水車の場合について説明する。第
1図において、可動ガイドベーン15を備えた高
圧段ランナ2の単段水力特性下でのポンプ効率η
pと水車効率ηtとの各最高効率点の位置におけ
る単位回転速度比は1.04〜1.16であつて(式(1)参
照)、低圧段ランナ3の方の羽根外径Dを小さく
することにより低圧段ランナ3の単位回転速度
N/√0を大きくして高圧段ランナ2に対して
低圧段ランナ3の単段水力特性を低落差側へ移行
させたものにする(式(4)参照)。
A specific embodiment of the present invention will be described with reference to a single-speed reversible two-stage pump water turbine shown in FIG. In FIG. 1, the pump efficiency η under the single-stage hydraulic characteristics of the high-pressure stage runner 2 equipped with the movable guide vane 15
The unit rotational speed ratio between p and the turbine efficiency ηt at each maximum efficiency point is 1.04 to 1.16 (see formula (1)), and by reducing the outer diameter D of the blades of the low-pressure stage runner 3, the low-pressure The unit rotational speed N/ √0 of the stage runner 3 is increased to shift the single stage hydraulic characteristics of the low pressure stage runner 3 to the low head side compared to the high pressure stage runner 2 (see equation (4)).

この場合、高圧段ランナ2の羽根外径D1と低
圧段ランナ3の羽根外径D2との相対関係は羽根
外径Dと単位回転速度N/√0の関係を与える
式(4)とから次式(7)のように与えられる。ただし、
添次1は高圧段部をまた添次2は低圧側段部をそ
れぞれ表わす。
In this case, the relative relationship between the blade outside diameter D 1 of the high-pressure stage runner 2 and the blade outside diameter D 2 of the low-pressure stage runner 3 is expressed by equation (4) that gives the relationship between the blade outside diameter D and the unit rotational speed N/√ 0 . It is given as the following equation (7). however,
The number 1 represents the high-pressure stage, and the number 2 represents the low-pressure stage.

式(7)において、右辺は低圧段部の単位回転速度
(N/√02)を増大させる際ランナ羽根外径が
従来と変らない高圧段部の単位回転速度(N/√
01)を分母とする増大比率(N/√02)/
(N/√01)の逆数に相当し、また左辺は従来
と変らない高圧段のランナ羽根外径D1を分母と
する低圧段のランナ羽根外径D2の縮小比率D2
D1に相当する。
In equation (7), the right-hand side is the unit rotational speed (N/√ 02 ) of the high-pressure stage where the outer diameter of the runner blade remains unchanged when the unit rotational speed (N/√ 02 ) of the low-pressure stage increases.
01 ) as the denominator (N/√ 02 )/
It corresponds to the reciprocal of (N/√ 01 ), and the left side is the reduction ratio D 2 / of the runner blade outer diameter D 2 of the low-pressure stage with the runner blade outer diameter D 1 of the high-pressure stage as the denominator, which is the same as before.
Equivalent to D 1 .

すなわち、式(7)は低圧段部の単位回転速度
(N/√02)の増大を図る場合低圧段のランナ
羽根外径D2における必要な縮小比率D2/D1が単
位回転速度の前記増大比率の逆数で与えられるこ
とを示している。この場合、ランナ羽根外径D1
が従来と変らない高圧段部の単段水力特性は、前
述したように水車最高効率単位回転速度N/√
01がポンプ最高効率単位回転速度N/√01
より小さくなり、N/√01とN/√01の相
対比率が前記式(1)で与えられるように1.04〜1.16
の範囲にあるため水車の低性能運転を余儀なくさ
れるという基本問題を有している。したがつてこ
のような高圧段部の状況にかんがみ、低圧段部に
おいてどのようにしてランナ羽根外径の縮小比率
D2/D1を定めて単位回転速度N/√02の増大
を図るかが重要なポイントである。
In other words, Equation (7) shows that when increasing the unit rotational speed (N/√ 02 ) of the low-pressure stage, the necessary reduction ratio D 2 /D 1 of the outer diameter D 2 of the runner blade of the low-pressure stage is equal to the unit rotational speed. It shows that it is given by the reciprocal of the increase ratio. In this case, the runner blade outer diameter D 1
However, the single-stage hydraulic characteristics of the high-pressure stage section are unchanged from conventional ones, and as mentioned above, the maximum efficiency unit rotational speed of the turbine is N/√
01 is pump maximum efficiency unit rotational speed N/√ 01
becomes smaller, and the relative ratio of N/√ 01 and N/√ 01 is 1.04 to 1.16 as given by equation (1) above.
The basic problem is that the water turbines are forced to operate at low performance. Therefore, considering the situation of the high-pressure stage, how can the reduction ratio of the outer diameter of the runner blade be reduced in the low-pressure stage?
The important point is whether to determine D 2 /D 1 and increase the unit rotational speed N/√ 02 .

そこで、この実施例は、前記したように高圧段
部においては水車最高効率単位回転速度N/√
01がポンプ最高効率単位回転速度N/√01
より小さく、N/√01とN/√01の相対比
率で1.04〜1.16倍離れていることから、低圧段部
における単位回転速度N/√02の増大目標と
しては前記増大比率が高圧段部の前記相対比率と
等しく1.04〜1.16倍となるよう特定することにあ
る。一方、この増大比率1.04〜1.16倍を達成する
ために必要な低圧段のランナ羽根外径D2の縮小
比率は、前述したように式(7)における右辺に前記
増大比率1.04〜1.16の逆数を代入して得られるこ
とになるから、ランナ羽根外径の相対関係は結局
式(8)のように与えられる。
Therefore, in this embodiment, as mentioned above, in the high pressure stage section, the maximum efficiency unit rotational speed of the water turbine is N/√
01 is pump maximum efficiency unit rotational speed N/√ 01
The relative ratio of N/√ 01 and N/√ 01 is 1.04 to 1.16 times smaller. Therefore, as a target for increasing the unit rotational speed N/√ 02 in the low-pressure stage, the increase ratio is higher than that of the high-pressure stage. The purpose is to specify the relative ratio to be equal to the above relative ratio, 1.04 to 1.16 times. On the other hand, the reduction ratio of the outer diameter D2 of the low-pressure stage runner blade required to achieve this increase ratio of 1.04 to 1.16 times is calculated by adding the reciprocal of the increase ratio of 1.04 to 1.16 to the right side of equation (7), as described above. Since it can be obtained by substitution, the relative relationship between the outer diameters of the runner blades is finally given as in equation (8).

式(8)は低圧段部のランナのランナ羽根の外径
D2を高圧段部のランナ羽根の外径D1の0.86〜0.96
倍の範囲に設定することを意味している。
Equation (8) is the outer diameter of the runner blade of the runner in the low pressure stage.
D 2 is 0.86 to 0.96 of the outer diameter of the runner blade of the high pressure stage D 1
This means setting it to twice the range.

この場合の各段部の水力特性関係を水車運転時
について第4図にまたポンプ運転時について第5
図にそれぞれ示す。すなわち、可動ガイドベーン
を備えた高圧段ランナ2の羽根外径D1に対して
固定ベーンを備えた低圧段ランナ3の羽根外径
D2を式(8)で限定した特定の範囲内で小さくする
ことにより各段部のランナを構成し、高圧段部だ
けに設けた可動ガイドベーン15の水口開度を調
整制御すれば、特に高効率運転が強く要求される
水車発電運転においては、第4図に示す各段部の
水車運転状態の軌跡から明らかのように、性能特
性全体を低落差側に移行させた低圧側段部で基準
運転状態□0から小流量領域にかけて従来の場合
(第3図参照)よりも一段と高性能運転が行なわ
れるので、その結果各段部の総合水力特性を著し
く向上させることができる。また、ポンプ運転の
場合、第5図に示すように、従来の場合(各段部
ともランナの羽根外径が同じ場合)に比べて特に
高揚程側のポンプ性能が性能特性全体を低揚程側
に移行させた低圧段ランナ3で相対的に低下する
傾向があるが、その分羽根外径が大きくて高揚程
側性能に優れた高圧段ランナ2によつて挽回向上
できるので、各段部の総合性能としては従来の場
合と同等レベルのポンプ性能のもとに運転が行な
える。
In this case, the hydraulic characteristics of each stage are shown in Figure 4 when the turbine is operating, and Figure 5 when the pump is operating.
Each is shown in the figure. In other words, the outer diameter of the blades of the low-pressure stage runner 3 with fixed vanes is the outer diameter of the blades D 1 of the high-pressure stage runner 2 with movable guide vanes.
If the runner of each step is configured by reducing D 2 within a specific range defined by equation (8), and the opening degree of the water port of the movable guide vane 15 provided only in the high-pressure step is adjusted and controlled, In water turbine power generation operation where high efficiency operation is strongly required, as is clear from the trajectory of the turbine operation status at each stage shown in Figure 4, the low pressure side stage where the overall performance characteristics have been shifted to the low head side. Since the operation is more efficient than in the conventional case (see FIG. 3) from the standard operating state □0 to the small flow rate region, the overall hydraulic characteristics of each stage can be significantly improved. In addition, in the case of pump operation, as shown in Figure 5, compared to the conventional case (when the outer diameter of the runner blades is the same in each stage), the pump performance on the high head side is particularly poor, and the overall performance characteristics are on the low head side. There is a tendency for the low-pressure stage runner 3, which has been moved to the In terms of overall performance, the pump can be operated at the same level of pump performance as the conventional case.

以上述べたように、本発明は、最高圧段部にの
み可動ガイドベーンを配置し、残りの低圧側段部
には固定ベーンを設けて最高圧段ランナと低圧段
ランナの羽根の外径の相対関係を特定の範囲内に
定めて各段部のランナを構成しかつ最高圧段部の
可動ガイドベーンだけによつて制御を行なうとい
う極めて簡素な構造と制御により、重要な水車発
電運転時の水力性能を著しく向上させることがで
きる。
As described above, the present invention arranges a movable guide vane only in the highest pressure stage part, and provides fixed vanes in the remaining low pressure stage part to adjust the outer diameter of the blades of the highest pressure stage runner and the low pressure stage runner. The extremely simple structure and control, in which the runners of each stage are configured with relative relationships within a specific range, and controlled only by the movable guide vanes of the highest pressure stage, allows Hydraulic performance can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による2段ポンプ水
車の構造を示す略示断面図、第2図はポンプ水車
におけるポンプと水車の水力特性関係を示した説
明図、第3図は従来の多段ポンプ水車における各
段部の水車特性関係を示した説明図、第4図は本
発明による実施例の多段ポンプ水車における各段
部の水車特性関係を示した説明図、第5図は同実
施例の多段ポンプ水車における各段部のポンプ特
性関係を示した説明図である。 1……水車主軸、2……高圧段ランナ、3……
低圧段ランナ、10……返り通路、11……うず
巻ケーシング、13……入口弁、14……水圧鉄
管、15……可動ガイドベーン、16……固定ガ
イドベーン。
FIG. 1 is a schematic sectional view showing the structure of a two-stage pump-turbine according to an embodiment of the present invention, FIG. An explanatory diagram showing the relationship between the water turbine characteristics of each stage in a multi-stage pump-turbine, FIG. 4 is an explanatory diagram showing the relationship between the turbine characteristics of each stage in a multi-stage pump-turbine according to an embodiment of the present invention, and FIG. FIG. 2 is an explanatory diagram showing the relationship between pump characteristics of each stage in an example multistage pump turbine. 1... Water turbine main shaft, 2... High pressure stage runner, 3...
Low pressure stage runner, 10... return passage, 11... spiral casing, 13... inlet valve, 14... penstock, 15... movable guide vane, 16... fixed guide vane.

Claims (1)

【特許請求の範囲】[Claims] 1 最高圧段部から最低圧段部までの各段部を返
り通路によつて直列に連絡し、最高圧段部のラン
ナの外周に水口開度を変えられる可動ガイドベー
ンを設ける一方、低圧側段部のランナの外周には
水口開度が一定の固定ベーンをそれぞれ設けて各
段部のランナを単一の水車主軸に直結し、回転方
向だけを変えて同一回転速度のもとにそれぞれ水
車またはポンプの運転を行なうようにした単速度
可逆式多段ポンプ水車において、固定ベーンを備
えた低圧側段部のランナ羽根の外径が最高圧段部
のランナ羽根の外径の0.86〜0.96倍の範囲内にな
るように低圧側段部のランナを構成したことを特
徴とする単速度可逆式多段ポンプ水車。
1 Each stage from the highest pressure stage to the lowest pressure stage is connected in series by a return passage, and a movable guide vane that can change the opening of the water port is installed around the outer periphery of the runner of the highest pressure stage, while the low pressure side A fixed vane with a fixed water mouth opening is installed on the outer circumference of each runner in each step, and the runners in each step are directly connected to a single main shaft of the water turbine, and the runners in each step are connected directly to a single main shaft of the water turbine, so that the runners in each step are connected to each other at the same rotational speed by changing only the direction of rotation. Or, in a single-speed reversible multi-stage pump-turbine designed for pump operation, the outer diameter of the runner blade in the low-pressure side stage equipped with fixed vanes is 0.86 to 0.96 times the outer diameter of the runner blade in the highest-pressure stage. A single-speed reversible multi-stage pump-turbine characterized in that the runner of the low-pressure side stage is configured to fall within the range.
JP10929079A 1979-08-28 1979-08-28 Single speed reversible type multistage pump water turbine Granted JPS5634966A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10929079A JPS5634966A (en) 1979-08-28 1979-08-28 Single speed reversible type multistage pump water turbine
DE3032058A DE3032058C2 (en) 1979-08-28 1980-08-26 Multi-stage pump turbine
CH655080A CH638276A5 (en) 1979-08-28 1980-08-27 Reversible pump/turbine with several stages and a single speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10929079A JPS5634966A (en) 1979-08-28 1979-08-28 Single speed reversible type multistage pump water turbine

Publications (2)

Publication Number Publication Date
JPS5634966A JPS5634966A (en) 1981-04-07
JPS6250664B2 true JPS6250664B2 (en) 1987-10-26

Family

ID=14506418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10929079A Granted JPS5634966A (en) 1979-08-28 1979-08-28 Single speed reversible type multistage pump water turbine

Country Status (3)

Country Link
JP (1) JPS5634966A (en)
CH (1) CH638276A5 (en)
DE (1) DE3032058C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017372A1 (en) * 2014-11-24 2016-05-25 Rudolf Schilling Pump turbine and pumped storage power plant with such a pump turbine
DE102018128065B4 (en) 2018-11-09 2022-03-17 Voith Patent Gmbh Multistage hydraulic machine
CN113464343A (en) * 2021-06-01 2021-10-01 长江勘测规划设计研究有限责任公司 Power generation method for high-water-head large-capacity vertical shaft series-connection type mixed-flow water turbine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5058828U (en) * 1973-10-03 1975-05-31
JPS5098827U (en) * 1974-01-17 1975-08-16

Also Published As

Publication number Publication date
JPS5634966A (en) 1981-04-07
DE3032058A1 (en) 1981-03-12
DE3032058C2 (en) 1984-04-05
CH638276A5 (en) 1983-09-15

Similar Documents

Publication Publication Date Title
JPS6158666B2 (en)
JPH0144904B2 (en)
JPS58138222A (en) Supercharger of exhaust turbine
JPS6237234B2 (en)
JPS6250664B2 (en)
JPS6250663B2 (en)
JPS6113112B2 (en)
CN207349169U (en) A kind of compact liquefied natural gas immersed pump guide vane structure
JPS6318028B2 (en)
JP2762395B2 (en) Twin exhaust turbine turbocharger
CN209780977U (en) High-efficiency steam turbine
CN107762979A (en) A kind of compact liquefied natural gas immersed pump guide vane structure
JPS636750B2 (en)
US6386829B1 (en) Multi-valve arc inlet for steam turbine
JPS60212623A (en) Exhaust turbo-supercharger
JP2001221009A (en) Steam turbine
JPH0336153B2 (en)
JPS60249672A (en) Dual pelton wheel and operating method thereof
JPS627391B2 (en)
JP3326205B2 (en) Two-stage pump turbine
JPS5979005A (en) Axial-flow turbine having widthwise-flow type speed governing step attached with variable nozzle
JPS5838387A (en) Francis type reversible pump-turbine
RU2016222C1 (en) Turbo-driven pump assembly
RU2199021C1 (en) Turbine regulating device
JPS61201887A (en) Control method for axial input of pump water wheel