JPS6250663B2 - - Google Patents

Info

Publication number
JPS6250663B2
JPS6250663B2 JP54109289A JP10928979A JPS6250663B2 JP S6250663 B2 JPS6250663 B2 JP S6250663B2 JP 54109289 A JP54109289 A JP 54109289A JP 10928979 A JP10928979 A JP 10928979A JP S6250663 B2 JPS6250663 B2 JP S6250663B2
Authority
JP
Japan
Prior art keywords
stage
pump
turbine
runner
pressure stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54109289A
Other languages
Japanese (ja)
Other versions
JPS5634965A (en
Inventor
Sachio Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10928979A priority Critical patent/JPS5634965A/en
Publication of JPS5634965A publication Critical patent/JPS5634965A/en
Publication of JPS6250663B2 publication Critical patent/JPS6250663B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

【発明の詳細な説明】 本発明は単速度可逆式2段ポンプ水車に係り、
特に定常運転時に高性能運転が行える単速度可逆
式2段ポンプ水車に関する。
[Detailed description of the invention] The present invention relates to a single speed reversible two-stage pump water turbine,
In particular, the present invention relates to a single-speed reversible two-stage pump water turbine that can perform high-performance operation during steady operation.

近時においては高落差地点に揚水発電所を建設
する傾向があり、多段ポンプ水車に対する需要度
が高まつており、なかでも段数がもつとも少なく
各段部のランナの外周に可動ガイドベーンおよび
その操作機構を備えることが構造上比較的容易と
されている単速度可逆式2段ポンプ水車に対する
需要が多くなつている。
In recent years, there has been a trend to construct pumped storage power plants at locations with high heads, and the demand for multi-stage pump turbines is increasing. There is an increasing demand for single-speed reversible two-stage pump water turbines, which are structurally relatively easy to provide with a mechanism.

しかしながら、ランナ羽根の外径が同一で水力
的に相似のものから各段部のランナを構成した従
来の2段ポンプ水車においては後述するような単
速度可逆式ポンプ水車特有の水力特性上の問題が
あるために、水車運転、ポンプ運転のいずれか一
方の運転が最高効率状態から離れた水力性能の低
い領域で各段部とも行なわざるを得ないという問
題があつた。
However, in a conventional two-stage pump-turbine in which the runners of each stage are constructed from runners with the same outer diameter and hydraulically similar, there are problems with the hydraulic characteristics peculiar to single-speed reversible pump-turbines, which will be described later. Therefore, there was a problem in that either the water turbine operation or the pump operation had to be performed at each step in a region of low hydraulic performance far from the highest efficiency state.

そこで、本発明の目的は、定常運転時における
各段部の総合水力性能を向上させることができる
単速度可逆式2段ポンプ水車を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a single-speed reversible two-stage pump-turbine that can improve the overall hydraulic performance of each stage during steady operation.

しかして、本発明によれば、上記目的は、高圧
段部と低圧段部とを返り通路によつて直列に連絡
し、各段部のランナを単一の水車主軸に連結して
水車またはポンプ運転を行なう単速度可逆式2段
ポンプ水車において、水口開度が変えられる可動
ガイドベーンを各段部のランナの外周にそれぞれ
設け、低圧段部のランナは、そのランナ羽根の外
径が高圧段部のランナ羽根の外径の0.86〜0.96倍
の範囲内に設定することによつて達成される。
According to the present invention, the above object is achieved by connecting the high-pressure stage section and the low-pressure stage section in series through a return passage, and connecting the runners of each stage section to a single main shaft of the water turbine. In a single-speed reversible two-stage pump water turbine that operates, a movable guide vane that can change the opening of the water port is provided on the outer periphery of the runner in each stage, and the outer diameter of the runner blade of the runner in the low-pressure stage is the same as that in the high-pressure stage. This is achieved by setting the diameter within the range of 0.86 to 0.96 times the outer diameter of the runner blade.

以下本発明による単速度可逆式2段ポンプ水車
の実施例を図面を参照して説明する。
Embodiments of a single-speed reversible two-stage pump turbine according to the present invention will be described below with reference to the drawings.

第1図は単速度可逆式2段ポンプ水車の構造を
示し、単一の水車主軸1の軸上には高圧段ランナ
2と低圧段ランナ3とが軸方向の距離をおいて固
着されている。上記高圧段ランナ2は上カバー4
および下カバー5で包囲される一方、低圧段ラン
ナ3は上カバー6および下カバー7で包囲され、
高圧段ランナ室8および低圧段ランナ室9を構成
している。上記高圧段ランナ室8と低圧段ランナ
室9とは返り通路10で連絡されている。
Figure 1 shows the structure of a single-speed reversible two-stage pump turbine, in which a high-pressure stage runner 2 and a low-pressure stage runner 3 are fixed on the shaft of a single main shaft 1 at a distance in the axial direction. . The above high pressure stage runner 2 has an upper cover 4
and a lower cover 5, while the low pressure stage runner 3 is surrounded by an upper cover 6 and a lower cover 7,
A high-pressure stage runner chamber 8 and a low-pressure stage runner chamber 9 are configured. The high pressure stage runner chamber 8 and the low pressure stage runner chamber 9 are connected through a return passage 10.

また、高圧段ランナ室8の外側には、うず巻ケ
ーシング11が配置され、そのうず室12と上記
高圧段ランナ室8とは連通しており、うず室12
の入口は入口弁13を介して水圧鉄管14に接続
されている。
Further, a spiral casing 11 is disposed outside the high pressure stage runner chamber 8, and the spiral casing 11 is in communication with the high pressure stage runner chamber 8.
The inlet of is connected to a penstock 14 via an inlet valve 13.

さらにまた、高圧段ランナ2の外周には、水口
開度を変えられる可動ガイドベーン15が設けら
れる一方、低圧段ランナ3の外周にも水口開度を
変えられる可動ガイドベーン16がそれぞれ円形
翼列状に配置されている。これらの可動ガイドベ
ーン15および16は図示を省略した操作機構に
連結されており制御装置により定常運転されるよ
うになつている。
Furthermore, a movable guide vane 15 is provided on the outer periphery of the high-pressure stage runner 2, and a movable guide vane 15 that can change the water port opening is provided on the outer periphery of the low-pressure stage runner 3. It is arranged in a shape. These movable guide vanes 15 and 16 are connected to an operating mechanism (not shown) and are operated steadily by a control device.

上記のように構成された単速度可逆式2段ポン
プ水車を水車運転させる場合、入口弁13を開口
した状態で水圧鉄管14からこれに接続されたう
ず巻ケーシング11に水が流入し、この水流は高
圧段部の可動ガイドベーン15、高圧段ランナ2
を通過し返り通路10を経てさらに低圧段部の可
動ガイドベーン16、低圧段ランナ3を流通し、
図示しない放水路に接続された吸出し管17に流
通する。一方、水車と同じ回転速度で反対の方向
にランナを回転するポンプ運転時の場合には、低
圧段ランナ3によつて揚水された水流は前記した
水車運転時の場合と逆の順路を経て吸出し管17
から水圧鉄管14へ流通していく。
When operating the single-speed reversible two-stage pump turbine configured as described above, water flows from the penstock 14 into the spiral casing 11 connected to the penstock 14 with the inlet valve 13 open, and this water flow are the movable guide vane 15 of the high-pressure stage section and the high-pressure stage runner 2.
It passes through the return passage 10 and further flows through the movable guide vane 16 of the low pressure stage section and the low pressure stage runner 3,
The water flows through a suction pipe 17 connected to a water discharge channel (not shown). On the other hand, in the case of pump operation in which the runner rotates in the opposite direction at the same rotational speed as the water turbine, the water flow pumped by the low-pressure stage runner 3 is sucked out through the reverse route as in the case of water turbine operation. tube 17
The water then flows to the penstock 14.

このように各段部を返り通路によつて直列に連
絡した単速度可逆式2段ポンプ水車の総合水力特
性は各段部における単速度可逆式単段ポンプ水車
としての水力特性を合成することにより与えられ
る。したがつて、単速度可逆式2段ポンプ水車の
水力特性上の問題を検討するにあたつては、先ず
単速度可逆式単段ポンプ水車の水力特性上の問題
を的確に把握しておく必要があるので、次に考察
を行なう。
In this way, the overall hydraulic characteristics of a single-speed, reversible, two-stage pump-turbine in which each stage is connected in series through a return passage can be determined by combining the hydraulic characteristics of a single-speed, reversible, single-stage pump-turbine in each stage. Given. Therefore, when considering the problems with the hydraulic characteristics of a single-speed reversible two-stage pump-turbine, it is first necessary to accurately understand the problems with the hydraulic characteristics of a single-speed reversible single-stage pump-turbine. Therefore, we will consider it next.

一般に、単速度可逆式単段ポンプ水車において
ポンプ水車の回転速度をN(rpm)、水車の有効
落差をHt(m)、効率ηt、またポンプの全揚程
をHp(m)、効率をηpとして、単位回転速度
N/√、N/√に対する各ガイドベーン開
度の効率曲線の包絡線を水車とポンプの各々につ
いて例示すると第2図のようになる。すなわち、
第2図に示すように、水車とポンプの最高効率点
を与える単位回転速度N/√0とN/√0
合致せず必らずN/√0の方が大きくなり、こ
れは可逆式ポンプ水車においては避けることがで
きない水力特性上の問題点の一つである。この相
異を極力近ずけるように努力が払われてきている
が、実用的には通常次のような範囲にある。
Generally, in a single-speed reversible single-stage pump-turbine, the rotational speed of the pump-turbine is N (rpm), the effective head of the turbine is Ht (m), the efficiency ηt, the total head of the pump is Hp (m), and the efficiency is ηp. , the envelope of the efficiency curve of each guide vane opening with respect to unit rotational speed N/√, N/√ for a water turbine and a pump is shown in FIG. 2 as an example. That is,
As shown in Figure 2, the unit rotational speeds N/√ 0 and N/√ 0 , which give the highest efficiency points for water turbines and pumps, do not match, and N/√ 0 is always larger. This is one of the problems in hydraulic characteristics that cannot be avoided in pump turbines. Efforts have been made to make this difference as close as possible, but in practice it usually falls within the following range.

すなわち、第2図および上記(1)式で示されるよ
うに、単速度可逆式ポンプ水車においては、ポン
プの最高効率点が水車の最高効率点に対して単位
回転速度比で大きく離れているので、水車最高効
率点相当の単位回転速度におけるポンプ運転時の
効率は極めて低く、また同様にポンプ最高効率点
相当の単位回転速度における水車効率も極めて低
いという水力特性関係を有している。このため、
揚水発電所の基準運転水位において、通常行なわ
れているようにポンプが最高効率もしくはその近
傍で運転を行なうようにポンプ水車の運用条件を
定めた場合、第2図及び式(1)に示される水力特性
関係の制約を受けて、水車は最高効率より離れた
高単位回転速度状態のもとに換言すれば最高効率
状態相当運転落差Ht0より低落差側の水力特性が
低い領域に基準運転状態を選定せざるを得ないこ
とになる。このように、ポンプ水車の水力特性関
係を考慮する場合、単位回転速度(N/√、
N/√)は重要な意味をもつているが、この
単位回転速度とポンプ水車の水力特性を基本的に
支配するランナ羽根の外径Dとの相関関係につい
て次に考察を行なう。
In other words, as shown in Figure 2 and Equation (1) above, in a single-speed reversible pump-turbine, the maximum efficiency point of the pump is far away from the maximum efficiency point of the turbine in terms of unit rotational speed ratio. , the efficiency during pump operation at a unit rotational speed corresponding to the maximum efficiency point of the water wheel is extremely low, and similarly, the efficiency of the waterwheel at a unit rotational speed corresponding to the maximum efficiency point of the pump is also extremely low. For this reason,
At the standard operating water level of a pumped storage power plant, if the operating conditions of the pump-turbine are determined so that the pump operates at or near its maximum efficiency, as is normally done, the condition shown in Figure 2 and equation (1) is Due to the constraints related to hydraulic characteristics, the water turbine is operated under a high unit rotational speed state far from the maximum efficiency. In other words, the operating head is equivalent to the maximum efficiency state. You will have no choice but to choose. In this way, when considering the hydraulic characteristics of a pump-turbine, the unit rotational speed (N/√,
N/√) has an important meaning, and next we will discuss the correlation between this unit rotational speed and the outer diameter D of the runner blade, which basically controls the hydraulic characteristics of the pump-turbine.

一般に、ポンプ水車の水力特性上の設計点を代
表するポンプ最高効率点において、ランナの回転
速度をN(rpm)、羽根の外径D(m)、羽根外周
速度をu(m/s)、羽根外周速度係数をφ、ポ
ンプ全揚程をHp0(m)、重力加速度をg(m/
s2)とすれば、水力的に次式(2)、(3)が与えられ
る。
Generally, at the highest efficiency point of the pump, which represents the design point of the hydraulic characteristics of a pump-turbine, the rotational speed of the runner is N (rpm), the outer diameter of the blade is D (m), the outer circumferential speed of the blade is u (m/s), The blade peripheral velocity coefficient is φ, the pump total head is Hp 0 (m), and the gravitational acceleration is g (m/
s 2 ), the following equations (2) and (3) are given hydraulically.

u=πDN/60=φ√20 ……(2) または φ=(π/60√2)(N/√0)D =(1/√2)(u/√0 ……(3) 一方、ポンプ最高効率点の流量をQp(m8
s)とすると、ポンプ水車設計上の基本条件であ
る比速度Nsは、Ns=N・(Qp)1/2/(Hp01/3
として与えられる。ある一定の比速度Nsの条件
で設計されたポンプ水車において、ランナの羽根
外径Dを順次系統的に加工することにより実施し
た模型水力特性試験の結果によれば、羽根外径D
の縮小変化に対し単位回転速度N/√0は増大
変化し、実用的性能が得られる範囲内では下記(4)
式で示されるように、双方が相反比例する関係に
あることが確認されている。
u=πDN/60=φ√2 0 …(2) or φ=(π/60√2)(N/√ 0 )D = (1/√2)(u/√ 0 …(3) On the other hand , the flow rate at the pump's highest efficiency point is Qp (m 8 /
s), the specific speed Ns, which is the basic condition for pump-turbine design, is Ns=N・(Qp) 1/2 / (Hp 0 ) 1/3
given as. According to the results of a model hydraulic characteristic test conducted by sequentially and systematically processing the outer diameter D of the runner blades in a pump turbine designed under the condition of a certain specific speed Ns, the outer diameter D of the blades
The unit rotational speed N/√ 0 increases as the unit rotational speed N/√ 0 decreases, and within the range where practical performance can be obtained, the following (4)
As shown in the formula, it has been confirmed that the two are in a reciprocal proportional relationship.

(N/√0)・D〓一定 ……(4) このことは、与えられた比速度Nsの条件で設
計されたポンプ水車において羽根外形Dを小さく
した場合、実用的性能が得られる範囲内では、上
記(3)式の羽根外周速度係数φはほとんど変化せ
ず、したがつてその結果が上記(4)式の関係をもた
らすものと言える。
(N/√ 0 )・D=constant ...(4) This means that if the blade outer diameter D is made small in a pump turbine designed under the condition of a given specific speed Ns, it will be within the range where practical performance can be obtained. Therefore, it can be said that the blade outer circumferential speed coefficient φ in the above equation (3) hardly changes, and therefore the result brings about the relationship in the above equation (4).

なお、このように羽根外径Dを小さくした場合
には、ポンプ最高効率点の単位回転速度N/√
0の増加変化に対し水車最高効率点の単位回転
速度N/√0も増加変化し、各々の単位回転速
度比は上記(1)式で限定した範囲にあり、またポン
プ、水車とも水力特性は全体的に高単位回転速度
側すなわち低落差側に移行したものにすることが
できる。
In addition, when the outer diameter D of the blade is reduced in this way, the unit rotational speed N/√ of the pump maximum efficiency point is
0 , the unit rotation speed N/√ 0 at the highest efficiency point of the water turbine also increases, and each unit rotation speed ratio is within the range defined by equation (1) above, and the hydraulic characteristics of both the pump and the water turbine are It is possible to shift the overall rotational speed to the high unit rotational speed side, that is, to the low head side.

次に、上記した単速度可逆式単段ポンプ水車特
有の水力特性上の基本問題についての考察結果を
踏まえ、第1図を参照して各段部のランナを羽根
の外径が同一で(第1図でD1=D2の場合)水力
的に相似なものから構成した通常の場合の単速度
可逆式2段ポンプ水車において、定常運転時の水
力特性上の問題点について述べる。この場合の水
車定常運転時における各段部の水力特性関係を第
3図に示す。第3図において、H1は低圧段部の
有効落差、H2は低圧段部の有効落差、Qは流
量、これらに添次0を付けたものは基準運転状態
点(図中□0)における値、a0は基準運転状態時の
各段部水口開度(ガイドベーン開度)、aに正の
整数を添字したもの(例えばa1)は基準開度a0
り過開した場合の各段部水口開度、aに負の整数
を添字したもの(例えばa-1)は基準開度により小
開した場合の各段部水口開度、△ηは水車最高効
率との相対差で表わした水車の相対効率差であ
る。第3図は、横軸に流量比Q/Q0をとつて、
また縦軸に高圧段部及び低圧段部の有効落差比
H1〜H10及びH2/H20を夫々とつて、流量に対す
る有効落差の水力特性の関係を各段部について表
示したものであり、したがつて2段ポンプ水車と
しての総合有効落差は各段部の有効落差を各々合
算して与えられる。第3図において、入口弁13
を全開して定常運転時に各段部可動ガイドベーン
の水口開度を斉一に制御する場合、前記したよう
に、各段部のランナを羽根の外径が同じで水力的
に相似のものから構成しているので、各段部の運
転状態は水力的にほぼ同等のものとなり、各段部
の有効落差は次式(5)の関係で与えられるように2
段ポンプ水車に作用する総合有効落差をほぼ2等
分したものと等しく、したがつて各段部の運転状
態は□0→□Aの軌跡をたどる。
Next, based on the above-mentioned results of the discussion on the basic problems in the hydraulic characteristics peculiar to single-speed reversible single-stage pump turbines, we will refer to Fig. In the case of D 1 = D 2 in Figure 1), we will discuss the problems with the hydraulic characteristics during steady operation in a normal single-speed reversible two-stage pump-turbine constructed from hydraulically similar units. In this case, the relationship between the hydraulic characteristics of each stage during steady operation of the water turbine is shown in FIG. 3. In Figure 3, H 1 is the effective head of the low-pressure stage, H 2 is the effective head of the low-pressure stage, Q is the flow rate, and those with an index 0 are at the reference operating state point (□0 in the figure). value, a 0 is the opening of each stage water port (guide vane opening) during the standard operating state, and a with a positive integer subscripted to a (for example, a 1 ) is the opening when the opening is more than the standard opening a 0 . The opening of the stepped water port, a with a negative integer subscripted (for example, a -1 ), is the opening of each stepped water port when the water opening is slightly opened according to the standard opening, and △η is the relative difference from the maximum efficiency of the turbine. This is the relative efficiency difference between the two turbines. Figure 3 shows the flow rate ratio Q/Q 0 on the horizontal axis.
In addition, the vertical axis shows the effective head ratio of the high pressure step and low pressure step.
H 1 to H 10 and H 2 /H 20 are used to display the relationship between the hydraulic characteristics of the effective head and the flow rate for each step. Therefore, the overall effective head as a two-stage pump turbine is It is given by adding up the effective heads of each step. In FIG. 3, the inlet valve 13
When the water port opening of the movable guide vanes in each stage is controlled simultaneously during steady operation by fully opening the runners, as mentioned above, the runners in each stage should be configured with vanes that have the same outer diameter and are hydraulically similar. Therefore, the operating conditions of each stage are almost the same hydraulically, and the effective head of each stage is 2 as given by the following equation (5).
It is equal to the total effective head acting on the stage pump turbine divided into approximately two equal parts, and therefore the operating state of each stage follows a trajectory from □0 to □A.

ここで、とくに留意すべきことは、前記した単
速度可逆式ポンプ水車特有の水力特性上の問題に
起因して、第3図に例示されるように、各段部の
基準運転状態点を水車最高効率点(△η=0)よ
り大きく離れた水力特性の低い低落差側領域(単
位回転速度が最高効率点のものより大きい領域)
に選定せざるを得ないことであり、したがつて、
ガイドベーンを制御した場合の各段部の定常運転
状態軌跡も図中□0→□Aで示されるように相対的に
水力特性の低い領域を通過することになる。
What should be noted here is that, due to the above-mentioned problems with the hydraulic characteristics peculiar to single-speed reversible pump-turbines, the reference operating state point of each stage section is Low-head area with low hydraulic characteristics far away from the highest efficiency point (△η=0) (area where the unit rotational speed is larger than that at the highest efficiency point)
Therefore, it is necessary to select
When the guide vanes are controlled, the steady operating state locus of each step section also passes through a region with relatively low hydraulic characteristics, as shown by □0→□A in the figure.

このように、通常の2段ポンプ水車において
は、水力性能が各段部とも相対的に低くなり、不
本意な運用を強いられているのが現状である。
As described above, in a normal two-stage pump turbine, the hydraulic performance of each stage is relatively low, and the current situation is that the turbine is forced to operate undesirably.

そこで、このような場合、本発明では、前記し
たように低圧段ランナの外径を小さくしたことに
より高圧段部に比較して相対的にランナ出口部の
圧力が低くキヤビテーシヨン、水流の二次流れな
どが増大し易く問題となる低圧段部について水力
性能全体を単位回転速度の大きい低落差側へ移行
させて基準運転時には水車最高効率運転が行なえ
るようにさらには小流量領域においても相対的に
安定した高性能運転が行なえるようにランナを形
成することにより、各段部の総合水力性能を著し
く向上させるようにしたものである。
In such a case, the present invention reduces the outer diameter of the low-pressure stage runner as described above, so that the pressure at the runner outlet is relatively low compared to the high-pressure stage, thereby reducing cavitation and secondary water flow. Regarding the low-pressure stage section, which is a problem where problems such as By forming the runners to ensure stable, high-performance operation, the overall hydraulic performance of each stage is significantly improved.

本発明の具体的実施例を第1図に示す単速度可
逆式2段ポンプ水車の場合について説明する。第
1図において、可動ガイドベーン15を備えた高
圧段ランナ2の単段水力特性下でのポンプ効率η
pと水車効率ηtとの各最高効率点の位置におけ
る単位回転速度比は1.04〜1.16であつて(式(1)参
照)、低圧段ランナ3の方の羽根外径Dを小さく
することにより単位回転速度N/√0を大きく
して高圧段ランナ2に対して低圧段ランナ3の単
段水力特性を低落差側に移行させたものにする
(式(4)参照)。
A specific embodiment of the present invention will be described with reference to a single-speed reversible two-stage pump water turbine shown in FIG. In FIG. 1, the pump efficiency η under the single-stage hydraulic characteristics of the high-pressure stage runner 2 equipped with the movable guide vane 15
The unit rotational speed ratio between p and the turbine efficiency ηt at each maximum efficiency point is 1.04 to 1.16 (see formula (1)), and by reducing the outer diameter D of the blades of the low-pressure stage runner 3, The rotational speed N/√ 0 is increased to shift the single-stage hydraulic characteristics of the low-pressure stage runner 3 to the low-head side compared to the high-pressure stage runner 2 (see formula (4)).

この場合、高圧段ランナ2の羽根の外径D1
低圧段ランナ3の羽根の外径D2との相対関係は
羽根外径Dと単位回転速度N/√0の関係を与
える式(4)より(6)式が得られる。ただし、添字1は
高圧段部をまた添次2は低圧段部を夫々表わす。
In this case, the relative relationship between the outer diameter D 1 of the blades of the high-pressure stage runner 2 and the outer diameter D 2 of the blades of the low-pressure stage runner 3 is expressed by the equation (4 ) gives equation (6). However, the suffix 1 represents the high-pressure step portion, and the suffix 2 represents the low-pressure step portion.

式(6)において、右辺は低圧段部の単位回転速度
(N/√02)を増大させる際ランナ羽根外径が
従来と変らない高圧段部の単位回転速度(N/√
01)を分母とする増大比率(N/√02)/
(N/√01)の逆数に相当し、また左辺は従来
と変らない高圧段のランナ羽根外径D1を分母と
する低圧段のランナ羽根外径D2の縮小比率D2
D1に相当する。
In equation (6), the right-hand side is the unit rotational speed (N/√ 02 ) of the high-pressure stage where the outer diameter of the runner blade remains the same as before when the unit rotational speed (N/√ 02 ) of the low-pressure stage is increased.
01 ) as the denominator (N/√ 02 )/
It corresponds to the reciprocal of (N/√ 01 ), and the left side is the reduction ratio D 2 / of the runner blade outer diameter D 2 of the low-pressure stage with the runner blade outer diameter D 1 of the high-pressure stage as the denominator, which is the same as before.
Equivalent to D 1 .

すなわち、式(6)は低圧段部の単位回転速度
(N/√02)の増大を図る場合低圧段のランナ
羽根外径D2における必要な縮小比率D2/D1が単
位回転速度の前記増大比率の逆数で与えられるこ
とを示している。この場合、ランナ羽根外径D1
が従来と変らない高圧段部の単段水力特性は、前
述したように水車最高効率単位回転速度N/√
01がポンプ最高効率単位回転速度N/√01
より小さくなり、N/√02とN/√01の相
対比率が前記式(1)で与えられるように1.04〜1.16
の範囲にあるため水車の低性能運転を余儀なくさ
れるという基本問題を有している。したがつてこ
のような高圧段部の状況にかんがみ、低圧段部に
おいてどのようにしてランナ羽根外径の縮小比率
D2/D1を定めて単位回転速度N/√02の増大
を図るかが重要なポイントである。
In other words, Equation (6) shows that when increasing the unit rotational speed (N/√ 02 ) of the low-pressure stage, the required reduction ratio D 2 /D 1 of the outer diameter D 2 of the runner blade of the low-pressure stage is equal to the unit rotational speed. It shows that it is given by the reciprocal of the increase ratio. In this case, the runner blade outer diameter D 1
However, the single-stage hydraulic characteristics of the high-pressure stage section are unchanged from conventional ones, and as mentioned above, the maximum efficiency unit rotational speed of the turbine is N/√
01 is pump maximum efficiency unit rotational speed N/√ 01
becomes smaller, and the relative ratio of N/√ 02 and N/√ 01 is 1.04 to 1.16 as given by equation (1) above.
The basic problem is that the water turbines are forced to operate at low performance. Therefore, considering the situation in the high-pressure stage, how can the reduction ratio of the outer diameter of the runner blade be reduced in the low-pressure stage?
The important point is whether to determine D 2 /D 1 and increase the unit rotational speed N/√ 02 .

そこで、この実施例は、前記したように高圧段
部においては水車最高効率単位回転速度N/√
01がポンプ最高効率単位回転速度N/√01
より小さく、N/√01とN/√01の相対比
率で1.04〜1.16倍離れていることから、低圧段部
における単位回転速度N/√02の増大目標と
しては前記増大比率が高圧段部の前記相対比率と
等しく1.04〜1.16倍となるよう特定することにあ
る。一方、この増大比率1.04〜1.16倍を達成する
ために必要な低圧段のランナ羽根外径D2の縮小
比率は、前述したように式(6)における右辺に前記
増大比率1.04〜1.16の逆数を代入して得られるこ
とになるから、ランナ羽根外径の相対関係は結局
式(7)のように与えられる。
Therefore, in this embodiment, as mentioned above, in the high pressure stage section, the maximum efficiency unit rotational speed of the water turbine is N/√
01 is pump maximum efficiency unit rotational speed N/√ 01
The relative ratio of N/√ 01 and N/√ 01 is 1.04 to 1.16 times smaller. Therefore, as a target for increasing the unit rotational speed N/√ 02 in the low-pressure stage, the increase ratio is higher than that of the high-pressure stage. The purpose is to specify the relative ratio to be equal to the above relative ratio, 1.04 to 1.16 times. On the other hand, the reduction ratio of the outer diameter D2 of the low-pressure stage runner blade required to achieve this increase ratio of 1.04 to 1.16 times is calculated by adding the reciprocal of the increase ratio of 1.04 to 1.16 to the right side of equation (6), as described above. Since it can be obtained by substitution, the relative relationship between the outer diameters of the runner blades is ultimately given as in equation (7).

式(7)は低圧段部のランナのランナ羽根の外径
D2を高圧段部のランナ羽根の外径D1の0.86〜0.96
倍の範囲に設定することを意味している。
Equation (7) is the outer diameter of the runner blade of the runner in the low pressure stage.
D 2 is 0.86 to 0.96 of the outer diameter of the runner blade of the high pressure stage D 1
This means setting it to twice the range.

この場合の各段部の水力特性関係を水車運転時
について第4図にまたポンプ運転時について第5
図に夫々示す。すなわち、高圧段ランナ2の羽根
の外径D1に対して低圧段ランナ3の羽根の外径
D2を式(7)で限定した特定の範囲内となるように
各段部のランナを構成し、各段部の可動ガイドベ
ーン15,16の水口開度を各段部の有効落差が
従来と同様ほぼ等しくなるように調整制御すれ
ば、とくに高効率運転が強く要求される水車発電
運転においては、第4図に示す各段部の水車運転
状態の軌跡から明らかのように、高圧段部では従
来と同じ性能レベルの運転が行なわれるが、低圧
段部では水車性能全体を低落差側に移行させた上
で従来とほぼ同じ高い落差で運転されるため、低
圧段部で基準運転状態□0から小流量領域にかけて
理想的な高性能運転が行なえるので、その結果各
段部の総合水力性能を著しく向上させることがで
きる。このように羽根外径が異なるランナを各段
部に配置し、羽根外径が同一である従来の場合と
同じように各段部の有効落差をほぼ等しく維持す
るには、各段部のガイドベーンの水口開度を羽根
外径の小さい方の段部が相対的に小開となるよう
な開度関係に調整制御することにより行なえる。
また、ポンプ運転の場合、第5図に示すように、
従来の場合に比べて高揚程側のポンプ性能が性能
特性全体を低揚程側に移行させた低圧段ランナ3
で相対的に低下する傾向があるが、その分羽根外
径が大きく高揚程側性能に優れた高圧段ランナ2
によつて挽回向上できるので、各段部の総合性能
としては従来の場合と同等レベルのポンプ性能の
もとに運転が行なえる。
In this case, the hydraulic characteristics of each stage are shown in Figure 4 when the turbine is operating, and Figure 5 when the pump is operating.
They are shown in the figure. In other words, the outer diameter of the blades of the low pressure stage runner 3 is the outer diameter D 1 of the blades of the high pressure stage runner 2.
The runners of each step are configured so that D 2 is within a specific range defined by equation (7), and the water opening of the movable guide vanes 15 and 16 of each step is adjusted so that the effective head of each step is equal to the conventional one. As is clear from the trajectory of the turbine operation status of each stage shown in Fig. 4, especially in water turbine power generation operation where high-efficiency operation is strongly required, the high-pressure stage section In this case, operation is performed at the same performance level as before, but in the low pressure section, the entire performance of the water turbine is shifted to the low head side and it is operated at almost the same high head as before, so the low pressure section is operated at the standard operating state □ Since ideal high-performance operation can be performed from 0 to a small flow rate region, the overall hydraulic performance of each stage can be significantly improved as a result. In this way, in order to arrange runners with different blade outer diameters on each step and maintain the effective head of each step almost equally as in the conventional case where the outer diameter of the blades is the same, it is necessary to This can be done by adjusting and controlling the opening degree of the water port of the vane to such an opening degree relationship that the step portion with the smaller outer diameter of the blade has a relatively smaller opening.
In addition, in the case of pump operation, as shown in Figure 5,
Low-pressure stage runner 3 in which the pump performance on the high head side has shifted its entire performance characteristics to the low head side compared to the conventional case.
However, the high-pressure stage runner 2 has a large blade outer diameter and excellent high-head performance.
Since the recovery can be improved by the pump, the overall performance of each stage section can be operated at the same level of pump performance as in the conventional case.

以上述べたように、本発明は、各段部に可動ガ
イドベーンを設け、かつ低圧段部のランナの羽根
の外径を上記した特定の範囲内で高圧段部の場合
よりも縮小させるようにして各段部のランナを構
成し、各段部の可動ガイドベーンの水口開度を各
段部の有効落差が従来と同じくほぼ等しくなるよ
うに調整制御することによりとくに重要な水車発
電運転において理想的な高性能運転が行なえる。
As described above, the present invention provides a movable guide vane in each stepped section, and makes the outer diameter of the runner blade of the low-pressure stepped section smaller than that of the high-pressure stepped section within the above-mentioned specific range. The runners of each stage are constructed using a runner, and the water opening of the movable guide vane of each stage is adjusted and controlled so that the effective head of each stage is almost the same as before. High performance operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による2段ポンプ水
車の構造を示す略示断面図、第2図はポンプ水車
におけるポンプと水車の水力特性関係を示した説
明図、第3図は従来の2段ポンプ水車における各
段部の水車特性関係を示した説明図、第4図は本
発明による実施例の2段ポンプ水車における各段
部の水車特性関係を示した説明図、第5図は同実
施例の2段ポンプ水車における各段部のポンプ特
性関係を示した説明図である。 1……水車主軸、2……高圧段ランナ、3……
低圧段ランナ、10……返り通路、11……うず
巻ケーシング、13……入口弁、14……水圧鉄
管、15……可動ガイドベーン、16……可動ガ
イドベーン。
FIG. 1 is a schematic sectional view showing the structure of a two-stage pump-turbine according to an embodiment of the present invention, FIG. FIG. 4 is an explanatory diagram showing the relationship between the water turbine characteristics of each stage in a two-stage pump-turbine according to an embodiment of the present invention. FIG. FIG. 2 is an explanatory diagram showing the relationship between pump characteristics of each stage in the two-stage pump turbine of the same embodiment. 1... Water turbine main shaft, 2... High pressure stage runner, 3...
Low pressure stage runner, 10... return passage, 11... spiral casing, 13... inlet valve, 14... penstock, 15... movable guide vane, 16... movable guide vane.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧段部と低圧段部を返り通路によつて直列
に連絡し、各段部のランナを単一の水車主軸に連
結して水車またはポンプ運転を行なう単速度可逆
式2段ポンプ水車において、水口開度が変えられ
る可動ガイドベーンを各段部のランナの外周にそ
れぞれ設け、低圧段部のランナは、そのランナ羽
根の外径が高圧段部のランナ羽根の外径の0.86〜
0.96倍の範囲内に設定したことを特徴とする単速
度可逆式2段ポンプ水車。
1 In a single-speed reversible two-stage pump water turbine in which the high-pressure stage section and the low-pressure stage section are connected in series through a return passage, and the runners of each stage section are connected to a single main shaft of the water turbine to perform water turbine or pump operation, A movable guide vane that can change the opening of the water port is provided on the outer periphery of the runner in each stage, and the outer diameter of the runner blade in the low-pressure stage is 0.86 to 0.86 the outer diameter of the runner blade in the high-pressure stage.
A single-speed reversible two-stage pump turbine characterized by being set within the range of 0.96 times.
JP10928979A 1979-08-28 1979-08-28 Single speed reversible type double stage pump water turbine Granted JPS5634965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10928979A JPS5634965A (en) 1979-08-28 1979-08-28 Single speed reversible type double stage pump water turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10928979A JPS5634965A (en) 1979-08-28 1979-08-28 Single speed reversible type double stage pump water turbine

Publications (2)

Publication Number Publication Date
JPS5634965A JPS5634965A (en) 1981-04-07
JPS6250663B2 true JPS6250663B2 (en) 1987-10-26

Family

ID=14506394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10928979A Granted JPS5634965A (en) 1979-08-28 1979-08-28 Single speed reversible type double stage pump water turbine

Country Status (1)

Country Link
JP (1) JPS5634965A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212374A (en) * 1981-06-22 1982-12-27 Toshiba Corp Method of operating multi-stage hydraulic machine
US4640664A (en) * 1983-03-15 1987-02-03 Tokyo Shibaura Denki Kabushiki Kaisha Methods of controlling operation of multistage hydraulic machines
DE102005012521A1 (en) * 2005-03-16 2006-10-05 Fritz Egger Gmbh & Co. Component with a wood-based material element and a fitting element bonded thereto and method for producing the component

Also Published As

Publication number Publication date
JPS5634965A (en) 1981-04-07

Similar Documents

Publication Publication Date Title
JPS6158666B2 (en)
NO340284B1 (en) Action turbine for use in bidirectional flow
CN1024704C (en) Intake-case for steam turbine
JPH0144904B2 (en)
JP3898311B2 (en) Water wheel or pump water wheel
JPS6237234B2 (en)
JPS6250663B2 (en)
JPS6318028B2 (en)
JPS6250664B2 (en)
CN207349169U (en) A kind of compact liquefied natural gas immersed pump guide vane structure
JPS6113112B2 (en)
JP2762395B2 (en) Twin exhaust turbine turbocharger
CN209780977U (en) High-efficiency steam turbine
CN111425424A (en) Multistage turbine fan for papermaking and control method thereof
Mathew et al. The wind-driven regenerative water-pump
CN105637220A (en) Gear pump for hydroelectric power generation
JPS636750B2 (en)
CN216342988U (en) Air compressor machine energy recuperation mechanism
RU2016222C1 (en) Turbo-driven pump assembly
JPS6380003A (en) Exhaust diffuser cascade of axial-flow turbine
RU2199021C1 (en) Turbine regulating device
JPH0336153B2 (en)
JP2001221009A (en) Steam turbine
JP3869168B2 (en) Driving method of pump turbine
JPH06101410A (en) Nozzle for steam turbine