JP3869168B2 - Driving method of pump turbine - Google Patents

Driving method of pump turbine Download PDF

Info

Publication number
JP3869168B2
JP3869168B2 JP26899399A JP26899399A JP3869168B2 JP 3869168 B2 JP3869168 B2 JP 3869168B2 JP 26899399 A JP26899399 A JP 26899399A JP 26899399 A JP26899399 A JP 26899399A JP 3869168 B2 JP3869168 B2 JP 3869168B2
Authority
JP
Japan
Prior art keywords
pump
runner vane
type runner
turbine
pump turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26899399A
Other languages
Japanese (ja)
Other versions
JP2001090650A (en
Inventor
繁則 渡部
高紀 中村
一典 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP26899399A priority Critical patent/JP3869168B2/en
Publication of JP2001090650A publication Critical patent/JP2001090650A/en
Application granted granted Critical
Publication of JP3869168B2 publication Critical patent/JP3869168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポンプ水車の運転方法に係り、特に、揚水運転の高揚程時または発電運転の低落差時、キャビテーション発生を低く抑えて運転を行うポンプ水車の運転方法に関する。
【0002】
【従来の技術】
最近の水力発電プラントは、上池と下池とを備え、昼間、上池の貯水を利用して発電運転を行い、夜間、下池の貯水を上池に戻す揚水発電運転を行うことが多い。この場合、揚水発電運転を行う水力機械は、多量の貯水量を処理する能力の高いフランシス型水車ランナを使用している。
【0003】
このフランシス型水車ランナは、図9および図10に示すように、円板状のランナクラウン1とランナバンド2との間に、6〜7枚のランナベーン3を一体に成形加工するとともに、ランナベーン3の入口角度を小さくし、ランナベーン3の形状を渦巻状に成形してその長さを長くする構造になっており、主としてポンプ運転の減速流に良好に対処させる一方、発電運転時の増速流にも水力性能を低下させないようになっている。
【0004】
【発明が解決しようとする課題】
図9および図10に示したフランシス型水車ランナには、水力性能が他のタイプのランナに較べて比較的高いものの、それでも幾つかの問題点があり、その一つに揚水運転時および発電運転時のキャビテーション問題がある。
【0005】
従来、フランシス型水車ランナは、図11に示すように、発電運転の低落差時、流入水Wが水車入口側から流入角αでランナベーン3に流入するのに対し、ランナベーン3の取付角度がβであり、流入角αとの取付角βとの間にβ>αの角度ずれが発生していると、ランナベーン3の圧力面HP側にキャビテーションCAVが発生し易くなっている。
【0006】
また、発電運転の低出力運転時、流入水Wの流入量が少なくなっていることも手伝ってランナベーン3に流入した流入水Wは、ランナ回転中に発生する遠心力の影響を受け、ランナバンド側に押圧され、ここで二次流れが生じ、しかもランナベーン3の出口側に旋回流の発生に伴う二次流れ渦が生じ、ポンプ水車効率の低下や水圧脈動の増加を招いていた。
【0007】
また、フランシス型水車ランナは、図12に示すように、揚水運転の高揚程時、流入水Wが水車出口側から流入角αでランナベーン3に流入するのに対し、ランナベーン3の取付角度がβであり、流入角αと取付角βとの間にβ>αの角度ずれが発生していると、ランナベーン3の負圧面LP側にキャビテーションCAVが発生し易くなっている。この場合、フランシス型水車ランナは、ランナベーン3の圧力面HPと負圧面LPとのそれぞれに表われる圧力分布を調査したところ、図13の破線で示す圧力分布になっており、ランナベーン3の出口側がキャビテーション発生領域CAVZに入っていた。
【0008】
このように、従来のフランシス型水車ランナは、発電運転の低落差時または揚水運転の高揚程時、ランナベーン3でキャビテーションCAVが発生しており、何らかの新たな改善策が求められていた。
【0009】
ところで、キャビテーションCAVが発生する要因の一つにランナベーン3が受け持つ1枚あたりの負荷が高いことにあると考えて、フランシス型ランナは、図14に示すように、ランナクラウン1およびランナバンド2との間に一体成形され、翼コードの長い渦巻状のランナベーン3aと隣のランナベーン3bとの間に比較的翼コードの短い別のランナベーン3cを配置した、いわゆるスプリッタ形ランナベーン4やあるいは図15に示すようにランナベーン3aと隣のランナベーン3bとのピッチを短くするために、翼コードの長い、渦巻状の別のランナベーン3dを配置した、いわゆる多翼形ランナベーン5が例えば特開昭57−126566号公報、実開昭59−11170号公報、実開昭61−184876号公報等の数多くの公報に公表されている。
【0010】
これら数多くの公報に公表されているスプリッタ形ランナベーン4や多翼形ランナベーン5の諸特性を調査したうち、例えば図16に示すように、圧力面HPおよび負圧面LPのそれぞれに表われる圧力分布は、破線で示す従来のランナベーンの圧力分布に較べて圧力幅が狭くなっており、キャビテーション発生領域CAVZに入っていないことがわかった。
【0011】
また、スプリッタ形ランナベーン4や多翼形ランナベーン5を用いて、いわゆる実物ポンプ・水車のP−H特性(水車出力Pと落差Hとの関係)を模型試験で調べてみると、図17の破線で示す従来のランナベーンを用いたキャビテーション発生限界線に較べて実線で示すキャビテーション発生限界線まで運転幅を拡げられることがわかった。なお、図17中、Htmaxは最高落差を、Htnorは基準落差を、Htminは最低落差をそれぞれ示している。
【0012】
また、H−Q特性(ポンプ揚程Hと流量Q特性との関係)は、ランナベーン3の取付角度β、ランナベーン3の外径D、ランナベーン3の枚数とで特性付けられるから、通常、ランナベーン3の取付角度β、ランナベーン3の外径Dを従来型のランナベーンと同一にすれば、ランナベーンの枚数が増加した分だけ揚程が増加する。
【0013】
しかし、比較的H−Q特性の優れている従来のポンプ水車ランナと同程度の特性を得ようとする場合、ランナベーン3の取付角度βを小さくしているが、この場合、従来のポンプ水車ランナと比較して、キャビテーション性能が向上するので、発電運転の低落差時、低出力領域での運転幅を拡げられることもわかった。
【0014】
このように、スプリッタ形ランナベーン4や多翼形ランナベーン5は、キャビテーション発生防止限界を拡大できる優れた性能を持っているにも拘らず、スプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだポンプ水車と、従来のランナベーンを組み込んだポンプ水車とを組み合せた実用的な運転は未だ見当らない。
【0015】
本発明は、このような点に着目してなされたもので、スプリッタ形ランナベーンまたは多翼形ランナベーンを組み込んだポンプ水車を用いてキャビテーション発生防止限界を拡げ、従来に較べて運転幅を拡げて安定運転を行うことのできるポンプ水車の運転方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明に係るポンプ水車の運転方法は、請求項1に記載したように、上池と下池との間を結ぶ水路に複数台のポンプ水車を並列配置し、これら複数台のポンプ水車のうち、少なくとも一つ以上のポンプ水車にスプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込み、発電運転の低落差時および揚水運転の高揚程時のうち、いずれか一方の運転の際、上記スプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込んだポンプ水車を優先的に運転することを特徴とするものである。
【0017】
また、本発明に係るポンプ水車の運転方法は、上記目的を達成するために、請求項2に記載したように、スプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込んだポンプ水車は、揚水運転時、実水位差が予め定められた揚水最低水位差を上廻ったとき運転することを特徴とするものである。
【0018】
また、本発明に係るポンプ水車の運転方法は、上記目的を達成するために、請求項3に記載したように、スプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込んだポンプ水車は、発電運転時、実水位差が予め定められた発電基準水位差よりも下廻っているとき運転することを特徴とするものである。
【0019】
また、本発明に係るポンプ水車の運転方法は、上記目的を達成するために、請求項4に記載したように、上池と下池との間を結ぶ水路に複数台のポンプ水車を並列配置し、これら複数台のポンプ水車のうち、少なくとも一つ以上のポンプ水車にスプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込み、発電運転の部分負荷時、上記スプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込んだポンプ水車に部分負荷運転を行わせ、残りのポンプ水車に定格運転を行わせ、全体として系統からの負荷調整指令を満す運転を行うことを特徴とするものである。
【0020】
また、本発明に係るポンプ水車の運転方法は、上記目的を達成するために、請求項5に記載したように、上池と下池との間を結ぶ水路に複数台のポンプ水車を並列配置し、これら複数台のポンプ水車のうち、少なくとも一つ以上のポンプ水車にスプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込み、スプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込んだポンプ水車は、可変速機を組み込み、発電運転の低落差時、揚水運転の高揚程時、あるいは発電運転の部分負荷時のうち、いずれか一方の運転の際、優先的に運転することを特徴とするものである。
【0021】
【発明の実施の形態】
以下、本発明に係るポンプ水車の運転方法の実施形態を図面および図面に付した符号を引用して説明する。
【0022】
図1は、本発明に係るポンプ水車の運転方法の第1実施形態を説明するための概略ポンプ水車配置図である。
【0023】
一般に、水力発電プラントは上池7と下池8とを結ぶ水路20の中間位置に複数台のポンプ水車A,B,Cを並列配置し、昼間、上池7からの貯水を下池8に流す際、複数台のポンプ水車A,B,Cを駆動して発電運転を行い、余剰電力のある夜間に下池8からの貯水を上池7にポンピングアップする際、複数台のポンプ水車A,B,Cを駆動して揚水運転を行い、エネルギ資源の再利用化を図っている。
【0024】
また、複数台のポンプ水車A,B,Cのうち、例えば第1のポンプ水車Aはランナベーンとして図14で示した翼コードの長いランナベーン3a,3bと翼コードの短いランナベーン3cとを組み合せたスプリッタ形ランナベーン4または図15で示した翼コードの長いランナベーン3a,3b,3dを数多く配置した多翼形ランナベーン5を組み込むとともに、残りの第2のポンプ水車Bおよび第3のポンプ水車Cは従来型のランナベーン6を組み込む構成になっている。
【0025】
このように配置されたポンプ水車は、図2に示すように、運転制御部9の演算信号に基づいて揚水(ポンプ)運転または発電(水車)運転が行われる。
【0026】
運転制御部9は、揚程・落差演算部11とポンプ水車運転選別部12とを備え、図1で示した上池7から水位信号Hst1と下池8からの水位信号Hst2とを受信器10が受信すると、その受信信号に基づいて揚程・落差演算部11で揚水程または落差の実水位差ΔHを演算する。このとき、系統から運転指令があると、運転制御部9は、ポンプ水車運転選別部12で実水位差ΔHに基づいて演算し、第1のポンプ水車Aを運転させるかまたは第2のポンプ水車Bおよび第3のポンプ水車Cを運転させるかを選別するようになっている。
【0027】
また、ポンプ水車運転選別部12は、図3に示すプログラムが組み込まれており、系統からの運転指令があると、発電・揚水運転ステップST1で揚水運転および発電運転のいずれかが選択され、例えば揚水運転か選択されると、揚水運転判定ステップST2で予め定められた揚水最低水位差H0p(上池最低水位Hst1minと下池最低水位Hst2minとの水位差)に、上述の揚程・落差演算部11で演算した実水位差ΔHを突き合せ、その実水位差ΔHが上廻ると、図1で示したスプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のポンプ水車Aに揚水運転を行わせる。なお、揚水運転判定ステップST2で予め定められた最低水位差H0pが実水位差ΔHを上廻っているとき、ポンプ水車運転選別部10は、図1で示した従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cに揚水運転を行わせる。
【0028】
他方、ポンプ水車運転選別部12は、運転指令に対し、発電・揚水運転ステップST1で発電運転が選択されると、発電運転判定ステップST3で予め定められた発電基準水位差H0t(上池の水位と下池の水位との基準落差Htnorに水圧鉄管系の損失Hを加算した水位差)に、上述の実水位差ΔHを突き合せ、その実水位差ΔHが発電基準水位差Hptよりも下廻っているとき、図1で示したスプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のポンプ水車Aに発電運転を行わせる。
【0029】
また、ポンプ水車運転選別部12は、発電運転判定ステップST3で実水位差ΔHが予め定められた発電基準水位差H0tよりも上廻っているとき、図1で示した従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cに発電運転を行わせる。
【0030】
このように、本実施形態では、揚水運転の高揚程時、キャビテーションCAVの発生を低く抑えるスプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のポンプ水車Aで運転させ、予め定められた最低水位差H0pが実水位差ΔHを上廻ったとき、従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cで運転させるので、ポンプ水車ランナに安定運転を行わせることができ、信頼度の高い揚水運転を実現することができる。
【0031】
また、本実施形態では、発電運転の低落差時、キャビテーションCAVの発生を低く抑えるスプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のポンプ水車Aで運転させ、予め定められた発電基準水位H0tよりも実水位差ΔHが上廻ったとき、従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cで運転させるので、ポンプ水車ランナに安定運転を行わせることができ、信頼度の高い発電運転を実現することができる。
【0032】
ところで、運転時間に対するキャビテーション壊食量を調べたところ、図4に示すように、破線で示す従来の発電壊食量の分布線に対し、本実施形態では実線で示すキャビテーション壊食量の分布線になっており、ポンプ水車のランナのキャビテーション壊食量における削り代限界の運転時間が従来に較べて約1.7倍延長できることがわかった。
【0033】
また、運転時間の延長に伴って、ポンプ水車ランナの寿命も、図5に示すように、従来に較べて約2.2倍延長できることが認められた。
【0034】
なお、本実施形態は、スプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のポンプ水車Aと従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cとを組み合せた例として説明したが、この例に限ることなく、例えばスプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ可変速ポンプ水車と従来型のランナベーン6を組み込んだ第2のランナベーン水車Bおよび第3のポンプ水車Cとを組み合せてもよい。
【0035】
最近、巻線形誘導発電機をサイクロコンバータで制御し、ポンプ水車ランナの回転速度を広範囲に亘って任意に変化させ、その回転数を落差・揚程に応じて変えて高い効率で運転できる可変速機を組み込んだ可変速ポンプ水車が注目されている。
【0036】
本実施形態は、このような点に着目したもので、スプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ可変速ポンプ水車に、従来型のランナベーン6を込み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cを組み合せ水力性能を向上させたものである。
【0037】
模型試験による発電運転の際のP−H(水車出力−落差)特性カーブによれば、図6に示すように、従来型のランナベーン6を組み込んだ第1,第2および第3のポンプ水車A,B,Cが最大出力Ptに対し50%PtになるとキャビテーションCAVが発生するのに対し、スプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のポンプ水車Aに、従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cを組み合せた場合、最大出力Ptに対し37%Ptになると発電CAVが発生することがわかった。したがって、スプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のポンプ水車Aでは、従来に較べて約13%の運転幅を拡げられることがわかった。
【0038】
また、実物ポンプ・水車のP−Hカーブによれば、従来型のランナベーン6を組み込んだ第1,第2および第3のポンプ水車A,B,Cが発電運転の際に発生するキャビテーションCAVと、スプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ可変速ポンプ水車に、従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cを組み合せたポンプ水車が発電運転の際に発生するキャビテーションCAVとを比較したところ、可変速ポンプ水車のポンプが約20%の運転幅を拡げられることがわかった。
【0039】
また、模型試験による揚水運転の際のP−H(ポンプ入力−揚程)特性カーブによれば、図7に示すように、従来型のランナベーン6を組み込んだ第1,第2および第3のポンプ水車A,B,Cが発生する流入水逆流現象と、スプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ可変速ポンプ水車に、従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cを組み合せたポンプ水車が発生する流入逆流現象とを比較したところ、可変速ポンプ水車のポンプが約3%の運転幅を拡げられることがわたった。
【0040】
図8は、本発明に係るポンプ水車の運転方法の第2実施形態を説明するための概略ポンプ水車の概略運転ブロック図である。
【0041】
本実施形態は、スプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のポンプ水車Aを、従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cよりも優先して発電運転負荷調整を行わせるものである。
【0042】
一般に、系統からの指令が発電運転であり、系統からの要求出力量Pjが第1のポンプ水車A、第2のポンプ水車Bおよび第3のポンプ水車Cの最大出力の合計である場合、運転部は全ポンプ水車に対して100%出力運転指令を出して運転させる。
【0043】
しかし、100%出力運転中に系統から負荷調整指令が出された場合、第1のポンプ水車A、第2のポンプ水車Bおよび第3のポンプ水車Cのうち、幾つかは運転停止指令を受け、残りは例えば50%出力の部分負荷運転の負荷調整を行うことが多い。
【0044】
この場合、従来型のランナベーン6を組み込んだ全てのポンプ水車A,B,Cは、部分負荷運転時の機器信頼度の観点から、このような部分負荷運転での運転頻度を考慮して、ある程度、水圧脈動を低く抑える運転を行ってはいるものの、それでも限界があり、全ての運転範囲で水圧脈動を低く抑えることが難しい。
【0045】
本実施形態は、このような点に考慮したもので、図8に示すように、系統から負荷調整指令、例えば要求出力量Pjがある場合、運転指令部13から演算部14に要求出力量Pjか与えられる。このとき、演算部14には、水位検出器15で検出された上池の水位Hstと下池の水位Hstとの落差ΔHが与えられている。
【0046】
演算部14は、要求出力量Pjと落差ΔHとに基づき、負荷の分散割合を演算し、その演算信号に基づいて従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cに定格運転を行わせ、残りのスプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のポンプ水車Aに部分負荷運転を行わせ、全体としての要求出力量Pjに見合う運転を各ポンプ水車A,B,Cに行わせている。具体的には、演算部14は、第2のポンプ水車Bおよび第3のポンプ水車Cのそれぞれのガイドベーン(図示せず)に開度信号Xを与える一方、第1のポンプ水車Aのガイドベーンに、開度信号Xを与えてX>Xになるようにし、第2のポンプ水車Bおよび第3のポンプ水車Cの出力Pと第1のポンプ水車Aの出力Pとをフィードバックさせ、ガイドベーンの開度を各ポンプ水車A,B,Cの予め定められた出力に見合うように修正している。
【0047】
このように、本実施形態では、定格発電運転から部分負荷発電運転に移行する際、従来型のランナベーン6を組み込んだ第2のポンプ水車Bおよび第3のポンプ水車Cに水車効率の高い定格運転を行わせ、スプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のポンプ水車Aに部分負荷発電運転を行わせ、全体として系統からの要求出力量Pjを満たす運転を行うので、キャビテーションCAVの発生の低い安定した運転を各ポンプ水車A,B,Cに行わせることができる。なお、スプリッタ形ランナベーン4または多翼形ランナベーン5を組み込んだ第1のランナポンプ水車Aは、可変速ポンプ水車にしてもよい。
【0048】
【発明の効果】
以上の説明のとおり、本発明に係るポンプ水車の運転方法は、上池と下池との中間位置に並列設置した複数台のポンプ水車のうち、少なくとも一つ以上にスプリッタ形ランナベーンまたは多翼形ランナベーンを組み込むとともに、残りに従来型のランナベーンを組み込み、発電運転の低落差時、揚水運転の高揚程時、あるいは発電負荷調整時、スプリッタ形ランナベーンまたは多翼形ランナベーンを組み込んだポンプ水車を優先的に運転させ、流入水が安定しているとき、従来型のランナベーンを組み込んだポンプ水車を運転させてキャビテーションの発生を低く抑えるので、運転幅を従来に較べて広く拡大することができ、水力性能の向上と相俟ってポンプ水車ランナの寿命を従来に較べて長く維持することができる。
【0049】
また、本発明に係るポンプ水車の運転方法は、発電運転の低落差時、揚水運転の高揚程時、発電負荷調整時、スプリッタ形ランナベーンまたは多翼形ランナベーンを組み込んだポンプ水車に可変速機を組み合せた可変速ポンプ水車を優先的に運転させるので、従来の較べてより一層の運転幅を拡大することができ、安定運転を高く維持させることができる。
【図面の簡単な説明】
【図1】本発明に係るポンプ水車の運転方法の第1実施形態を説明するための概略ポンプ水車配置図。
【図2】本発明に係るポンプ水車の運転方法の第1実施形態を説明するための概略運転制御ブロック図。
【図3】本発明に係るポンプ水車の運転方法の第1実施形態を説明するポンプ水車運転選別部に組み込まれるフローチャート図。
【図4】従来と本発明とを対比させたキャビテーション壊食量分布線図。
【図5】従来と本発明とを対比させたポンプ水車ランナの寿命線図。
【図6】発電運転における従来と本発明とを対比させた運転領域を示す線図。
【図7】揚水運転における従来と本発明とを対比させた運転領域を示す線図。
【図8】本発明に係るポンプ水車の運転方法の第2実施形態を説明するための概略運転制御ブロック図。
【図9】従来のフランシス型ポンプ水車ランナを示す平面断面図。
【図10】図9の半分側断面図。
【図11】発電運転時、ランナベーンに発生するキャビテーションを説明する図。
【図12】揚水運転時、ランナベーンに発生するキャビテーションを説明する図。
【図13】揚水運転の高揚程時、ランナベーンに発生する圧力分布線図。
【図14】長いランナベーンと短いランナベーンとを組み合せたスプリッタ形ランナベーンを示す平面断面図。
【図15】長いランナベーンを短くして多数配置した多翼形ランナベーンを示す平面断面図。
【図16】従来型のランナベーンとスプリッタ形ランナベーンまたは多翼形ランナベーンとを対比させた部分線図。
【図17】水車運転時における従来型のランナベーンの運転幅とスプリッタ形ランナベーンまたは多翼形ランナベーンの運転幅を対比させた線図。
【符号の説明】
1 ランナクラウン
2 ランナバンド
3,3a,3b,3c,3d ランナベーン
4 スプリッタ形ランナベーン
5 多翼形ランナベーン
6 従来型のランナベーン
7 上池
8 下池
9 運転制御部
10 受信器
11 揚程・落差演算部
12 ポンプ水車運転選別部
13 運転指令部
14 演算部
15 水位検出器
20 水路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operation method of a pump turbine, and more particularly, to an operation method of a pump turbine that operates while suppressing cavitation generation at a high head during pumping operation or at a low head during power generation operation.
[0002]
[Prior art]
Recent hydroelectric power plants have an upper pond and a lower pond. In many cases, a hydroelectric power generation operation is performed by using the water stored in the upper pond during the day and the water stored in the lower pond is returned to the upper pond at night. In this case, the hydraulic machine that performs the pumped-storage power generation operation uses a Francis-type turbine runner having a high ability to handle a large amount of stored water.
[0003]
As shown in FIGS. 9 and 10, this Francis-type turbine runner is integrally formed with 6 to 7 runner vanes 3 between a disc-shaped runner crown 1 and a runner band 2, and the runner vanes 3. The runner vane 3 is formed into a spiral shape and the length thereof is increased to make the length of the runner vane 3 longer, and the speed increase flow during the power generation operation can be dealt with favorably while mainly dealing with the deceleration flow of the pump operation. In addition, the hydraulic performance is not degraded.
[0004]
[Problems to be solved by the invention]
The Francis turbine runners shown in FIGS. 9 and 10 have relatively high hydropower performance compared to other types of runners, but still have some problems, one of which is during pumping operation and power generation operation. There is a time cavitation problem.
[0005]
Conventionally, in the Francis type turbine runner, as shown in FIG. 11, the inflow water W flows into the runner vane 3 at the inflow angle α 1 from the turbine inlet side when the power generation operation is at a low head, whereas the runner vane 3 has a mounting angle. If β 1 and an angle shift of β 1 > α 1 between the inflow angle α 1 and the mounting angle β 1 occurs, cavitation CAV is likely to occur on the pressure surface HP side of the runner vane 3. Yes.
[0006]
In addition, during the low power operation of the power generation operation, the inflow water W that flows into the runner vane 3 due to the reduced amount of the inflow water W is affected by the centrifugal force generated during the runner rotation, and the runner band The secondary flow is generated at the outlet side of the runner vane 3, and the secondary flow vortex accompanying the generation of the swirling flow is generated at the outlet side of the runner vane 3, resulting in a decrease in pump turbine efficiency and an increase in hydraulic pulsation.
[0007]
In the Francis type turbine runner, as shown in FIG. 12, the inflowing water W flows into the runner vane 3 at the inflow angle α 2 from the turbine exit side at the time of the high head of the pumping operation, whereas the mounting angle of the runner vane 3 is If β 2 and an angle shift of β 2 > α 2 occurs between the inflow angle α 2 and the mounting angle β 2 , cavitation CAV is likely to occur on the suction surface LP side of the runner vane 3. . In this case, in the Francis turbine runner, when the pressure distributions appearing on the pressure surface HP and the negative pressure surface LP of the runner vane 3 are investigated, the pressure distribution indicated by the broken line in FIG. It was in the cavitation generation area CAVZ.
[0008]
Thus, in the conventional Francis type turbine runner, cavitation CAV is generated in the runner vane 3 at the time of a low head of the power generation operation or at the high head of the pumping operation, and some new improvement measures have been demanded.
[0009]
By the way, considering that one of the factors that cause cavitation CAV is the high load per sheet that the runner vane 3 is responsible for, the Francis-type runner has a runner crown 1 and a runner band 2 as shown in FIG. FIG. 15 shows a so-called splitter-type runner vane 4 that is integrally formed between the two runner vanes 3a having a relatively long blade cord and a spiral runner vane 3a having a long blade cord and an adjacent runner vane 3b. In order to shorten the pitch between the runner vane 3a and the adjacent runner vane 3b, a so-called multi-blade runner vane 5 in which another spiral runner vane 3d having a long blade cord is arranged is disclosed in, for example, Japanese Patent Laid-Open No. 57-126666. , Japanese Utility Model Publication No. 59-11170, Japanese Utility Model Publication No. 61-188486, etc. It has been published in.
[0010]
Of the various characteristics of the splitter-type runner vanes 4 and multi-blade runner vanes 5 published in these publications, as shown in FIG. 16, for example, the pressure distributions appearing on the pressure surface HP and the suction surface LP are as follows. It has been found that the pressure width is narrower than the pressure distribution of the conventional runner vane indicated by the broken line and does not enter the cavitation generation region CAVZ.
[0011]
When the splitter type runner vane 4 and the multi-blade type runner vane 5 are used to examine the PH characteristics (relationship between the turbine output P and the head H) of a so-called real pump / turbine by a model test, a broken line in FIG. It was found that the operating range can be expanded to the cavitation generation limit line shown by the solid line, compared to the cavitation generation limit line using the conventional runner vane shown in. In FIG. 17, Ht max indicates the maximum head, Ht nor indicates the reference head, and Ht min indicates the minimum head.
[0012]
Further, since the HQ characteristic (relationship between the pump head H and the flow rate Q characteristic) is characterized by the mounting angle β 1 of the runner vane 3, the outer diameter D 1 of the runner vane 3, and the number of runner vanes 3, usually the runner vane If the mounting angle β 1 of 3 and the outer diameter D 1 of the runner vane 3 are the same as those of the conventional runner vane, the lift increases by the amount of runner vanes.
[0013]
However, in order to obtain characteristics comparable to those of a conventional pump turbine runner having relatively excellent HQ characteristics, the mounting angle β 1 of the runner vane 3 is made small. It was also found that the cavitation performance is improved compared to the runner, so that the operating range in the low output region can be expanded when the power generation operation has a low head.
[0014]
As described above, although the splitter type runner vane 4 and the multi-blade type runner vane 5 have excellent performance capable of expanding the cavitation prevention limit, the pump turbine including the splitter type runner vane 4 or the multi-blade type runner vane 5 is incorporated. And practical operation combining a pump turbine incorporating a conventional runner vane has not been found yet.
[0015]
The present invention has been made by paying attention to such points, and by using a pump turbine incorporating a splitter-type runner vane or a multi-blade type runner vane, the limit for preventing cavitation is increased, and the operating range is widened and stable compared to the prior art. It is an object of the present invention to provide a driving method of a pump turbine that can be operated.
[0016]
[Means for Solving the Problems]
As described in claim 1, the operation method of the pump turbine according to the present invention includes a plurality of pump turbines arranged in parallel in a water channel connecting the upper pond and the lower pond, and among the plurality of pump turbines, At least one pump turbine is installed with either a splitter-type runner vane or a multi-blade type runner vane, and during the operation of either one of the low head of power generation operation and the high head of pumping operation, the above A pump turbine incorporating one of a splitter type runner vane and a multi-blade type runner vane is preferentially operated.
[0017]
In order to achieve the above object, the pump turbine according to the present invention includes a splitter type runner vane and a multi-blade type runner vane. In the pumping operation, the pump is operated when the actual water level difference exceeds a predetermined minimum pumping water level difference.
[0018]
In order to achieve the above object, the pump turbine according to the present invention includes a splitter type runner vane and a multi-blade type runner vane. In the power generation operation, the operation is performed when the actual water level difference is lower than a predetermined power generation reference water level difference.
[0019]
In order to achieve the above object, the pump turbine operation method according to the present invention comprises a plurality of pump turbines arranged in parallel in a water channel connecting the upper pond and the lower pond as described in claim 4. Of the plurality of pump turbines, at least one of the pump turbines incorporates either a splitter type runner vane or a multi-blade type runner vane, and the splitter type runner vane and the multi-blade type are incorporated at the time of partial load during power generation operation. One of the runner vanes is to perform a partial load operation on a pump turbine incorporating one of them, and the remaining pump turbine to perform a rated operation, and as a whole perform an operation that satisfies a load adjustment command from the system. Is.
[0020]
In order to achieve the above object, the pump turbine operation method according to the present invention includes a plurality of pump turbines arranged in parallel in a water channel connecting the upper pond and the lower pond as described in claim 5. Of these multiple pump turbines, at least one pump turbine is incorporated with either a splitter type runner vane or a multi-blade type runner vane, and either one of the splitter type runner vane or the multi-blade type runner vane is installed. The built-in pump turbine is equipped with a variable speed gear, and should be operated with priority during either one of the low head of power generation operation, high head of pumping operation, or partial load of power generation operation. It is characterized by.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of an operation method of a pump turbine according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.
[0022]
FIG. 1 is a schematic layout diagram of pump turbines for explaining a first embodiment of the operation method of the pump turbine according to the present invention.
[0023]
In general, in a hydroelectric power plant, a plurality of pump turbines A, B, and C are arranged in parallel at a middle position of a water channel 20 that connects the upper pond 7 and the lower pond 8, and the stored water from the upper pond 7 flows into the lower pond 8 during the daytime. When a plurality of pump turbines A, B, C are driven to generate electricity and the stored water from the lower pond 8 is pumped up to the upper pond 7 at night with surplus power, the plurality of pump turbines A, B, C is driven to perform pumping operation to recycle energy resources.
[0024]
Of the plurality of pump turbines A, B, C, for example, the first pump turbine A is a runner vane, which is a combination of runner vanes 3a, 3b with long blade cords and runner vanes 3c with short blade cords shown in FIG. The multi-blade runner vane 5 in which a large number of runner vanes 3a, 3b, and 3d having long blade cords shown in FIG. 15 or the multi-blade runner vane 5 shown in FIG. 15 is incorporated, and the remaining second pump turbine B and third pump turbine C are the conventional type. The runner vane 6 is incorporated.
[0025]
As shown in FIG. 2, the pump turbine arranged in this manner is subjected to pumping (pump) operation or power generation (turbine) operation based on the calculation signal of the operation control unit 9.
[0026]
The operation control unit 9 includes a head / head calculation unit 11 and a pump turbine operation selection unit 12, and the receiver 10 receives the water level signal Hst1 from the upper pond 7 and the water level signal Hst2 from the lower pond 8 shown in FIG. Then, the head / head calculator 11 calculates the actual water level difference ΔH of the head or head based on the received signal. At this time, when there is an operation command from the system, the operation control unit 9 calculates the pump water turbine operation selection unit 12 based on the actual water level difference ΔH and operates the first pump turbine A or the second pump turbine. Whether to operate B and the third pump turbine C is selected.
[0027]
Further, the pump turbine operation selection unit 12 incorporates the program shown in FIG. 3, and when there is an operation command from the system, either the pumping operation or the power generation operation is selected in the power generation / pumping operation step ST1, for example, When the pumping operation is selected, the above-described head / head calculation is performed on the pumped minimum water level difference H 0p (the water level difference between the upper pond minimum water level Hst1 min and the lower pond minimum water level Hst2 min ) determined in the pumping operation determination step ST2. When the actual water level difference ΔH calculated by the section 11 is matched and the actual water level difference ΔH exceeds, the pumping operation is performed on the first pump turbine A incorporating the splitter type runner vane 4 or the multi-blade type runner vane 5 shown in FIG. Let it be done. When the minimum water level difference H 0p determined in advance in the pumping operation determination step ST2 exceeds the actual water level difference ΔH, the pump turbine operation selecting unit 10 incorporates the conventional runner vane 6 shown in FIG. The second pump turbine B and the third pump turbine C are caused to perform a pumping operation.
[0028]
On the other hand, when the power generation operation is selected in the power generation / pumping operation step ST1 in response to the operation command, the pump turbine operation selection unit 12 determines the power generation reference water level difference H 0t (Kamiike's The above-mentioned actual water level difference ΔH is compared with the water level difference obtained by adding the loss H 1 of the hydraulic iron pipe system to the reference head difference Ht nor between the water level and the water level of the lower pond, and the actual water level difference ΔH is greater than the power generation reference water level difference H pt. When it is lower, the first pump turbine A incorporating the splitter type runner vane 4 or the multi-blade type runner vane 5 shown in FIG.
[0029]
In addition, when the actual water level difference ΔH exceeds the predetermined power generation reference water level difference H 0t in the power generation operation determination step ST3, the pump turbine operation selection unit 12 sets the conventional runner vane 6 shown in FIG. The incorporated second pump turbine B and third pump turbine C are caused to perform power generation operation.
[0030]
As described above, in the present embodiment, when the pumping operation is performed at a high head, the first pump turbine A that incorporates the splitter-type runner vane 4 or the multi-blade runner vane 5 that suppresses the occurrence of cavitation CAV is kept low. When the minimum water level difference H 0p exceeds the actual water level difference ΔH, the second pump turbine B and the third pump turbine C incorporating the conventional runner vane 6 are operated, so that the pump turbine runner is stably operated. The pumping operation with high reliability can be realized.
[0031]
Further, in the present embodiment, when the power generation operation has a low head, the first pump turbine A incorporating the splitter type runner vane 4 or the multi-blade type runner vane 5 that suppresses the generation of cavitation CAV is operated, and a predetermined power generation standard is set. When the actual water level difference ΔH exceeds the water level H 0t , the second and second pump turbines B and C incorporating the conventional runner vanes 6 are operated, so that the pump turbine runner can be operated stably. And a highly reliable power generation operation can be realized.
[0032]
By the way, when the amount of cavitation erosion with respect to the operation time was examined, as shown in FIG. 4, the distribution line of the cavitation erosion amount indicated by the solid line in this embodiment is different from the distribution line of the conventional power generation erosion amount indicated by the broken line. Therefore, it was found that the operating time of the cutting allowance limit in the amount of cavitation erosion of the runner of the pump turbine can be extended by about 1.7 times compared with the conventional one.
[0033]
Moreover, it was recognized that the life of the pump turbine runner can be extended by about 2.2 times as compared with the conventional one as the operation time is extended, as shown in FIG.
[0034]
In this embodiment, the first pump turbine A incorporating the splitter-type runner vane 4 or the multi-blade runner vane 5, and the second pump turbine B and the third pump turbine C incorporating the conventional runner vane 6 are provided. Although described as an example of combination, the present invention is not limited to this example. For example, a variable speed pump turbine incorporating a splitter type runner vane 4 or a multi-blade type runner vane 5 and a second runner vane turbine B and a conventional runner vane turbine 6 incorporating a conventional runner vane 6 are used. Three pump turbines C may be combined.
[0035]
Recently, a variable speed machine that can be operated with high efficiency by controlling a winding induction generator with a cycloconverter and changing the rotational speed of the pump turbine runner arbitrarily over a wide range and changing its rotational speed according to the head and head. The variable-speed pump turbine incorporating this is drawing attention.
[0036]
This embodiment pays attention to such points, and the second pump turbine B in which the conventional runner vane 6 is incorporated in the variable speed pump turbine in which the splitter type runner vane 4 or the multi-blade type runner vane 5 is incorporated. The third pump turbine C is combined to improve hydraulic performance.
[0037]
According to the PH (water turbine output-head) characteristic curve during the power generation operation by the model test, as shown in FIG. 6, the first, second and third pump turbines A incorporating the conventional runner vanes 6 are used. , B, and C, when cavitation CAV is generated when the maximum output Pt reaches 50% Pt, the conventional runner vane 6 is added to the first pump turbine A incorporating the splitter type runner vane 4 or the multi-blade type runner vane 5. It was found that when the second pump turbine B and the third pump turbine C incorporating the above are combined, power generation CAV is generated at 37% Pt with respect to the maximum output Pt. Therefore, it was found that the first pump turbine A incorporating the splitter type runner vane 4 or the multi-blade type runner vane 5 can expand the operating range by about 13% compared with the conventional pump turbine A.
[0038]
Further, according to the PH curve of the actual pump / turbine, the cavitation CAV generated when the first, second, and third pump turbines A, B, and C incorporating the conventional runner vane 6 are in the power generation operation and The pump turbine in which the variable speed pump turbine incorporating the splitter type runner vane 4 or the multi-blade type runner vane 5 is combined with the second pump turbine B and the third pump turbine C incorporating the conventional runner vane 6 is in power generation operation. When comparing with the cavitation CAV that occurs at the time, it was found that the pump of the variable speed pump turbine can be expanded by about 20%.
[0039]
Further, according to the PH (pump input-head) characteristic curve during pumping operation by the model test, as shown in FIG. 7, the first, second and third pumps incorporating the conventional runner vanes 6 are used. The second pump turbine B and the second pump turbine B incorporating the conventional runner vane 6 and the variable speed pump turbine incorporating the splitter type runner vane 4 or the multi-blade runner vane 5 and the inflow water reverse flow phenomenon generated by the turbines A, B and C. Comparing with the inflow and backflow phenomenon generated by the pump turbine in which the three pump turbines C are combined, it was found that the pump of the variable speed pump turbine can be expanded by about 3%.
[0040]
FIG. 8 is a schematic operation block diagram of a schematic pump turbine for explaining a second embodiment of the operation method of the pump turbine according to the present invention.
[0041]
In the present embodiment, the first pump turbine A incorporating the splitter type runner vane 4 or the multi-blade runner vane 5 has priority over the second pump turbine B and the third pump turbine C incorporating the conventional runner vane 6. Thus, power generation operation load adjustment is performed.
[0042]
Generally, when the command from the system is a power generation operation and the required output amount Pj from the system is the sum of the maximum outputs of the first pump turbine A, the second pump turbine B, and the third pump turbine C, the operation is performed. The unit issues a 100% output operation command to all pump turbines to operate them.
[0043]
However, when a load adjustment command is issued from the system during the 100% output operation, some of the first pump turbine A, the second pump turbine B, and the third pump turbine C receive an operation stop command. For the remainder, for example, load adjustment of partial load operation with 50% output is often performed.
[0044]
In this case, all the pump turbines A, B, and C incorporating the conventional runner vanes 6 are considered to some extent in consideration of the operation frequency in such partial load operation from the viewpoint of equipment reliability during partial load operation. Although the operation is performed to keep the water pressure pulsation low, there is still a limit, and it is difficult to keep the water pressure pulsation low in the entire operation range.
[0045]
The present embodiment takes such points into consideration. As shown in FIG. 8, when there is a load adjustment command from the system, for example, a required output amount Pj, the operation command unit 13 sends a required output amount Pj to the computing unit 14. Or given. At this time, the arithmetic unit 14 is given a drop ΔH between the water level Hst 1 of the upper pond and the water level Hst 2 of the lower pond detected by the water level detector 15.
[0046]
The calculation unit 14 calculates the load distribution ratio based on the required output amount Pj and the drop ΔH, and the second pump turbine B and the third pump turbine that incorporate the conventional runner vane 6 based on the calculation signal. Let C perform the rated operation, cause the first pump turbine A incorporating the remaining splitter-type runner vanes 4 or multi-blade runner vanes 5 to perform the partial load operation, and perform the operation corresponding to the total required output amount Pj for each pump. Water turbines A, B, C are used. Specifically, the arithmetic unit 14, while the respective guide vanes of the second pump turbine B and the third pump-turbine C (not shown) providing the opening signal X 2, the first pump-turbine A the guide vanes, giving opening signal X 1 to be the X 2> X 1, the output P 1 of the output P 2 and the first pump-turbine a second pump turbine B and the third pump-turbine C And the opening degree of the guide vane is corrected to match the predetermined output of each pump turbine A, B, C.
[0047]
Thus, in this embodiment, when shifting from the rated power generation operation to the partial load power generation operation, the second pump turbine B and the third pump turbine C incorporating the conventional runner vane 6 are rated operation with high turbine efficiency. Since the first pump turbine A incorporating the splitter type runner vane 4 or the multi-blade type runner vane 5 performs the partial load power generation operation and performs the operation satisfying the required output amount Pj from the system as a whole, the cavitation CAV It is possible to cause each of the pump turbines A, B, and C to perform a stable operation with low occurrence of. The first runner pump turbine A incorporating the splitter type runner vane 4 or the multi-blade type runner vane 5 may be a variable speed pump turbine.
[0048]
【The invention's effect】
As described above, the operation method of the pump turbine according to the present invention includes a splitter type runner vane or a multi-blade type runner vane in at least one of a plurality of pump turbines installed in parallel at an intermediate position between the upper pond and the lower pond. In addition, a conventional runner vane is incorporated into the remainder, and a pump turbine with a splitter type runner vane or multi-blade type runner vane is given priority when the head of power generation is low, at the high head of pumping operation, or when adjusting the power generation load. When operating and the inflowing water is stable, a pump turbine incorporating a conventional runner vane is operated to keep cavitation low. Combined with the improvement, the life of the pump turbine runner can be maintained longer than before.
[0049]
In addition, the operation method of the pump turbine according to the present invention includes a variable speed machine for a pump turbine incorporating a splitter type runner vane or a multi-blade type runner vane at the time of a low head of a power generation operation, at a high head of a pumping operation, at the time of adjusting a power generation load. Since the combined variable speed pump turbine is operated preferentially, the operating range can be further expanded as compared with the conventional case, and stable operation can be maintained high.
[Brief description of the drawings]
FIG. 1 is a schematic arrangement of pump turbines for explaining a first embodiment of a method for operating a pump turbine according to the present invention.
FIG. 2 is a schematic operation control block diagram for explaining a first embodiment of a pump turbine operation method according to the present invention.
FIG. 3 is a flowchart incorporated in a pump-turbine operation sorting unit for explaining a first embodiment of a pump-turbine operation method according to the present invention.
FIG. 4 is a cavitation erosion amount distribution diagram comparing conventional and the present invention.
FIG. 5 is a life diagram of a pump-turbine runner that compares the prior art and the present invention.
FIG. 6 is a diagram showing an operation region in which a conventional power generation operation is compared with the present invention.
FIG. 7 is a diagram showing an operation region in which the conventional and the present invention are compared in pumping operation.
FIG. 8 is a schematic operation control block diagram for explaining a second embodiment of the operation method of the pump turbine according to the present invention.
FIG. 9 is a plan sectional view showing a conventional Francis type pump turbine runner.
10 is a half sectional view of FIG. 9;
FIG. 11 is a diagram for explaining cavitation occurring in a runner vane during power generation operation.
FIG. 12 is a diagram for explaining cavitation generated in a runner vane during pumping operation.
FIG. 13 is a distribution diagram of pressure generated in a runner vane at a high head during pumping operation.
FIG. 14 is a plan sectional view showing a splitter type runner vane in which long runner vanes and short runner vanes are combined.
FIG. 15 is a plan sectional view showing a multi-blade runner vane in which a large number of long runner vanes are shortened and arranged.
FIG. 16 is a partial diagram in which a conventional runner vane is compared with a splitter type runner vane or a multi-blade type runner vane.
FIG. 17 is a diagram in which the operating width of a conventional runner vane during water turbine operation is compared with the operating width of a splitter type runner vane or a multi-blade type runner vane.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Runner crown 2 Runner band 3, 3a, 3b, 3c, 3d Runner vane 4 Splitter type runner vane 5 Multi-blade type runner vane 6 Conventional runner vane 7 Upper pond 8 Lower pond 9 Operation control part 10 Receiver 11 Lift / head calculation part 12 Pump Water wheel operation selection unit 13 Operation command unit 14 Calculation unit 15 Water level detector 20 Water channel

Claims (5)

上池と下池との間を結ぶ水路に複数台のポンプ水車を並列配置し、
これら複数台のポンプ水車のうち、少なくとも一つ以上のポンプ水車にスプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込み、
発電運転の低落差時および揚水運転の高揚程時のうち、いずれか一方の運転の際、上記スプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込んだポンプ水車を優先的に運転することを特徴とするポンプ水車の運転方法。
Multiple pump turbines are placed in parallel in the waterway connecting the upper pond and the lower pond,
Of these multiple pump turbines, install at least one of the splitter type runner vane and the multi-blade type runner vane into at least one pump turbine.
At the time of either one of the low head of the power generation operation and the high head of the pumping operation, the pump turbine incorporating one of the splitter type runner vanes and the multi-blade type runner vanes is preferentially operated. A method for operating a pump turbine, characterized by
スプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込んだポンプ水車は、揚水運転時、実水位差が予め定められた揚水最低水位差を上廻ったとき運転することを特徴とする請求項1記載のポンプ水車の運転方法。  A pump turbine incorporating one of a splitter type runner vane and a multi-blade type runner vane is operated when the actual water level difference exceeds a predetermined minimum pumped water level difference during pumping operation. Item 2. A method for operating a pump turbine according to item 1. スプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込んだポンプ水車は、発電運転時、実水位差が予め定められた発電基準水位差よりも下廻っているとき運転することを特徴とする請求項1記載のポンプ水車の運転方法。  A pump turbine in which one of a splitter type runner vane and a multi-blade type runner vane is incorporated is operated when the actual water level difference is lower than a predetermined power generation reference water level difference during power generation operation. The operation method of the pump turbine according to claim 1. 上池と下池との間を結ぶ水路に複数台のポンプ水車を並列配置し、
これら複数台のポンプ水車のうち、少なくとも一つ以上のポンプ水車にスプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込み、
発電運転の部分負荷時、上記スプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込んだポンプ水車に部分負荷運転を行わせ、残りのポンプ水車に定格運転を行わせ、全体として系統からの負荷調整指令を満す運転を行うことを特徴とするポンプ水車の運転方法。
Multiple pump turbines are placed in parallel in the waterway connecting the upper pond and the lower pond,
Of these multiple pump turbines, install at least one of the splitter type runner vane and the multi-blade type runner vane into at least one pump turbine.
At the time of partial load of power generation operation, let the pump turbine incorporating either one of the splitter type runner vanes or multi-blade type runner vanes perform partial load operation, let the remaining pump turbines perform rated operation, and from the system as a whole An operation method for a pump-turbine characterized by performing an operation that satisfies the load adjustment command.
上池と下池との間を結ぶ水路に複数台のポンプ水車を並列配置し、
これら複数台のポンプ水車のうち、少なくとも一つ以上のポンプ水車にスプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込み、
スプリッタ形ランナベーンおよび多翼形ランナベーンのうち、いずれか一方を組み込んだポンプ水車は、可変速機を組み込み、発電運転の低落差時、揚水運転の高揚程時、あるいは発電運転の部分負荷時のうち、いずれか一方の運転の際、優先的に運転することを特徴とするポンプ水車の運転方法。
Multiple pump turbines are placed in parallel in the waterway connecting the upper pond and the lower pond,
Of these multiple pump turbines, install at least one of the splitter type runner vane and the multi-blade type runner vane into at least one pump turbine.
Pump turbines that incorporate either a splitter-type runner vane or a multi-blade type runner vane incorporate a variable speed gear, and at the time of low heading of power generation operation, at the high head of pumping operation, or at the time of partial load of power generation operation , A driving method of a pump-turbine characterized by preferential driving during either one of the driving operations.
JP26899399A 1999-09-22 1999-09-22 Driving method of pump turbine Expired - Lifetime JP3869168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26899399A JP3869168B2 (en) 1999-09-22 1999-09-22 Driving method of pump turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26899399A JP3869168B2 (en) 1999-09-22 1999-09-22 Driving method of pump turbine

Publications (2)

Publication Number Publication Date
JP2001090650A JP2001090650A (en) 2001-04-03
JP3869168B2 true JP3869168B2 (en) 2007-01-17

Family

ID=17466182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26899399A Expired - Lifetime JP3869168B2 (en) 1999-09-22 1999-09-22 Driving method of pump turbine

Country Status (1)

Country Link
JP (1) JP3869168B2 (en)

Also Published As

Publication number Publication date
JP2001090650A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JPS6158666B2 (en)
KR101327341B1 (en) Rotating wheel used for direct-connection low-speed small-scale mixed-flow hydroturbine of hydrodynamic energy-saving cooling tower
KR20000012075A (en) High efficiency blade configuration for steam turbine
CN103104549A (en) Multiple operating condition design method of centrifugal charging pump guide vane of nuclear power station
CN102364083A (en) Long-short blade rotating wheel for mixed flow pump turbine
CN103104543A (en) Multi-operating-point design method of nuclear main pump omni-characteristic impeller
JP4163062B2 (en) Splitter runner and hydraulic machine
KR102056695B1 (en) High Efficiency Large Francis Turbine
JP3898311B2 (en) Water wheel or pump water wheel
AU2019323106A1 (en) Reversible pump turbine and guide vane for the reversible pump turbine
JP3869168B2 (en) Driving method of pump turbine
JPS6237234B2 (en)
CN105442506A (en) Impedance hole and method for accelerating attenuation of water-level fluctuation of pressure regulation chamber
JP2000054944A (en) Impeller
US1919376A (en) Reversible pump turbine
JP3524948B2 (en) How to drive a turbine with a variable speed hydraulic machine
JP2000136766A (en) Pump turbine runner
JP4876797B2 (en) Hydraulic machinery and hydraulic machinery staying
JP2009091992A (en) Francis turbine runner
CN216867079U (en) Centrifugal pump and guide vane wheel thereof
Martin Increased Kilowatt Output of Adjustable-Blade Propeller Turbines
CN219795437U (en) Three-machine type energy storage pump capable of self-adapting power adjustment
JP2010101265A (en) Runner of francis type hydraulic machine and francis type hydraulic machine
JPS5937276A (en) Pump water wheel
CN202597221U (en) Impeller structure of charging pump for nuclear power station

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R150 Certificate of patent or registration of utility model

Ref document number: 3869168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term