【発明の詳細な説明】[Detailed description of the invention]
この発明は耐熱性球状黒鉛フエライト鋳鉄の改
良に係り、更に詳しく言えば青熱脆性温度域にお
いて破断伸びの大きい耐熱性球状黒鉛フエライト
鋳鉄に係る。
例えばターボチヤージヤのタービンケーシング
が排気マニホールド等の材料に使用されるフエラ
イト系鋳鉄としては球状黒鉛鋳鉄(JIS・FCD40
相当材)が多く使用されているが、排出ガス温度
が高くなつてきており800℃近くにもなつている
ので、この材質では耐熱性(特に耐酸化性)が不
足するようになつてきた。
このため耐酸化性の良好な高Si鋳鉄を使用する
ことが試みられているが、従来の球状黒鉛鋳鉄に
比して繰返し加熱に弱く、使用中に割れを発生し
易い欠点がある。この欠点の主な原因としては約
300〜400℃、いわゆる青熱脆性温度域における破
断伸びが小さく、2〜3%程度であることが挙げ
られる。
これに対して4%Si、1%Mo(本明細書では
化学組成は通例のとおり重量%で示す)の高Si鋳
鉄が提案され、自動車ターボチヤージヤケーシン
グ、排気マニホールド等の材料として一部採用さ
れ、或いは舶用エンジン用過給機の材料として使
用されている。しかしながらこれらの場合単に化
学成分組成を指定しただけでは300〜400℃におけ
る破断伸びは小さく、5%以上の伸びを得ること
は難しい。
本発明は上記の如き事情に鑑み、青熱脆性温度
域における破断伸びが大きく、繰返し加熱に対し
て強いフエライト系球状黒鉛鋳鉄を提供すること
を目的とし、
C 2.6〜3.8%、
Si 3%以上3.5%未満、
Mn 0.5%以下、P 0.1%以下、
S 0.03%以下、Mo 0.1〜0.4%、
黒鉛球状化元素 0.02〜0.15%、
残部実質的に付随元素及びFeよりなり、平均フ
エライト結晶粒径が21μm以下で、青熱脆性温度
域における破断伸びが7%以上であることを特徴
とする耐熱性球状黒鉛フエライト鋳鉄に係る。
本発明における化学成分組成について本発明者
の研究結果から得られた第1図〜第4図を参照し
て述べると次の通りである。
Siは耐酸化性に最も効果のある元素であり、フ
エライト系球状黒鉛鋳鉄のSi含有量と耐酸化性と
の関係についての本発明者の研究結果の一例を示
せば第1図の通りである。図において縦軸には常
温と800℃との間の繰返し加熱600回後の材料板の
横断面を顕微鏡で調べた健全部の厚さの元の厚さ
に対する板厚変化の百分率をとり耐酸化性の大小
を示している。図からSi量が3.5%以上になると
板厚変化は小さくなるが、自際使用の状態を考慮
して健全部板厚が85%以上であることを要件とす
ればSiの必要量は3%以上となる。
これに対して同じくSi含有量と破断伸びとの関
係を示す第2図によれば、Si含有量が3%以上で
300〜400℃の破断伸びが低下し始め、および
Si3.9%以上で最低に近づく。
したがつて耐酸化性として健全部板厚85%以上
を確保でき、かつ300℃以上で破断伸びが7%以
上であるSi含有量として3%以上3.5%未満とす
る。
Moについていえば、例えば300〜400℃におけ
る破断伸びが7%以下になるSi含有量の鋳鉄に
Moを添加した場合の破断伸びの変化を示す第3
図によればMo含有量が0.1〜0.4%において破断
伸びが大きく改善され、破断伸びが7%以上にな
る。よつてMoの量は0.1〜0.4%とする。
その他の成分について言えば次の通りである。
Cは2.6%以下では球状黒鉛数が不足して結晶粒
を所期の細かさとすることが困難になる上、鋳造
性も悪くなる。一方3.8%以上では黒鉛が巨大化
しやすく、靭性を害し、鋳造後のドロス発生も多
くなつて好ましくないのでC量は2.6〜3.8%とす
る。
Mnは0.5%以上になるとパーライトが生成し易
く、かつ破断伸びを低下させるようになり5%以
上の値を得ることが難しくなるので0.5%を上限
とする。
Pは0.1%以上含有されると粒界に偏析しやす
く破断伸びを低下させ、5%以上の破断伸びが得
にくくなるので通例のように0.1%以下とする。
Sは粒界に偏析し易く、かつ黒鉛球状化を阻害
し、その量が多くなると5%以上の破断伸びを得
ることが難しくなるので通例のように0.03%以下
とする。
Mgと希土類元素とを合わせた黒鉛球状化元素
の残量は0.02〜0.15%とし、これが0.02%以下で
は黒鉛の球状化が不充分になり、0.15%以上では
その効果はほぼ一定になるほか、Mgの酸化物の
生成が多くなるので0.15%以下とする。球状化処
理剤としてMg単体で用いることなく、希土類元
素を含有するものを用いて球状黒鉛を細かく多数
分散させることが重要である。
フエライト粒度と破断伸びとの関係について述
べれば、第4図は2.6〜3.8%C、3〜4.2%Si、
Mo0.6%以下の球状黒鉛鋳鉄についてJIS・G0552
の試験方法に定める切断法によつて求めた平均フ
エライト粒径と300〜400℃の破断伸びの関係を示
しているが、平均フエライト粒径が小さくなるに
従つて破断伸びが大きくなり、破断伸び7%以上
を確実に得るためには平均フエライト粒径をおよ
そ21μm以下とすることが必要になる。
フエライト粒径を小さくすることは公知の熱処
理方法によるか或いは球状化処理剤(例えば希土
類元素入りの球状化処理剤)を適宜使用すること
により球状黒鉛を細かく多数分散させることによ
つて行うことができる。
次に本発明に係る鋳鉄と対比材について行つた
各種試験結果について述べる。第1表には代表的
な試験材の化学成分組成、第2表には機械的性
質、第3表には耐酸化性、フエライト結晶粒径及
び熱処理について示してある。表中試料No.1は本
発明に係る球状黒鉛鋳鉄であつて、No.2とNo.3は
Siの量を多くしたものであり、黒鉛球状化処理元
素としてはいずれもMgと希土類元素(RE)とを
含むものを使用した。
試料No.4〜6は対比材であつてNo.4はMo%が
高く、No.5はSi%が高くて結晶粒が大きいもの、
No.6はJIS球状黒鉛鋳鉄相当品で試料中で最もSi
%が低く、400℃破断伸びは大きいが耐酸化性が
本願発明品に比して劣るものであつて、球状化処
理剤としてMgを使用したものである。
The present invention relates to improvements in heat-resistant spheroidal graphite ferrite cast iron, and more specifically, to heat-resistant spheroidal graphite ferrite cast iron that has a large elongation at break in the blue-brittle temperature range. For example, the ferritic cast iron used for the exhaust manifold of the turbine casing of a turbocharger is spheroidal graphite cast iron (JIS/FCD40
However, as the temperature of exhaust gas is rising, reaching nearly 800℃, this material has begun to lack heat resistance (particularly oxidation resistance). For this reason, attempts have been made to use high-Si cast iron, which has good oxidation resistance, but it has the disadvantage that it is more susceptible to repeated heating than conventional spheroidal graphite cast iron, and is more likely to crack during use. The main cause of this shortcoming is approximately
The elongation at break in the so-called blue brittle temperature range of 300 to 400°C is small, being about 2 to 3%. In response, high-Si cast iron with 4% Si and 1% Mo (in this specification, the chemical composition is expressed in weight percent as usual) has been proposed, and has been partially adopted as a material for automobile turbocharger casings, exhaust manifolds, etc. It is also used as a material for superchargers for marine engines. However, in these cases, simply by specifying the chemical composition, the elongation at break at 300 to 400°C is small, and it is difficult to obtain an elongation of 5% or more. In view of the above-mentioned circumstances, the present invention aims to provide a ferritic spheroidal graphite cast iron that has a large elongation at break in the blue brittle temperature range and is resistant to repeated heating. Less than 3.5%, Mn 0.5% or less, P 0.1% or less, S 0.03% or less, Mo 0.1 to 0.4%, graphite nodularizing element 0.02 to 0.15%, the remainder substantially consisting of accompanying elements and Fe, average ferrite crystal grain size The present invention relates to a heat-resistant spheroidal graphite ferrite cast iron characterized by having a diameter of 21 μm or less and an elongation at break in a blue brittle temperature range of 7% or more. The chemical component composition in the present invention will be described below with reference to FIGS. 1 to 4 obtained from the research results of the present inventor. Si is the most effective element for oxidation resistance, and an example of the inventor's research results on the relationship between the Si content and oxidation resistance of ferritic spheroidal graphite cast iron is shown in Figure 1. . In the figure, the vertical axis shows the percentage change in the thickness of the sound part of the material board after 600 repeated heatings between room temperature and 800°C using a microscope. It shows the size of gender. As shown in the figure, when the amount of Si increases to 3.5% or more, the change in plate thickness decreases, but if the condition of actual use is taken into consideration and the requirement is that the thickness of the healthy part be 85% or more, the required amount of Si is 3%. That's all. On the other hand, according to Figure 2, which also shows the relationship between Si content and elongation at break, when the Si content is 3% or more,
The elongation at break at 300-400℃ begins to decrease, and
It approaches the lowest at Si3.9% or higher. Therefore, the Si content is set to be 3% or more and less than 3.5% so that a sound part thickness of 85% or more can be ensured as oxidation resistance and the elongation at break is 7% or more at 300°C or higher. Regarding Mo, for example, cast iron with Si content has a fracture elongation of 7% or less at 300 to 400℃.
The third part shows the change in elongation at break when Mo is added.
According to the figure, the elongation at break is greatly improved when the Mo content is 0.1 to 0.4%, and the elongation at break becomes 7% or more. Therefore, the amount of Mo should be 0.1 to 0.4%. The other ingredients are as follows.
If C is less than 2.6%, the number of spheroidal graphites becomes insufficient, making it difficult to make crystal grains as fine as desired, and castability also deteriorates. On the other hand, if it exceeds 3.8%, the graphite tends to become bulky, which impairs toughness and generates more dross after casting, which is undesirable, so the C content is set to 2.6 to 3.8%. If Mn exceeds 0.5%, pearlite tends to form and the elongation at break decreases, making it difficult to obtain a value of 5% or more, so the upper limit is set at 0.5%. If P is contained in an amount of 0.1% or more, it tends to segregate at grain boundaries, lowering the elongation at break, and making it difficult to obtain an elongation at break of 5% or more, so it is usually kept at 0.1% or less. S tends to segregate at grain boundaries and inhibits graphite spheroidization, and if its amount increases, it becomes difficult to obtain an elongation at break of 5% or more, so it is usually kept at 0.03% or less. The remaining amount of graphite spheroidizing elements, which is a combination of Mg and rare earth elements, should be 0.02 to 0.15%. If it is less than 0.02%, graphite spheroidizing will be insufficient, and if it is more than 0.15%, the effect will be almost constant. Since the formation of Mg oxide increases, the content should be 0.15% or less. It is important not to use Mg alone as a spheroidizing agent, but to use one containing a rare earth element to finely disperse a large number of spheroidal graphites. Regarding the relationship between ferrite particle size and elongation at break, Figure 4 shows 2.6 to 3.8% C, 3 to 4.2% Si,
JIS/G0552 for spheroidal graphite cast iron with Mo0.6% or less
The graph shows the relationship between the average ferrite particle size determined by the cutting method specified in the test method and the elongation at break at 300 to 400°C. In order to reliably obtain 7% or more, it is necessary to make the average ferrite particle size approximately 21 μm or less. The ferrite particle size can be reduced by a known heat treatment method or by appropriately using a spheroidizing agent (for example, a spheroidizing agent containing a rare earth element) to finely disperse a large number of spheroidal graphites. can. Next, various test results conducted on the cast iron according to the present invention and a comparative material will be described. Table 1 shows the chemical composition of typical test materials, Table 2 shows the mechanical properties, and Table 3 shows the oxidation resistance, ferrite crystal grain size, and heat treatment. Sample No. 1 in the table is spheroidal graphite cast iron according to the present invention, and No. 2 and No. 3 are
The amount of Si was increased, and the graphite spheroidizing treatment elements used included Mg and rare earth elements (RE). Samples No. 4 to 6 are comparative materials, with No. 4 having a high Mo% and No. 5 having a high Si% and large crystal grains.
No.6 is equivalent to JIS spheroidal graphite cast iron and has the highest Si in the sample.
% and a large elongation at break at 400°C, but the oxidation resistance is inferior to the product of the present invention, and Mg is used as a spheroidizing agent.
【表】【table】
【表】【table】
【表】【table】
【表】
上記の表から判るように本発明に係る球状黒鉛
鋳鉄No.1はフエライト結晶粒が細かく、而も耐酸
化性に優れ、その上400℃破断伸びも高い。試料
No.2、3も同様に結晶粒が細かく、試料No.1と同
等の成績を示している。しかしNo.3はSi含有量が
多いだけ酸化が少なく、酸化特性の点で優れてい
るが、400℃破断伸びがNo.1、2に比して若干小
さくなつている。
試料No.4と5とは本発明品と類似の化学成分組
成を有するが、結晶粒が大きく、400℃破断伸び
が著しく小さい。
No.6のJIS・FCD40相当品は前述したように
400℃破断伸びは大きいが、耐酸化性が本発明品
に比して劣つている。
以上述べたように本発明に係る球状黒鉛鋳鉄は
Si含有量はJIS球状黒鉛鋳鉄よりも高いが、いわ
ゆる高Si鋳鉄よりも少ないにもかかわらず耐酸化
性にすぐれ、更に結晶粒を細かくすることによつ
て青熱脆性温度域の破断伸びが大きいので、ター
ボチヤージあるいはマニホールド等の如くに高温
に繰返し加熱される機械部品の材料に用いれば酸
化ならびに割れの発生を防止することができ、寿
命を延長する等その実用上の効果はきわめて大き
い。[Table] As can be seen from the above table, spheroidal graphite cast iron No. 1 according to the present invention has fine ferrite crystal grains, excellent oxidation resistance, and high elongation at break at 400°C. sample
Samples Nos. 2 and 3 also had fine grains, and showed the same results as sample No. 1. However, No. 3 has less oxidation due to its high Si content and is excellent in terms of oxidation properties, but its elongation at break at 400°C is slightly lower than Nos. 1 and 2. Samples Nos. 4 and 5 have similar chemical compositions to the products of the present invention, but their crystal grains are large and their elongation at break at 400°C is extremely low. As mentioned above, the No. 6 JIS/FCD40 equivalent product
Although the elongation at break at 400°C is high, the oxidation resistance is inferior to the product of the present invention. As mentioned above, the spheroidal graphite cast iron according to the present invention is
Although the Si content is higher than JIS spheroidal graphite cast iron, but less than so-called high-Si cast iron, it has excellent oxidation resistance, and by making the crystal grains finer, it has a higher elongation at break in the blue brittle temperature range. Therefore, if it is used as a material for mechanical parts that are repeatedly heated to high temperatures, such as turbochargers or manifolds, it can prevent oxidation and cracking, and has extremely large practical effects such as extending its life.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図はフエライト系球状黒鉛鋳鉄のSi含有量
と耐酸化性との関係を示すグラフ、第2図は同じ
くSi含有量と破断伸びとの関係を示すグラフ、第
3図は同じくMo含有量と破断伸びとの関係を示
すグラフ、第4図は同じくフエライト結晶粒径と
破断伸びとの関係を示すグラフである。
Figure 1 is a graph showing the relationship between Si content and oxidation resistance of ferritic spheroidal graphite cast iron, Figure 2 is a graph showing the relationship between Si content and elongation at break, and Figure 3 is also a graph showing the relationship between Si content and elongation at break. FIG. 4 is a graph showing the relationship between ferrite crystal grain size and elongation at break.