JPS6372850A - Spheroidal graphite cast iron excellent in wear resistance and oxidation resistance - Google Patents

Spheroidal graphite cast iron excellent in wear resistance and oxidation resistance

Info

Publication number
JPS6372850A
JPS6372850A JP21678986A JP21678986A JPS6372850A JP S6372850 A JPS6372850 A JP S6372850A JP 21678986 A JP21678986 A JP 21678986A JP 21678986 A JP21678986 A JP 21678986A JP S6372850 A JPS6372850 A JP S6372850A
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
resistance
ferrite
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21678986A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hibino
義博 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21678986A priority Critical patent/JPS6372850A/en
Publication of JPS6372850A publication Critical patent/JPS6372850A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the wear resistance and oxidation resistance, in a high temp. region, of the titled cast iron to be obtained, by incorporating C, Si, Cr, Nb, etc., in a specified blending proportion and also by constituting the structure of ferrite, a lumpy carbonitride of Nb, Cr, etc., dispersed in the ferrite, and spheroidal graphite. CONSTITUTION:The cast iron has a composition consisting of, by weight, 3.0-4.0% C, 3.5-5.0% Si, 0.02-0.06% Mg, 0.1-0.5% Nb, 0.05-0.2% Cr, <=0.5% Mn, <=0.1% P, <=0.05% S, and the balance Fe with inevitable impurities and also has a structure constituted of ferrite, a lumpy carbonitride composed principally of Nb and Cr and dispersed into the above ferrite, and spheroidal graphite. Moreover, it is desirable that average grain size of the above lumpy carbonitride is regulated to about 1-20mum. Owing to this composition, the cast iron excellent in resistance to wear and oxidation in a high temp. region can be obtained without sacrificing workability. Accordingly, this cast iron is suitably used for exhaust parts for engine, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高温領域での耐摩耗性及び耐酸化性に優れた球
状黒鉛鋳鉄の改良に関する。本発明は、例えば、自動車
のTンジン部品であるターボチャージャのターボハウジ
ング、エキゾーストマニホールドなどに利用することが
できる。ここで、エキゾーストマニホールドは、1ンジ
ンのシリンダから排出される高温の排気ガスをエキゾー
ストパイプに送るためのものである。又、ターボハウジ
ングは、排気ガスのエネルギーで排気タービンを回して
コンプレッサを駆動させ、エンジン(大気圧以上の高密
度の空気を供給するターボチャージャのハウジングであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the improvement of spheroidal graphite cast iron which has excellent wear resistance and oxidation resistance in high temperature ranges. INDUSTRIAL APPLICATION This invention can be utilized for the turbo housing of the turbocharger, exhaust manifold, etc. which are engine parts of an automobile, for example. Here, the exhaust manifold is for sending high-temperature exhaust gas discharged from the cylinder of one engine to the exhaust pipe. The turbo housing is a housing for a turbocharger that uses the energy of exhaust gas to rotate an exhaust turbine to drive a compressor and supply high-density air at or above atmospheric pressure to the engine.

[従来の技術1 例えば、自th iD g品としてターボチャージャの
ターボハウジング、エキゾーストマニホールドがある。
[Prior Art 1] For example, self-developed products include a turbo housing for a turbocharger and an exhaust manifold.

これらは高温領域での耐摩耗性、耐酸化性が要求されて
いる。そこで従来よりターボハウジングやエキゾースト
マニホールドでは、高級材料であるシリコンを4%前後
に^めた高シリコン系球状黒鉛鋳鉄が使用される傾向に
ある。
These materials are required to have wear resistance and oxidation resistance in high temperature ranges. Therefore, turbo housings and exhaust manifolds have traditionally been made of high-silicon spheroidal graphite cast iron, which contains around 4% silicon, which is a high-grade material.

ところで近年のエンジンの^性能化に伴って、排気ガス
温度が上胃し、そのため、上記したターボハウジングや
エキゾーストマニホールドでは、高温領域での一層の耐
摩耗性及び耐酸化性が要請されている。
By the way, as the performance of engines has improved in recent years, the temperature of exhaust gas has increased, and therefore, the above-mentioned turbo housings and exhaust manifolds are required to have even higher wear resistance and oxidation resistance in high-temperature regions.

例えばターボチャージャのターボハウジングでは、ウェ
ストゲートバルブを作動させるためのシャフトがターボ
ハウジングと接触するので、排気ガス温度が上昇してい
るため、使用中に異常摩耗が生じ易い。このように異常
摩耗が生じると、ターボハウジングからの排気ガス漏れ
、ウェストゲートバルブの作動不良などが生じ易い。ウ
ェストゲートバルブの作動不良を抑えるために、従来よ
り上記シャフトにスリーブを挿入しているが、スリーブ
とターボハウジングとの熱膨張差によりスリーブが抜け
ることがあった。
For example, in the turbo housing of a turbo charger, the shaft for operating the wastegate valve comes into contact with the turbo housing, so the temperature of exhaust gas is rising, so abnormal wear is likely to occur during use. When abnormal wear occurs in this way, exhaust gas leaks from the turbo housing, malfunction of the wastegate valve, etc. are likely to occur. Conventionally, a sleeve has been inserted into the shaft in order to prevent malfunctions of the wastegate valve, but the sleeve sometimes comes off due to the difference in thermal expansion between the sleeve and the turbo housing.

[発明が解決しようとする問題点] 本発明は上記した実情に鑑みなされたものであり、その
目的は、高温領域での耐摩耗性および耐酸化性に優れた
高シリコン系球状黒鉛鋳鉄を提供するにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a high-silicon based spheroidal graphite cast iron that has excellent wear resistance and oxidation resistance in high temperature ranges. There is something to do.

[問題点を解決するための手段] 本発明に係る高シリコン系球状黒鉛鋳鉄は、炭素、シリ
コン、ニオブ、クロムなどをバランスよく添加すること
により完成されたものである。即ち、本発明に係る高シ
リコン系球状黒鉛鋳鉄は、型出%で炭素3.0〜4.0
%、シリコン3.5%〜5.0%、マンガン0.5%以
下、リン0゜1%以下、イオウ0.05%以下、マグネ
シウム0.02〜0.06%、ニオ70.1〜0.5%
、クロム0.05〜0.2%、残部鉄および不可避の不
純物からなり、 その組織は、フェライトと、フェライト中に分散したニ
オブ及びクロムを主体とする塊状炭窒化物と、球状黒鉛
と、で構成されていることを特徴とするものである。こ
こで塊状炭窒化物の平均粒径は1〜20μ程度であるこ
とが好ましい。
[Means for Solving the Problems] The high-silicon spheroidal graphite cast iron according to the present invention is completed by adding carbon, silicon, niobium, chromium, etc. in a well-balanced manner. That is, the high silicon-based spheroidal graphite cast iron according to the present invention has a carbon content of 3.0 to 4.0 in terms of demolding percentage.
%, silicon 3.5% to 5.0%, manganese 0.5% or less, phosphorus 0.1% or less, sulfur 0.05% or less, magnesium 0.02 to 0.06%, niobium 70.1 to 0 .5%
, 0.05 to 0.2% chromium, balance iron and unavoidable impurities, and its structure is composed of ferrite, massive carbonitride mainly composed of niobium and chromium dispersed in ferrite, and spheroidal graphite. It is characterized by being configured. Here, the average particle size of the massive carbonitride is preferably about 1 to 20 μm.

ここで、組成の限定理由につき説明する。炭素を3.0
〜4.0%にしたのは、炭素が360%未満になると、
溶湯の鋳造性が悪化し、一方4゜0%を越えると溶湯で
のドロスが増加しドロス欠陥が多くなるからである。
Here, the reasons for limiting the composition will be explained. 3.0 carbon
The reason for setting it to ~4.0% is that when the carbon content is less than 360%,
This is because the castability of the molten metal deteriorates, and on the other hand, if it exceeds 4.0%, dross in the molten metal increases and dross defects increase.

シリコンを3.5〜5.0%に限定したのは、シリコン
が3.5%未満では排気系部品として必要とする耐熱性
が得られない。一方シリコンが5゜0%を越えると溶湯
の鋳造性が悪化しかつフェライト11織が著しく脆化す
るからである。
The reason why the silicon content is limited to 3.5 to 5.0% is that if the silicon content is less than 3.5%, the heat resistance necessary for exhaust system parts cannot be obtained. On the other hand, if the silicon content exceeds 5.0%, the castability of the molten metal deteriorates and the ferrite 11 weave becomes extremely brittle.

マンガンを0.5%以下としたのは、マンガンは耐熱性
を悪化させるので出来るだけ少ない方が良く、0.5%
未満とした。この量は溶解原料から必然的に混入される
りである。
The reason why manganese is set to 0.5% or less is because manganese deteriorates heat resistance, so it is better to have as little as possible.
less than This amount is necessarily mixed in from the dissolved raw materials.

リンを0.1%以下としたのは、リンは組織を脆化させ
るので出来るだけ少ない方が好ましく、イのため0.1
%以下とした。
The reason why the phosphorus content is 0.1% or less is because phosphorus embrittles the tissue, so it is preferable to keep it as low as possible.
% or less.

イオウを0.05%以下としたの4よ、イオウは黒鉛の
球状化を阻害するので出来るだけ少ない方が好ましく、
そのため0.05%以下とした。
The sulfur content is 0.05% or less4. Sulfur inhibits the spheroidization of graphite, so it is preferable to have as little sulfur as possible.
Therefore, the content was set at 0.05% or less.

マグネシウムを0.02〜0.06%としたのは、マグ
ネシウムが0.02%未満では黒鉛の球状化度が不足し
、良好な球状黒鉛鋳鉄を生成することができず、一方0
.06%を越えるとセメンタイトが安定化したりドロス
欠陥が発生したりするので、0.06%を上限とした。
The reason for setting the magnesium content to 0.02 to 0.06% is that if the magnesium content is less than 0.02%, the degree of spheroidization of graphite will be insufficient and it will not be possible to produce good spheroidal graphite cast iron.
.. If the content exceeds 0.06%, cementite becomes stabilized or dross defects occur, so the upper limit was set at 0.06%.

クロムを0.05〜0.2%としたのは、クロムは固溶
すると耐酸化性向上に効果がある元素であり、かつ、ニ
オブと共存して塊状炭窒化物を作り、耐摩耗性を向上さ
せる。そのため0.05%以上は必要である。又、クロ
ムが0.2%を越えると粗大なセメンタイトが生成し易
くなり機械的性質や加工性を悪化させるので、上限を0
.2%とした。ニオブを0.1〜0.5%としたのは、
ニオブが微細な炭窒化物を生成し組織の耐摩耗性を向上
させる元素である。そのため0.1%以上含有するのが
好ましく、一方0.5%を越えてもその効果の向上は望
めず、かえうて加工性を悪化するので上限を0.5%と
した。
The reason why chromium is set at 0.05 to 0.2% is because chromium is an element that is effective in improving oxidation resistance when dissolved in solid solution, and also because it coexists with niobium to form lumpy carbonitrides and improves wear resistance. Improve. Therefore, 0.05% or more is necessary. In addition, if chromium exceeds 0.2%, coarse cementite tends to form and deteriorates mechanical properties and workability, so the upper limit should be set to 0.
.. It was set at 2%. The reason why niobium was set at 0.1% to 0.5% was because
Niobium is an element that generates fine carbonitrides and improves the wear resistance of the structure. Therefore, it is preferable to contain 0.1% or more, and on the other hand, if the content exceeds 0.5%, no improvement in the effect can be expected, and on the contrary, the processability deteriorates, so the upper limit was set at 0.5%.

[試験例] 以下本発明に係る球状黒鉛鋳鉄の各試験例について比較
材とともに説明する。まず、2Oka高周波誘導炉を用
いて、溶解温度1500℃で溶解し、溶解後鉄−50%
シリコンー10%マグネシウム系合金を添加して球状化
処理した。球状化処理は、ず賦化処理温度を1450℃
とし、ホスホライザにより行なった。その侵、Fe−7
5%Siにて接種し、Yブロックに注湯した。これによ
り第1表に示す組成を有する本発明材に係る試片A、B
および比較材として試片CSD、E1F。
[Test Examples] Each test example of the spheroidal graphite cast iron according to the present invention will be explained below together with comparative materials. First, using a 2Oka high frequency induction furnace, melt at a melting temperature of 1500℃, and after melting, iron -50%
A silicone-10% magnesium alloy was added to perform spheroidization treatment. For the spheroidization process, the temperature of the spheroidization process was 1450℃.
The test was carried out using a phosphorizer. The invasion, Fe-7
It was inoculated with 5% Si and poured into Y block. As a result, specimens A and B of the present invention material having the composition shown in Table 1
and specimens CSD and E1F as comparison materials.

Gも溶製した。G was also melted.

(以下余白) 第1表 第1表に示す本発明材としての試片A1試片Bは比較材
としての試片Cに本発明要素であるクロム、ニオブを添
加した材質である。又、比較材としての試片りは、試片
Cに本発明材のクロム及び二Aプを上限以上に添加した
材質である。比較材としての試片E及びGは、比較材と
しての試片Cにそれぞれ単独でクロムとニオブとを添加
した材質である。又、比較材としの試片Fは、J[5F
CD40相当材に本発明要素であるクロム、ニオブを添
加した材質である。
(The following is a blank space) Table 1 Specimen A1 as the material of the present invention and Specimen B as the material of the present invention shown in Table 1 are materials in which chromium and niobium, which are the elements of the present invention, are added to the specimen C as the comparative material. The specimen used as a comparison material is a material in which chromium and 2A of the present invention material are added to specimen C in an amount exceeding the upper limit. Specimens E and G as comparative materials are materials in which chromium and niobium are added to specimen C as a comparative material, respectively. In addition, specimen F as a comparative material is J[5F
This material is made by adding chromium and niobium, which are the elements of the present invention, to a material equivalent to CD40.

上記したように形成した試片A〜Gについて酸化試験を
行った。酸化試験は700℃にて大気中に200時間保
持した後、その最大酸化スケール厚さを求め、これを酸
化量とした。さらに800℃においても大気中に200
時間保持し、その最大酸化スケール厚さを求めた。その
結果を第1図に示す。第1図の棒グラフにおいて白抜き
の部位が700℃、ハツチングで示した部位が800℃
における酸化スケール厚さを示す。
An oxidation test was conducted on specimens A to G formed as described above. In the oxidation test, the sample was kept in the air at 700°C for 200 hours, and then the maximum oxide scale thickness was determined, and this was taken as the amount of oxidation. Furthermore, even at 800℃, 200%
The maximum oxide scale thickness was determined by holding the sample for a certain period of time. The results are shown in FIG. In the bar graph in Figure 1, the white area is 700℃, and the hatched area is 800℃.
oxide scale thickness.

耐摩耗試験は第2図に概略的に示す試1)装置により行
った。即ち、相手材1としてJ lS−8UH4%のプ
oyり(長さ40mm1巾2Qmm。
The wear resistance test was carried out using the test 1) apparatus schematically shown in FIG. That is, the mating material 1 was made of 4% JIS-8UH (length: 40 mm, width: 2 Q mm).

板厚10mm)を用い、この相手材1と試片2(長さ5
Qmm、外径10mm)とを矢印入方向からの荷11 
KOで押し付け、その状態ですべり速度iooorpm
にて60分間WJ幼し、試験終了後試片2を表面粗さ計
を用いて摩擦面と基準面の段差とを測定し、その差を摩
耗深さとした。その耐摩耗試験の結果を第3図に示す。
This mating material 1 and specimen 2 (length 5
Qmm, outer diameter 10mm) and the load 11 from the direction of the arrow.
Press with KO and in that state slide speed iooorpm
After the test was completed, the difference in level between the friction surface and the reference surface was measured using a surface roughness meter, and the difference was taken as the wear depth. The results of the wear resistance test are shown in Figure 3.

なおこの場合、温度は700℃、大気雰囲気下において
行った。
In this case, the temperature was 700° C. and the test was carried out in an air atmosphere.

本発明材としての試片A1試片Bでは、第1図に示すよ
うに700℃及び800℃における耐酸化性の向上が見
られる。また第3図に示すように本発明材としての試片
A及び試片Bでは、摩耗深さは2μ程度と、比較材とし
ての試片Cに(摩耗深さ7μ)に比較して大幅に向上し
ている。
As shown in FIG. 1, improvements in oxidation resistance at 700° C. and 800° C. were observed in specimen A1 and specimen B as materials of the present invention. Furthermore, as shown in Fig. 3, the wear depth of specimens A and B, which are the materials of the present invention, is approximately 2μ, which is significantly greater than that of specimen C, which is the comparison material (wear depth is 7μ). It's improving.

比較材としての試片りでは第1図に示すように耐酸化性
は向上しており、ざらに、耐摩耗性は本発明材としての
試片A、[3とほとんど変らない。
As shown in FIG. 1, the oxidation resistance of the comparative specimens was improved, and the abrasion resistance was almost the same as that of specimens A and [3, which were the materials of the present invention.

しかしながら本発明材としての試片A、Bの硬さはHV
192〜215であるのに対して、比較材としての試片
りの硬さはHV262とかなり高くなり、そのため加工
性が悪化する問題が生じる。
However, the hardness of specimens A and B as materials of the present invention is HV.
192 to 215, whereas the hardness of the sample as a comparative material is considerably higher, HV262, which causes a problem of poor workability.

比較材としての試片Eの場合第3図に示すように試片E
の摩耗深さは5.5μ程度であり、耐摩耗性の向上は少
なかった。比較材としての試片Gは第1図に示すように
若干耐酸化性は向上しているものの、第3図に示すよう
に摩耗深さは7μと大きく耐摩耗性は向上しなかった。
In the case of specimen E as a comparative material, as shown in Fig. 3, specimen E
The wear depth was about 5.5μ, and the improvement in wear resistance was small. Specimen G as a comparison material had slightly improved oxidation resistance as shown in FIG. 1, but the wear depth was as large as 7μ as shown in FIG. 3, and the wear resistance was not improved.

比較材としての試片Fでは、第1図に示すように800
℃での酸化スケール厚さが500μ以上と厚く、そのた
め耐酸化性が極めて悪い。それのみならず第3図に示す
ように摩耗深さが6.5μ程度と耐摩耗性も向上しない
。この理由は、試片Fでは、クロム、ニオブの添加によ
り炭窒化物が析出するものの、基地のフェライトの耐酸
化性が悪いため、摩耗試験中に一化が進行し、その酸化
膜がI!jll!により剥離し、そのため耐摩耗性が悪
化するためであると推察される。
In specimen F as a comparison material, as shown in Fig. 1, 800
The oxide scale thickness at ℃ is as thick as 500μ or more, and therefore the oxidation resistance is extremely poor. Not only this, but as shown in FIG. 3, the wear depth is about 6.5μ, and the wear resistance is not improved. The reason for this is that in Specimen F, although carbonitrides precipitate due to the addition of chromium and niobium, the oxidation resistance of the base ferrite is poor, so consolidation progresses during the wear test, and the oxide film is I! jll! This is presumed to be due to deterioration of wear resistance due to peeling.

(以下余白) 第2表 次に、実際の耐久性を評価するため、第2表に示す化学
成分の本発明材にてターボチャージャのターボハウジン
グを製作し、ウェストゲートバルブ作動用シャフトのと
ころに通常挿入している焼結金11E%スリーブを廃止
した構造のターボチャージャを製作した。そして実際の
2000ccガソリンエンジンにて最高回転数を550
0rpmとし、全負荷とアイドルとを繰返す繰返し耐久
試験を300時間行った。この試1M!結果では、シャ
フトに何等損傷もなく良好な結果が得られた。これはタ
ーボハウジングの耐摩耗性および耐酸化性が向上してい
るためと推察される。
(Margins below) Table 2 Next, in order to evaluate the actual durability, a turbo housing for a turbocharger was manufactured using the inventive material with the chemical composition shown in Table 2, and a turbo housing was installed at the wastegate valve operating shaft. We have manufactured a turbocharger with a structure that eliminates the sintered gold 11E% sleeve that is normally inserted. And the maximum rotation speed is 550 with an actual 2000cc gasoline engine.
A repeated durability test was conducted for 300 hours at 0 rpm, repeating full load and idle. This test is 1M! The results showed that there was no damage to the shaft and good results were obtained. This is presumed to be due to improved wear resistance and oxidation resistance of the turbo housing.

[発明の効果] 以上説明したように本発明に係る高シリコン系球状黒鉛
鋳鉄では、炭素、シリコン、クロム、ニオブをバランス
よく添加し、これによりその組織をフェライトと、フェ
ライト中に分散したニオブ及びクロムを主体とする塊状
炭窒化物と、球状黒鉛と、で構成している。そのため、
加工性をvAvjLすることなく高温領域での耐摩耗性
及び耐酸化性の双方に優れている。
[Effects of the Invention] As explained above, in the high silicon-based spheroidal graphite cast iron according to the present invention, carbon, silicon, chromium, and niobium are added in a well-balanced manner, thereby changing the structure to ferrite, niobium and niobium dispersed in the ferrite. It is composed of massive carbonitride mainly composed of chromium and spheroidal graphite. Therefore,
It has excellent wear resistance and oxidation resistance in high temperature ranges without decreasing processability.

従って本発明に係る高シリコン系球状黒鉛鋳鉄によれば
、高温での耐酸化性および耐摩耗性の双方が要求される
エンジン用排気部品、例えばターボチャージャのターボ
ハウジング、エキゾーストマニホールドなどの部品に適
用できる。
Therefore, the high-silicon spheroidal graphite cast iron according to the present invention can be applied to engine exhaust parts that require both oxidation resistance and wear resistance at high temperatures, such as parts such as turbo housings of turbochargers and exhaust manifolds. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐酸化試験の試験結果を示すグラフであり、第
2図は耐摩耗性の試験装置を概略的に示す斜視図である
。第3図は耐摩耗試験の結果を示す棒グラフである。 図中1は相手材、2は試片を示す。
FIG. 1 is a graph showing the test results of the oxidation resistance test, and FIG. 2 is a perspective view schematically showing the abrasion resistance testing apparatus. FIG. 3 is a bar graph showing the results of the abrasion test. In the figure, 1 indicates the mating material and 2 indicates the specimen.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で炭素3.0〜4.0%、シリコン3.5
%〜5.0%、マンガン0.5%以下、リン0.1%以
下、イオウ0.05%以下、マグネシウム0.02〜0
.06%、ニオブ0.1〜0.5%、クロム0.05〜
0.2%、残部鉄および不可避の不純物からなり、 その組織は、フェライトと、該フェライト中に分散した
ニオブ及びクロムを主体とする塊状炭窒化物と、球状黒
鉛と、で構成されていることを特徴とする高温領域にお
ける耐摩耗性及び耐酸化性に優れた球状黒鉛鋳鉄。
(1) Carbon 3.0-4.0%, silicon 3.5% by weight
%~5.0%, manganese 0.5% or less, phosphorus 0.1% or less, sulfur 0.05% or less, magnesium 0.02~0
.. 06%, niobium 0.1~0.5%, chromium 0.05~
0.2%, the balance being iron and unavoidable impurities, and its structure is composed of ferrite, massive carbonitride mainly composed of niobium and chromium dispersed in the ferrite, and spheroidal graphite. Spheroidal graphite cast iron with excellent wear resistance and oxidation resistance in high temperature ranges.
(2)塊状炭窒化物は、平均粒径が1〜20μ程度であ
る特許請求の範囲第1項記載の高温領域における耐摩耗
性及び耐酸化性に優れた球状黒鉛鋳鉄。
(2) The spheroidal graphite cast iron having excellent wear resistance and oxidation resistance in a high temperature range according to claim 1, wherein the massive carbonitride has an average particle size of about 1 to 20 μm.
(3)ターボチャージャハウジング、エキゾーストマニ
ホールドに用いられる特許請求の範囲第1項記載の高温
領域における耐摩耗性及び耐酸化性に優れた球状黒鉛鋳
鉄。
(3) Spheroidal graphite cast iron having excellent wear resistance and oxidation resistance in a high temperature region as described in claim 1, which is used for a turbocharger housing and an exhaust manifold.
JP21678986A 1986-09-12 1986-09-12 Spheroidal graphite cast iron excellent in wear resistance and oxidation resistance Pending JPS6372850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21678986A JPS6372850A (en) 1986-09-12 1986-09-12 Spheroidal graphite cast iron excellent in wear resistance and oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21678986A JPS6372850A (en) 1986-09-12 1986-09-12 Spheroidal graphite cast iron excellent in wear resistance and oxidation resistance

Publications (1)

Publication Number Publication Date
JPS6372850A true JPS6372850A (en) 1988-04-02

Family

ID=16693904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21678986A Pending JPS6372850A (en) 1986-09-12 1986-09-12 Spheroidal graphite cast iron excellent in wear resistance and oxidation resistance

Country Status (1)

Country Link
JP (1) JPS6372850A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146637A (en) * 1989-11-01 1991-06-21 Kusaka Reametaru Kenkyusho:Kk Cast iron and its modifying method
WO2007040464A1 (en) 2005-09-15 2007-04-12 Grede Foundries, Inc. High silicon niobium casting alloy and process for producing the same
WO2010070949A1 (en) * 2008-12-18 2010-06-24 三菱重工業株式会社 Spheroidal graphite cast iron
CN103352163A (en) * 2013-08-01 2013-10-16 河南省中原内配铸造有限公司 Double phase cast iron cylinder liner produced through centrifugal casting, and processing technology thereof
WO2021193523A1 (en) * 2020-03-23 2021-09-30 アイシン高丘株式会社 Ferritic spheroidal graphite cast iron, differential case, and differential device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146637A (en) * 1989-11-01 1991-06-21 Kusaka Reametaru Kenkyusho:Kk Cast iron and its modifying method
WO2007040464A1 (en) 2005-09-15 2007-04-12 Grede Foundries, Inc. High silicon niobium casting alloy and process for producing the same
JP2009509035A (en) * 2005-09-15 2009-03-05 グリード・ファウンドリーズ・インコーポレイテッド High silicon niobium casting alloy and method for producing the same
US8012410B2 (en) 2005-09-15 2011-09-06 Grede Llc High silicon niobium casting alloy and process for producing the same
WO2010070949A1 (en) * 2008-12-18 2010-06-24 三菱重工業株式会社 Spheroidal graphite cast iron
JP2010144216A (en) * 2008-12-18 2010-07-01 Mitsubishi Heavy Ind Ltd Spheroidal graphite cast iron
EP2377960B1 (en) 2008-12-18 2018-09-26 Mitsubishi Heavy Industries, Ltd. Spheroidal graphite cast iron
CN103352163A (en) * 2013-08-01 2013-10-16 河南省中原内配铸造有限公司 Double phase cast iron cylinder liner produced through centrifugal casting, and processing technology thereof
WO2021193523A1 (en) * 2020-03-23 2021-09-30 アイシン高丘株式会社 Ferritic spheroidal graphite cast iron, differential case, and differential device
CN115315535A (en) * 2020-03-23 2022-11-08 爱信高丘株式会社 Ferritic spheroidal graphite cast iron, differential case, and differential device

Similar Documents

Publication Publication Date Title
KR101373488B1 (en) Spheroidal graphite cast iron
JP5806468B2 (en) Austenitic ductile cast iron
US20040091383A1 (en) Ferrite-based spheroidal graphite cast iron and exhaust system component using the same
CN105603260A (en) High-temperature-resistant turbocharger turbine wheel
WO2010097673A1 (en) Ferritic spheroidal graphite cast iron
EP0668367A1 (en) Heat-resistant, austenitic cast steel and exhaust equipment member made thereof
JP5488941B2 (en) Austenitic cast iron, austenitic cast iron casting and method for producing the same
US4711677A (en) High temperature bushing alloy
US20100178192A1 (en) Cast Iron Comprising Cobalt and Component
US20110194969A1 (en) Ductile Iron Having Cobalt
EP0471255A1 (en) Heat-resistant, austenite cast steel and exhaust equipment member made thereof
JPH0672294B2 (en) Stainless steel casting alloy and manufacturing method thereof
JP3752563B2 (en) Heat resistant spheroidal graphite cast iron
JPS6372850A (en) Spheroidal graphite cast iron excellent in wear resistance and oxidation resistance
KR101845761B1 (en) Ferritic spheroidal cast iron for exhaust system
EP0109040B1 (en) Heat-resisting spheroidal graphite cast iron
JPS63100154A (en) Spheroidal graphite cast iron excellent in wear resistant and oxidation resistance
KR101438825B1 (en) Ferritic nodular cast iron
JP2002371335A (en) Heat-resistant spherical cast graphite iron for exhaust part superior in oxidation resistance
KR101054771B1 (en) Ferritic Spheroidal Graphite Cast Iron Castings
KR102135185B1 (en) Austenitic steel excellent in room temperature strength and high temperature strength
JPH0686642B2 (en) Heat resistant spheroidal graphite cast iron
JPH09111394A (en) Heat resistant spheroidal graphite cast iron
JP2018154863A (en) Spheroidal graphite cast iron and exhaust component
JPS62142745A (en) Heat-resistant spheroidal graphite cast iron