JPS6250418B2 - - Google Patents

Info

Publication number
JPS6250418B2
JPS6250418B2 JP58219380A JP21938083A JPS6250418B2 JP S6250418 B2 JPS6250418 B2 JP S6250418B2 JP 58219380 A JP58219380 A JP 58219380A JP 21938083 A JP21938083 A JP 21938083A JP S6250418 B2 JPS6250418 B2 JP S6250418B2
Authority
JP
Japan
Prior art keywords
flame
nozzle
glass
gas supply
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58219380A
Other languages
Japanese (ja)
Other versions
JPS60112636A (en
Inventor
Hiroyuki Suda
Shuichi Shibata
Motohiro Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21938083A priority Critical patent/JPS60112636A/en
Publication of JPS60112636A publication Critical patent/JPS60112636A/en
Publication of JPS6250418B2 publication Critical patent/JPS6250418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、VAD法による光フアイバ母材の合
成速度の向上を図るための、ガラス微粒子合成用
バーナに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a burner for synthesizing glass fine particles in order to improve the synthesis rate of an optical fiber base material by VAD method.

〔従来技術〕[Prior art]

まず、従来のこの種の合成用バーナを第1図に
基づいて説明する。すなわち第1図は、従来の
VAD法の製造装置における合成用バーナの1例
の断面概略図である。第1図において符号1はガ
ラス原料供給口、2は不活性ガス供給口、3は可
燃性ガス供給口、4は支燃性ガス供給口を意味す
る。それぞれのガスは、同心円状に形成されたノ
ズルの中を流れ、先端部で火炎を形成し、ガラス
原料は火炎中でガラス微粒子となる。原料ガス
と、可燃性ガス及び支燃性ガスとの間に不活性ガ
スを流すのは、ノズルの出口付近でのガラス微粒
子の生成を防止してノズル出口にガラス微粒子が
付着するのを防ぐためである。このような従来の
合成用バーナでは、火炎長はバーナ口径及び可燃
性ガス流量により決定され、ガラス原料供給量を
増加するとガラス原料量の流速が速くなり、ガラ
ス微粒子とならない未反応部分が増加すると共
に、同時にガラス微粒子粒径が小さくなり、ガラ
ス微粒子の堆積効率が低下するという欠点があつ
た。
First, a conventional synthesis burner of this type will be explained based on FIG. 1. In other words, Figure 1 shows the conventional
FIG. 2 is a schematic cross-sectional view of an example of a synthesis burner in a VAD manufacturing apparatus. In FIG. 1, reference numeral 1 means a frit supply port, 2 an inert gas supply port, 3 a combustible gas supply port, and 4 a combustion-supporting gas supply port. Each gas flows through a concentric nozzle, forming a flame at the tip, and the glass raw material turns into glass fine particles in the flame. The purpose of flowing an inert gas between the raw material gas and the combustible gas and combustion-supporting gas is to prevent the formation of glass particles near the nozzle outlet and to prevent glass particles from adhering to the nozzle outlet. It is. In such conventional synthesis burners, the flame length is determined by the burner diameter and the flow rate of combustible gas, and as the amount of glass raw material supplied increases, the flow rate of the glass raw material increases, and the unreacted portion that does not become glass particles increases. At the same time, there was a drawback that the particle size of the glass fine particles became small, and the deposition efficiency of the glass fine particles decreased.

〔発明の目的〕[Purpose of the invention]

本発明はこれらの欠点を解決するためになされ
たものであり、その目的は、ガラス微粒子合成の
高速化を図つた合成用バーナを提供することにあ
る。
The present invention has been made to solve these drawbacks, and its purpose is to provide a synthesis burner that can speed up the synthesis of glass particles.

〔発明の構成〕[Structure of the invention]

本発明を概説すれば、本発明はガラス微粒子合
成用バーナに関する発明であつて、同心円状の多
重ノズルからなり、中心部にガラス原料供給用ノ
ズル、外側部に不活性ガス供給用、可燃性ガス供
給用及び支燃性ガス供給用の各ノズルを有し、可
燃性ガス及び支燃性ガスによる火炎内でガラス微
粒子を合成するガラス微粒子合成用バーナにおい
て、一組の同心円状多重ノズルからなる内側火炎
形成用ノズルの外側に同心円状に更にもう一組の
原料供給用、不活性ガス供給用、可燃性ガス供給
用及び支燃性ガス供給用ノズルからなる、又はそ
れから該原料供給用ノズルを除いた外側火炎形成
用ノズルを設け、内側火炎形成用ノズルを外側火
炎形成用ノズルに対して退行可能としたことを特
徴とする。
To summarize the present invention, the present invention relates to a burner for synthesizing glass fine particles, and is composed of multiple concentric nozzles, with a nozzle for supplying glass raw materials in the center, a nozzle for supplying inert gas, and a nozzle for supplying flammable gas in the outer part. In a burner for glass particle synthesis, which has nozzles for supply and combustion-supporting gas, and synthesizes glass particles in a flame of combustible gas and combustion-supporting gas, an inner side consisting of a set of concentric multiple nozzles Consisting of another set of nozzles for supplying raw material, for supplying inert gas, for supplying flammable gas, and for supplying combustion-supporting gas concentrically outside the flame forming nozzle, or excluding the nozzle for supplying raw material. The present invention is characterized in that an outer flame forming nozzle is provided, and the inner flame forming nozzle is retractable with respect to the outer flame forming nozzle.

まず、図面により本発明の原理を説明する。第
2図にガラス微粒子比表面積(すなわちガラス微
粒子半径)のガラス微粒子火炎内在留時間依存性
を示す。すなわち、第2図は、VAD法による火
炎内在留時間(秒)(横軸)とガラス微粒子比表
面積(m2/g)(縦軸)及びガラス微粒子粒径
(μm)(縦軸)との関係を示すグラフである。第
2図から明らかなように、ガラス微粒子火炎内在
留時間が長くなるに従つて、ガラス微粒子比表面
積は小さくなり、逆にガラス微粒子粒径は大きく
なる。そこで火炎長を長くとることにより、ガラ
ス微粒子火炎内在留時間を長くすることができ、
結果的にガラス微粒子粒径を大きくすることがで
きることを見出した。
First, the principle of the present invention will be explained with reference to the drawings. FIG. 2 shows the dependence of the glass particle specific surface area (that is, the glass particle radius) on the glass particle flame residence time. In other words, Figure 2 shows the relationship between flame residence time (seconds) (horizontal axis), glass particle specific surface area (m 2 /g) (vertical axis), and glass particle diameter (μm) (vertical axis) by the VAD method. It is a graph showing a relationship. As is clear from FIG. 2, as the residence time of the glass fine particles in the flame becomes longer, the specific surface area of the glass fine particles decreases, and conversely, the particle size of the glass fine particles increases. Therefore, by increasing the flame length, the residence time in the glass particle flame can be increased.
It has been found that the particle size of glass fine particles can be increased as a result.

すなわち、本発明の合成用バーナを用いれば、
内側火炎形成用ノズルを退行させることにより、
内側火炎形成用ノズルによる内側火炎を外側火炎
形成用ノズルによる外側火炎により延長させるこ
とができるので、ガラス微粒子粒径を増大させ、
それによつて微粒子の大径化と堆積速度の向上を
図り、光フアイバ母材合成速度の高速化を達成す
ることができる。
That is, if the synthesis burner of the present invention is used,
By retracting the inner flame forming nozzle,
Since the inner flame produced by the inner flame forming nozzle can be extended by the outer flame produced by the outer flame forming nozzle, the particle size of the glass fine particles is increased.
Thereby, it is possible to increase the diameter of the fine particles and increase the deposition rate, thereby achieving a faster synthesis rate of the optical fiber base material.

この効果は、堆積中の光フアイバ母材へのガラ
ス微粒子の供給断面積が拡大することにもよつて
いる。
This effect is also due to the enlargement of the cross-sectional area of the supply of glass particles to the optical fiber matrix during deposition.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明する
が、本発明はこれに限定されない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例 1 本発明装置の1例を第3図に示す。すなわち、
第3図は、本発明装置の1実施例の断面概略図で
ある。第3図において、符号5は内側火炎用ガラ
ス原料供給口、6は、内側火炎用燃焼ガス供給
口、7は外側火炎用ガラス原料供給口、8は外側
火炎用燃焼ガス供給口、10は原料層、11は内
側火炎、12は外側火炎、そしてaは内側火炎に
よる火炎長、bは二重火炎による火炎長を意味す
る。ここで各燃焼ガス導通部は、可燃性ガス、支
燃性ガス及び不活性ガスの導通用ノズルからなつ
ているが、それらの境界、更に支燃性ガス及び不
活性ガスの各供給口は複雑となるため、その図示
を省略した。
Example 1 An example of the apparatus of the present invention is shown in FIG. That is,
FIG. 3 is a schematic cross-sectional view of one embodiment of the device of the present invention. In FIG. 3, reference numeral 5 indicates a frit supply port for the inner flame, 6 indicates a combustion gas supply port for the inner flame, 7 indicates a frit supply port for the outer flame, 8 indicates a combustion gas supply port for the outer flame, and 10 indicates the raw material. layer, 11 is the inner flame, 12 is the outer flame, and a means the flame length due to the inner flame and b means the flame length due to the double flame. Here, each combustion gas communication part consists of nozzles for conducting flammable gas, combustion-supporting gas, and inert gas, but the boundaries between these and the supply ports for combustion-supporting gas and inert gas are complicated. Therefore, its illustration was omitted.

ここで、7と8の外側火炎形成用ノズルは、5
と6の内側火炎形成用ノズルと独立しており、内
側ノズルは外側ノズルに対して退行可能であり、
各々のノズル先端間隔を、ガラス原料供給量に応
じて調節できるようにしてある。
Here, the outer flame forming nozzles 7 and 8 are 5
and 6 are independent of the inner flame forming nozzle, the inner nozzle being retractable with respect to the outer nozzle;
The distance between the tips of each nozzle can be adjusted depending on the amount of glass raw material supplied.

本実施例では、内側火炎形成用ノズル先端は、
外側火炎形成用ノズルに対して60mm退行させた。
その結果、内側火炎のみの場合に比較して、外側
火炎を加えた場合の火炎長は、およそ3倍に増加
することができた。
In this example, the tip of the inner flame forming nozzle is
It was retracted 60mm from the outer flame forming nozzle.
As a result, the flame length when adding the outer flame could be increased approximately three times as compared to when only the inner flame was used.

また、本実施例におけるガラス微粒子比表面積
(すなわち、ガラス微粒子粒径)のガラス原料供
給量依存性を第4図に示す。すなわち第4図は、
従来及び本発明の1実施例における、ガラス原料
供給量(c.c./分)(横軸)とガラス微粒子比表面
積(m2/g)(縦軸)との関係を示すグラフであ
る。第4図から明らかなように、内側火炎のみの
場合に比較して、外側火炎を加えた本発明による
場合、ガラス微粒子比表面積は小さくなる(すな
わちガラス微粒子粒径は大きくなる)。ガラス原
料供給量が1300c.c./分のとき、内側火炎のみで生
成されたガラス微粒子の粒径が0.08μm(火炎内
在留時間0.1秒)、外側火炎を加えた本実施例では
粒径0.21μm(火炎内在留時間0.3秒)と粒径が
増大した。
Further, FIG. 4 shows the dependence of the glass fine particle specific surface area (namely, the glass fine particle particle size) on the glass raw material supply amount in this example. In other words, Figure 4 is
It is a graph showing the relationship between glass raw material supply amount (cc/min) (horizontal axis) and glass fine particle specific surface area (m 2 /g) (vertical axis) in a conventional example and an example of the present invention. As is clear from FIG. 4, compared to the case where only the inner flame is used, in the case of the present invention in which the outer flame is added, the specific surface area of the glass particles becomes smaller (that is, the particle size of the glass particles becomes larger). When the glass raw material supply rate is 1300 c.c./min, the particle size of the glass particles generated only by the inner flame is 0.08 μm (flame residence time 0.1 seconds), and in this example with the outer flame added, the particle size is 0.21 μm. The particle size increased to μm (flame residence time 0.3 seconds).

更に、同様の条件で行つたガラス微粒子堆積に
関する実験結果を第5図に示す。すなわち、第5
図は、従来及び本発明の1実施例におけるガラス
原料供給量(c.c./分)(横軸)とガラス微粒子堆
積量(g/分)(縦軸)との関係を示すグラフで
ある。
Further, FIG. 5 shows the experimental results regarding glass particle deposition conducted under similar conditions. That is, the fifth
The figure is a graph showing the relationship between the glass raw material supply amount (cc/min) (horizontal axis) and the glass fine particle deposition amount (g/min) (vertical axis) in a conventional example and an embodiment of the present invention.

第5図から明らかなように、外側火炎による火
炎長の増加によりガラス微粒子堆積量が増加し
た。とりわけ、ガラス原料供給量が多くなるほ
ど、二重火炎の効果が顕著であることを示してい
る。例えば、ガラス原料供給量1300c.c./分のと
き、ガラス微粒子堆積量は、内側のみの場合0.85
g/分であり、本発明により二重火炎として火炎
長を増加させると、1.4g/分と約1.6倍に増加し
た。
As is clear from FIG. 5, the amount of glass particles deposited increased as the flame length due to the outer flame increased. In particular, it is shown that the effect of double flame becomes more pronounced as the amount of glass raw material supplied increases. For example, when the glass raw material supply rate is 1300c.c./min, the amount of glass fine particles deposited is 0.85 on the inside only.
g/min, and when the flame length was increased as a double flame according to the present invention, it increased approximately 1.6 times to 1.4 g/min.

以上のように、内側火炎形成用ノズルにのみガ
ラス原料を供給する場合には、外側火炎形成用ノ
ズルの原料供給用ノズルには不活性ガスを流し、
火炎の乱れを防止する。このように、二重火炎に
よる火炎長の延長の効果のみを用いる場合には、
外側火炎形成用ノズルは、原料供給用ノズルを省
いた構成としておくことも有効である。
As described above, when the glass raw material is supplied only to the inner flame forming nozzle, an inert gas is passed through the raw material supply nozzle of the outer flame forming nozzle,
Prevent flame turbulence. In this way, when only the effect of flame length extension due to double flame is used,
It is also effective to configure the outer flame forming nozzle without the raw material supply nozzle.

外側火炎形成用ノズルが原料供給用ノズルを有
するバーナで外側火炎中にもガラス原料を1000
c.c./分で供給すると、2.3g/分とガラス微粒子
堆積量が増加し、中心原料層のみに2300c.c./分で
ガラス原料を供給する場合に比較して、堆積量が
30%増加した。
In a burner where the outer flame forming nozzle has a raw material supply nozzle, 1,000 ml of glass raw material is also added to the outer flame.
When the glass raw material is supplied at cc/min, the amount of glass fine particles deposited increases to 2.3 g/min, and compared to the case where glass raw material is supplied only to the central raw material layer at 2300 c.c./min, the amount of deposited glass particles increases to 2.3 g/min.
Increased by 30%.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の合成用バーナを
用いれば、バーナ火炎長を長くしたことにより、
ガラス微粒子粒径を大きくすることができると共
に、径方向に火炎を二重化することにより、ガラ
ス微粒子の供給断面積が拡大し、ガラス微粒子堆
積量が増加する。この堆積量の増加は、ガラス原
料供給量が多いほど顕著であるから、光フアイバ
母材の高速合成を達成することができ、光フアイ
バ価格の低下に寄与することができるという顕著
な効果が奏せられる。
As explained above, if the synthesis burner of the present invention is used, by increasing the burner flame length,
By increasing the particle size of the glass particles and doubling the flame in the radial direction, the supply cross-sectional area of the glass particles is expanded and the amount of glass particles deposited is increased. This increase in the amount of deposits becomes more pronounced as the amount of glass raw material supplied increases, so it is possible to achieve high-speed synthesis of the optical fiber base material, which has the remarkable effect of contributing to a reduction in the price of optical fibers. be given

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のVAD法の製造装置における合
成用バーナの1例の断面概略図、第2図はVAD
法による火炎内在留時間とガラス微粒子比表面積
及びガラス微粒子粒径との関係を示すグラフ、第
3図は本発明装置の1実施例の断面概略図、第4
図は従来及び本発明の1実施例におけるガラス原
料供給量とガラス微粒子比表面積との関係を示す
グラフ、第5図は従来及び本発明の1実施例にお
けるガラス原料供給量とガラス微粒子堆積量との
関係を示すグラフである。 1:ガラス原料供給口、2:不活性ガス供給
口、3:可燃性ガス供給口、4:支燃性ガス供給
口、5:内側火炎用ガラス原料供給口、6:内側
火炎用燃焼ガス供給口、7:外側火炎用ガラス原
料供給口、8:外側火炎用燃焼ガス供給口、1
0:原料層、11:内側火炎、12:外側火炎。
Figure 1 is a cross-sectional schematic diagram of an example of a synthesis burner in a conventional VAD manufacturing device, and Figure 2 is a VAD
Graph showing the relationship between flame residence time, specific surface area of glass particles, and particle size of glass particles according to the method, FIG. 3 is a schematic cross-sectional view of one embodiment of the apparatus of the present invention,
The figure is a graph showing the relationship between the glass raw material supply amount and the specific surface area of glass fine particles in the conventional and one embodiment of the present invention, and FIG. It is a graph showing the relationship between. 1: Frit supply port, 2: Inert gas supply port, 3: Flammable gas supply port, 4: Combustion-supporting gas supply port, 5: Frit supply port for inner flame, 6: Combustion gas supply for inner flame Port, 7: Glass raw material supply port for outer flame, 8: Combustion gas supply port for outer flame, 1
0: raw material layer, 11: inner flame, 12: outer flame.

Claims (1)

【特許請求の範囲】 1 同心円状の多重ノズルからなり、中心部にガ
ラス原料供給用ノズル、外側部に不活性ガス供給
用、可燃性ガス供給用及び支燃性ガス供給用の各
ノズルを有し、可燃性ガス及び支燃性ガスによる
火炎内でガラス微粒子を合成するガラス微粒子合
成用バーナにおいて、一組の同心円状多重ノズル
からなる内側火炎形成用ノズルの外側に同心円状
に更にもう一組の原料供給用、不活性ガス供給
用、可燃性ガス供給用及び支燃性ガス供給用ノズ
ルからなる外側火炎形成用ノズルを設け、内側火
炎形成用ノズルを外側火炎形成用ノズルに対して
退行可能としたことを特徴とするガラス微粒子合
成用バーナ。 2 同心円状の多重ノズルからなり、中心部にガ
ラス原料供給用ノズル、外側部に不活性ガス供給
用、可燃性ガス供給用及び支燃性ガス供給用の各
ノズルを有し、可燃性ガス及び支燃性ガスによる
火炎内でガラス微粒子を合成するガラス微粒子合
成用バーナにおいて、一組の同心円状多重ノズル
からなる内側火炎形成用ノズルの外側に同心円状
に更にもう一組の不活性ガス供給用、可燃性ガス
供給用及び支燃性ガス供給用ノズルからなる外側
火炎形成用ノズルを設け、内側火炎形成用ノズル
を外側火炎形成用ノズルに対して、連続した火炎
が形成される範囲内で退行可能としたことを特徴
とするガラス微粒子合成用バーナ。
[Claims] 1 Consists of multiple concentric nozzles, with a glass raw material supply nozzle in the center and nozzles for inert gas supply, flammable gas supply, and combustion-supporting gas supply on the outside. In a glass particle synthesis burner that synthesizes glass particles in a flame of combustible gas and combustion-supporting gas, an inner flame forming nozzle consisting of a set of concentric multiple nozzles is provided with another set concentrically arranged outside the inner flame forming nozzle. An outer flame forming nozzle consisting of nozzles for raw material supply, inert gas supply, combustible gas supply, and combustion supporting gas supply is provided, and the inner flame formation nozzle can be retracted from the outer flame formation nozzle. A burner for glass particle synthesis, characterized by the following. 2 Consists of multiple concentric nozzles, with a nozzle for glass raw material supply in the center and nozzles for inert gas supply, flammable gas supply, and combustion-supporting gas supply on the outside. In a glass particle synthesis burner that synthesizes glass particles in a flame using a combustion-supporting gas, an inner flame formation nozzle consisting of a set of concentric multiple nozzles is provided with another set concentrically arranged outside the inner flame formation nozzle for supplying inert gas. , an outer flame formation nozzle consisting of a combustible gas supply nozzle and a combustion-supporting gas supply nozzle is provided, and the inner flame formation nozzle is retracted from the outer flame formation nozzle within a range where a continuous flame is formed. A burner for glass particle synthesis, which is characterized by the following:
JP21938083A 1983-11-24 1983-11-24 Burner for synthesizing fine glass particle Granted JPS60112636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21938083A JPS60112636A (en) 1983-11-24 1983-11-24 Burner for synthesizing fine glass particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21938083A JPS60112636A (en) 1983-11-24 1983-11-24 Burner for synthesizing fine glass particle

Publications (2)

Publication Number Publication Date
JPS60112636A JPS60112636A (en) 1985-06-19
JPS6250418B2 true JPS6250418B2 (en) 1987-10-24

Family

ID=16734508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21938083A Granted JPS60112636A (en) 1983-11-24 1983-11-24 Burner for synthesizing fine glass particle

Country Status (1)

Country Link
JP (1) JPS60112636A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186239A (en) * 1985-02-12 1986-08-19 Nippon Telegr & Teleph Corp <Ntt> Production of parent material for optical fiber and burner therefor
JPS6287428A (en) * 1985-10-09 1987-04-21 Furukawa Electric Co Ltd:The Production of porous preform for optical system
JP3118822B2 (en) * 1990-09-07 2000-12-18 住友電気工業株式会社 Method for manufacturing glass articles
AU2002312877A1 (en) * 2002-05-03 2003-11-17 Pirelli & C. S.P.A. Burner assembly for producing glass preforms and corresponding production process
JP4702241B2 (en) * 2006-09-20 2011-06-15 旭硝子株式会社 Burner for synthesizing metal-doped silica glass particles and method for synthesizing metal-doped silica glass particles using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727935A (en) * 1980-07-25 1982-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS5765930A (en) * 1980-10-13 1982-04-21 Nippon Telegr & Teleph Corp <Ntt> Searching method for fault of optical fiber transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727935A (en) * 1980-07-25 1982-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS5765930A (en) * 1980-10-13 1982-04-21 Nippon Telegr & Teleph Corp <Ntt> Searching method for fault of optical fiber transmission system

Also Published As

Publication number Publication date
JPS60112636A (en) 1985-06-19

Similar Documents

Publication Publication Date Title
JP3705169B2 (en) Method for producing porous glass body
JPS6250418B2 (en)
JPH06247722A (en) Production of porous glass base material
JP2000191337A (en) Torch for synthesizing glass particulate with hood
JP3946645B2 (en) Optical glass and manufacturing method thereof
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
JPS6251902B2 (en)
JPH04193730A (en) Production of base material for optical fiber and hood for oxyhydrogen burner
JP4404767B2 (en) Method and apparatus for producing preforms from synthetic quartz glass using plasma assisted deposition
JP3653902B2 (en) Glass base material synthesis burner and glass base material manufacturing method
JPH05323130A (en) Multifocus type burner and production of glass particulate deposited body by using this burner
JPS6022651B2 (en) Quartz glass melting equipment for the production of pure quartz glass
JPH1179774A (en) Production of optical fiber preform
JP2003212555A (en) Burner for manufacturing porous preform of optical fiber and method of manufacturing porous preform of optical fiber using the same
JPH02164733A (en) Production of glass fine particle deposited body
JPH04260616A (en) Production of glass body
JPH09188522A (en) Torch for synthesizing glass fine particle
JP2938688B2 (en) Manufacturing method of preform for optical fiber
JP3169409B2 (en) Manufacturing method of preform for optical fiber
JP2002160934A (en) Method of producing optical fiber preform and burner used in the method
KR100238183B1 (en) Linear torch having one dimension particle distribution
JP3188515B2 (en) Burner for synthesis of silica fine particles
JP2000109329A (en) Production of porous preform
JP2751176B2 (en) Manufacturing method of base material for optical fiber
JPH04228440A (en) Production of glass article