JPS6250391A - 組成を可変にした可燃性ガスの変成処理方法 - Google Patents

組成を可変にした可燃性ガスの変成処理方法

Info

Publication number
JPS6250391A
JPS6250391A JP19047185A JP19047185A JPS6250391A JP S6250391 A JPS6250391 A JP S6250391A JP 19047185 A JP19047185 A JP 19047185A JP 19047185 A JP19047185 A JP 19047185A JP S6250391 A JPS6250391 A JP S6250391A
Authority
JP
Japan
Prior art keywords
gas
calorific value
combustible gas
composition
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19047185A
Other languages
English (en)
Inventor
Tatsuhiro Imai
今井 達裕
Yasuo Hirose
広瀬 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP19047185A priority Critical patent/JPS6250391A/ja
Publication of JPS6250391A publication Critical patent/JPS6250391A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 ■1発明の目的 (産業上の利用分野) 本発明は、水性ガス必るいは合成ガスと一般に呼ばれて
いる一酸化炭素(CO)と水素(H2)を主成分とする
可燃性ガスの製造方法及び装置に関する。更に詳細に説
明すると、本発明は、気体ないし液体の原料炭化水素か
ら部分燃焼によって可燃性ガス(本明細書においては水
性ガス及び合成ガスを含む)を製造する際にその組成を
可変にする変成処理方法及び装置に関する。
(従来の技術) 近年、国家的事業として石炭転換利用技術の開発即ち石
炭のガス化ないし液化技術の開発が提唱され、各国で推
し進められている。そして、この開発の一環として、石
炭ガス化によって生成されたガス(以下石炭ガス化ガス
若しくは生成ガスと言う)、特に2000kcal/N
m 3未満(7) 低カロリーガスを燃料とする低カロ
リーガス用タービンやバーナ等の並行開発が要求されて
いる。
この種の低カロリーガス用タービンやバーナ等の開発に
際しては、石炭のカス化技術が開発段階にある現状にお
いては燃焼器の性能・効率・安定性等を評価するための
模擬ガスが工業的規模で大量に必要となる。しかも、こ
の模擬ガスは、原料炭の組成成分が不均質であったり種
類が異なったリすると生成ガスの発熱量や組成もまちま
ちとなることから、これに合わせて多種用意する必要が
める。
そこで、本発明者らは、この模擬ガスを、炭化水素系原
料からアンモニアやメタノールなどの合成原料ガスを連
続的につくる従来の部分燃焼法(化学大辞典7第918
頁:昭和56年10月15日共立出版株式会社発行)を
利用して、炭化水素系燃料そのものを原料として所定発
熱量の可燃性カスを工業的規模で大量かつ安価に連続生
産する口とを考えた。
この部分燃焼法は、原料炭化水素の一部を酸素又は空気
で燃焼させ、その発生熱によって残存炭化水素を変成し
、合成原料ガスを連続的につくるもので、所定発熱量の
可燃性ガスを得るには好適な製造法である。
(発明が解決しようとする問題点) しかしながら、この従来の部分燃焼法は原料燃料と空気
不足量を決定すれば、得られる可燃性ガスの発熱量及び
その組成が一義的に定まってしまうもので必る。このた
め、当該部分燃焼法によって模擬カスを製造する場合、
所望とする発熱量か得られたとしてもその組成が使用を
子宝している生成ガスのものと金、く異なる場合もある
。模擬燃料ガスとしては、発熱量が指定通りで必ること
が最も重要なことではあるが、その組成を全く無視でき
るというものではなく、特に水素の存在は燃焼器の性能
に大きく影響を与えることから、実際のガスに近似した
ものとしなければ模擬ガスとしての意義が薄れる。もつ
とも、原料燃料を変えることにより模擬ガスの組成を変
化させることもできるが、この場合、組成を自由に変化
させ得るという程のものではなく実用上十分なものとは
言えない。
斯様に従来の部分燃焼法に因るガス変成処理によると、
上述の模擬ガスの製造に限らず、他の可燃性ガスの製造
の場合にもその用途に応じて組成等を最適なものに変化
させることができない不便がある。
そこで、本発明は、通常の燃料から安全に任意組成の可
燃性ガスを連続的に工業的規模で大量に製造できる変成
処理方法を提供することを目的とする。更に具体的には
、本発明は発熱量と組成を自由に変化さf!得る可燃性
ガス・燃料ガスの変成処理方法を提供することを目的と
する。
II 、発明の構成 (問題点を解決するための手段) 斯かる目的を達成するため、本発明の可燃性ガスの変成
処理方法は、組成の異なる複数種の炭化水素系燃料を混
合して部分燃焼させ、混合燃料の配合量に応じて双方の
組成の間の値をとるようにして組成を可変にしている。
(実施例) まず、本発明を実施する具体的装置例を図面に基づいて
詳細に説明する。
第1図に本発明の可燃性ガスの変成処理方法を実施する
装首例をブロック図で示す。該図において、1はガス変
成炉、2は燃焼器、3は熱交換器でおり、排出される生
成ガスの熱を利用して予熱された燃焼用空気を燃焼器2
に供給し、組成の異なる複数種の炭化水素系燃料を供給
しその一部を燃焼させてその燃焼熱によって残存炭化水
素系燃料を変成させるようにしている。
ここで、ガス変成炉1は、炭化水素系の気体又は液体の
燃料を空気又は酸化剤等を供給しつつ空気不足のもとて
部分燃焼させ、原料ガスを所定刃口り一並びに組成のガ
スに変成させるもので市る。
尚、該ガス変成炉1には水蒸気又は水が注入可能に設け
られ、これらを以て生成ガスの急冷あるいは一部変成作
用を行なわせることも可能である。
以上のように構成された変成処理装置を用いて本発明の
可燃性ガスの変成処理方法を以下に詳細に説明する。
ガス変成炉1においては、炭化水素系の原料燃料例えば
メタン等が空気不足状態で部分燃焼され、所定発熱量の
低カロリーガスに変成される。通常、部分燃焼によるガ
ス変成は、原料燃料と空気不足量が定まると第2図およ
び第3図に示すようにその発熱dと組成(主にH2/C
o比)が同時に定まる。例えば、メタンとベンゼンを例
にとると、第2図に示すように空気比と生成ガスの発熱
量とか一定の関係にあることが明らかである。また、そ
の組成は第3図に示すように1つのライン上に存在し、
空気比即ち発熱量との間に一定の関係があることが明ら
かである。
このため、たとえばメタンガスを変成して得られる可燃
性ガスの発熱量と組成は第3図に符号10で示される実
線上において変化することとなる。
また、ベンゼンを燃料とする場合には符号12で示され
る実線上において組成は変化することとなる。したがっ
て、指定発熱量に基づいて空気比が定められると、生成
可燃性ガスの組成(特にH2、Co)は一義的に定まる
。例えば、メタンガスを原料として発熱量1000kc
al/Nm 3の低カロリーガスを生成するときには、 H221,5vol  %、Co 13 vo1%、1
500kcal/Nm 3 (1)トキニハ、H234
VOI%、Co i8 vo1%、となる。
しかし、この組成が相異なる二種の炭化水素系燃料を適
宜配合しガス変成炉1において配合比率に応じて双方の
組成曲線1.0.12の間に組成をとる。即ち、メタン
とベンゼンを適宜配合しかつ空気比を適宜設定すること
により、両組成曲線10.12間のハツチングで示され
る領域において自在に任意熱量及び組成の可燃性ガスを
生成し得る。例えば、メタンとベンゼンの組合せから、
相互に組成の異なる同一発熱量の低カロリーガスを生成
しようとする場合、ハツチングで示される領域でかつ同
一発熱量を示すライン11上のある点での組成をとるこ
とが可能である。
そこで、混合すべき原料燃料として゛は、組成の相異な
る複数種の炭化水素系燃料、好ましくは不飽和結合の大
きいものと少ないものとを組合せて用いる。例えば、メ
タンとベンゼン、メタンとアセチレン、メタンとピリジ
ン等が好適である。
ここで、空気比は複数種の原料燃料の配合比によって第
2図に示すように逐次変化する。
上述の反応は混合された少なくとも2種の炭化水素系燃
料を熱交換器3において排出生成ガスの熱を利用して比
較的高温に予熱された燃焼用空気と混合してバーナ4で
燃焼させることにより維持される。燃焼帯の温度は通常
、1000’C以上、好ましくは1200°C程度に制
御され、例えば第2図および第3図に示される燃焼例に
ついては1500にで行なわれている。
例えば、メタンとベンゼンの組合せから発熱量1000
kcal/ Nm 3 (7)低力口IJ −カスヲ生
成Vる場合、H221,5%、0013%の組成のもの
から8210%、CO24%の組成のものまで第2図に
示されるハツチングの領域内で発熱量線11上に沿って
自由に得られる。
更に、生成ガスの発熱量と空気比との関係を示した第2
図からも明らかなように、一定空気比の下で部分燃焼さ
せる場合でも、原料燃料の配合比を変えることによって
、発熱量を自由に変化させ得ることが理解できる。
斯様に本発明の可燃性ガス変成方法によると、組成の異
なる複数種の炭化水素系燃料を適宜選定しその配合比を
制御して部分燃焼することにより、任意の発熱量並びに
組成のガス特に低カロリーガスを製造し得る。この低カ
ロリーカスは、例えば石油転換利用技術の一環として開
発された燃焼機器等の模擬ガスとしての使用に好適であ
る。また、このガス変成方法は、模擬ガス製造ばかりで
はなく、用途に応じた最適な組成のガスに変成して原料
ガスないし燃料ガスを製造する場合にも好適である。例
えば、燃料カスから燃焼器の性能に大きな影響を与える
水素を抑えて一酸化炭素だけを必要量増量させるような
ことも必るいはその逆も可能である。
IIl、発明の効果 以上の説明より明らかなように、本発明の可燃性ガスの
変成処理方法は、組成の異なる複数種のの炭化水素系燃
料を混合して部分燃焼させるので、混合燃料の配合比に
応じて各炭化水素系燃料の組成の間の値をとり、変成ガ
ス中の組成を変化させ得る。
μ[Jち、従来の部分燃焼法では原料燃料と空気不足量
か決められると一律に定まっていた発生熱徂と組成を共
に自由に変化させ得ることができ、同じ組合せの原料燃
料から同−発熱量の可燃性ガスを得る場合にも自由にそ
の組成を変化させ得る。
依って、本発明によると、実際の石炭ガス化ガスに近い
発熱量と組成の模擬燃料ガスを工業的規模で大量に容易
かつ安価1.:連続製造できる。しかも、このガス変成
は、通常の燃料ガスから安全に製造できる。
【図面の簡単な説明】
第1図は本発明の一実施装置例を原理的に示すブロック
図、第2図はメタンとベンゼンを原料燃料とした場合に
部分燃焼によって生成されるガスの発熱量と空気比の関
係を示すグラフ、第3図は本発明方法によって得られる
可燃性ガスの発熱量と組成の関係をメタンとベンゼンの
組合せについて示すグラフである。 1・・・ガス変成炉、2・・・燃焼器。 第1図 CH4C686 裂1バス 第2図 中λビしλ Co(vo1%]

Claims (3)

    【特許請求の範囲】
  1. (1)組成の異なる複数種の炭化水素系燃料を混合して
    部分燃焼させることを特徴とする可燃性ガスの変成処理
    方法。
  2. (2)前記炭化水素系燃料は不飽和結合の大きいものと
    少ないものとの組合せであることを特徴とする特許請求
    の範囲第1項に記載の可燃性ガスの変成処理方法。
  3. (3)前記炭化水素系燃料はメタンとベンゼンであるこ
    とを特徴とする特許請求の範囲第1項又は第2項に記載
    の可燃性ガスの変成処理方法。
JP19047185A 1985-08-29 1985-08-29 組成を可変にした可燃性ガスの変成処理方法 Pending JPS6250391A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19047185A JPS6250391A (ja) 1985-08-29 1985-08-29 組成を可変にした可燃性ガスの変成処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19047185A JPS6250391A (ja) 1985-08-29 1985-08-29 組成を可変にした可燃性ガスの変成処理方法

Publications (1)

Publication Number Publication Date
JPS6250391A true JPS6250391A (ja) 1987-03-05

Family

ID=16258663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19047185A Pending JPS6250391A (ja) 1985-08-29 1985-08-29 組成を可変にした可燃性ガスの変成処理方法

Country Status (1)

Country Link
JP (1) JPS6250391A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143765U (ja) * 1988-03-24 1989-10-03

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963701A (ja) * 1972-06-28 1974-06-20
JPS5373203A (en) * 1976-12-10 1978-06-29 Texaco Development Corp Production of gas products for synthesis
JPS5844601A (ja) * 1981-09-09 1983-03-15 秋江織物株式会社 提燈とその製作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963701A (ja) * 1972-06-28 1974-06-20
JPS5373203A (en) * 1976-12-10 1978-06-29 Texaco Development Corp Production of gas products for synthesis
JPS5844601A (ja) * 1981-09-09 1983-03-15 秋江織物株式会社 提燈とその製作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143765U (ja) * 1988-03-24 1989-10-03

Similar Documents

Publication Publication Date Title
US7229483B2 (en) Generation of an ultra-superheated steam composition and gasification therewith
JPH06507957A (ja) 炭化水素燃料を燃焼する方法とシステム
Chanphavong et al. Characterization and challenge of development of producer gas fuel combustor: A review
KR20030031909A (ko) 3단계 연료산화 및 인시추 노 연도가스 재순환을 이용한산화질소 저배출
WO2008103831A1 (en) Thermally stable cocurrent gasification system and associated methods
JPH07502104A (ja) 低NO↓xパイロットバーナーによって誘導される低NO↓x燃焼
AU2613497A (en) Method for combined generation of synthesis gas and power
WO1999055618A1 (en) Method and apparatus for the production of synthesis gas
Akhator et al. Design and development of a small-scale biomass downdraft gasifier
Susastriawan et al. Producer gas stove: Design, fabrication, and evaluation of thermal performance
Król et al. High-methane gasification of fuels from waste–Experimental identification
Kertthong et al. Non-catalytic partial oxidation of methane in biomass-derived syngas with high steam and hydrogen content optimal for subsequent synthesis process
US20030046868A1 (en) Generation of an ultra-superheated steam composition and gasification therewith
US20080033066A1 (en) System and method for enhancing co production in a gas to liquid system
Albrecht Reactor modeling and process analysis for partial oxidation of natural gas
JPS6250391A (ja) 組成を可変にした可燃性ガスの変成処理方法
JPS63252903A (ja) 還元性ガス発生装置
Fackler Jr A study of pollutant formation from the lean premixed combustion of gaseous fuel alternatives to natural gas
Fossum et al. Co-combustion: Biomass fuel gas and natural gas
Dybe et al. Design and experimental characterization of a swirl-stabilized combustor for low calorific value gaseous fuels
Methling et al. A chemical-kinetic investigation of combustion properties of alternative fuels: A step towards more efficient power generation
JPS6250390A (ja) 組成を可変にした可燃性ガスの変成処理方法
Kalisz et al. Energy balance of high temperature air/steam gasification of biomass in updraft, fixed bed type gasifier
White et al. Low NOx combustion systems for burning heavy residual fuels and high-fuel-bound nitrogen fuels
JP2003027072A (ja) 石炭の熱分解ガス化反応生成物による発電方法